
Distinct Roles of Interferon Alpha and Beta in Controlling
Chikungunya Virus Replication and Modulating Neutrophil-
Mediated Inflammation

Lindsey E. Cook,a Marissa C. Locke,a Alissa R. Young,b Kristen Monte,c Matthew L. Hedberg,a Raeann M. Shimak,a*
Kathleen C. F. Sheehan,a,d Deborah J. Veis,a,c,e Michael S. Diamond,a,b,c,d Deborah J. Lenschowa,c

aDepartment of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
bDepartment of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
cDepartment of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
dThe Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri,
USA

eShriners Hospitals for Children—Saint Louis, Saint Louis, Missouri, USA

ABSTRACT Type I interferons (IFNs) are key mediators of the innate immune re-
sponse. Although members of this family of cytokines signal through a single
shared receptor, biochemical and functional variation exists in response to differ-
ent IFN subtypes. While previous work has demonstrated that type I IFNs are es-
sential to control infection by chikungunya virus (CHIKV), a globally emerging al-
phavirus, the contributions of individual IFN subtypes remain undefined. To
address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-�
(IFN-� knockout [IFN-�-KO] mice or mice treated with an IFN-�-blocking anti-
body) or IFN-� (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated
with a pan-IFN-�-blocking antibody). Mice lacking either IFN-� or IFN-� devel-
oped severe clinical disease following infection with CHIKV, with a marked in-
crease in foot swelling compared to wild-type mice. Virological analysis revealed
that mice lacking IFN-� sustained elevated infection in the infected ankle and in
distant tissues. In contrast, IFN-�-KO mice displayed minimal differences in viral
burdens within the ankle or at distal sites and instead had an altered cellular im-
mune response. Mice lacking IFN-� had increased neutrophil infiltration into
musculoskeletal tissues, and depletion of neutrophils in IFN-�-KO but not
IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings
suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-� limiting
early viral replication and dissemination and IFN-� modulating neutrophil-mediated in-
flammation.

IMPORTANCE Type I interferons (IFNs) possess a range of biological activity and
protect against a number of viruses, including alphaviruses. Despite signaling
through a shared receptor, there are established biochemical and functional dif-
ferences among the IFN subtypes. The significance of our research is in demon-
strating that IFN-� and IFN-� both have protective roles during acute chikungu-
nya virus (CHIKV) infection but do so by distinct mechanisms. IFN-� limits CHIKV
replication and dissemination, whereas IFN-� protects from CHIKV pathogenesis
by limiting inflammation mediated by neutrophils. Our findings support the
premise that the IFN subtypes have distinct biological activities in the antiviral
response.
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Type I interferons (IFNs) are a family of multifunctional cytokines that consists of 14
IFN-� subtypes and single forms of IFN-�, IFN-�, IFN-�, and IFN-� in mice. Their

broad, pleiotropic properties include upregulating cell-intrinsic antiviral defense mech-
anisms, modulating proinflammatory cytokine production, and augmenting innate and
adaptive cellular immune responses (1). IFNs are induced rapidly in response to
infection with viruses and other pathogens. Host pattern recognition receptors (PRRs)
that recognize nucleic acids are important sensors of viral infection. For many cells, the
PRR signaling response leads to the production of the IFN-� and IFN-�4 subtypes via
activation of IFN regulatory factor 3 (IRF3) (2–6). These IFN subtypes signal in an
autocrine and paracrine manner to modulate the expression of IFN-stimulated genes
(ISGs), which include antiviral effectors and immunoregulatory molecules. IRF7 is
among the transcriptional regulators induced by IFN-� and IFN-�4 and participates in
a positive-feedback loop that induces the other IFN-� subtypes, thus amplifying and
diversifying the response (7–9). The central role of IRF7 in inducing the IFN-� subtypes
is demonstrated in IRF7-deficient mice, which fail to produce significant levels of IFN-�
in response to multiple viral infections (10–16).

IFNs exert their effects by binding to the shared heterodimeric IFN-�/� receptor
(IFNAR), which is composed of the IFNAR1 and IFNAR2 subunits. Engagement of IFNAR
activates Janus kinase (JAK) and signal transducer and activator of transcription (STAT)
signaling programs to induce the expression of hundreds of ISGs (17). Despite signaling
through a single, shared receptor, the IFN subtypes have distinct properties, presum-
ably due to different binding affinities and receptor dissociation rates for the individual
IFN subtypes. These parameters ultimately affect receptor internalization, intracellular
regulators, and feedback loops. Biochemical and functional studies have revealed that
some IFN properties, such as antiproliferative activity, depend on cellular context and
affinity for the receptors. Others, such as antiviral activity, improve only marginally with
increased affinity and appear programmed for maximal output by most subtypes
irrespective of affinity or cellular context (18, 19). The ability of the IFN receptor to have
graded responses to multiple ligands likely explains the pleiotropic activities ascribed
to different IFN subtypes.

Some of the first attempts to delineate properties of individual IFN subtypes in vivo
came with the generation of mice that specifically lack IFN-� (20). IFN-� knockout
(IFN-�-KO) mice are more susceptible to vaccinia virus, influenza A virus, and West Nile
virus (WNV) (21–24). For these viruses, IFN-� appears to restrict viral replication in a
number of tissues and cell types. The lack of globally IFN-�-deficient mice had hindered
the direct functional comparison of IFN-� versus IFN-� in vivo, although the recent
development of blocking monoclonal antibodies (mAbs) specific for IFN-� or IFN-� has
made such studies possible (13). The use of these blocking antibodies in a study with
persistent lymphocytic choriomeningitis virus (LCMV) infection demonstrated that
IFN-� but not IFN-� was the dominant subtype controlling early LCMV replication and
spread. In comparison, IFN-� unexpectedly was detrimental to the host response and
responsible for promoting LCMV persistence. Blockade of IFN-� improved antiviral T
cell responses and allowed for clearance of persistent LCMV (25–27). These studies with
LCMV demonstrated distinguishable biological activities of IFN subtypes, with profound
implications for viral pathogenesis and immunity.

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes explo-
sive outbreaks of acute fever, rash, polyarthritis, arthralgia, and myositis (28, 29). Studies
with a mouse model of CHIKV arthritis have demonstrated that these symptoms reflect
an interplay between extensive viral replication and damage mediated by immune
cells, such as monocytes, macrophages, and activated CD4� T cells (30–34). However,
not all immune responses are detrimental. Neutralizing antibodies and IFNs are impor-
tant in controlling CHIKV infection, and mice lacking IFNAR1 expression rapidly suc-
cumb to disseminated infection (11, 35). Despite their essential role in limiting CHIKV
infection, little is known about the contributions of individual IFN subtypes to protec-
tion. To explore this question, we used genetic deletion mutants and mAb blockade to
determine the functions of IFN-� and IFN-� during acute CHIKV infection. While both
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IFN-� and IFN-� protected the host from clinical disease induced during acute CHIKV
infection, distinct roles for the IFN subtypes were observed, with IFN-� limiting early
viral replication and spread and IFN-� controlling neutrophil-mediated inflammation.
These results define a mechanism by which IFN-� can have biological activity that is
distinguished from that of IFN-�.

RESULTS
IFN-� and IFN-� protect against CHIKV-induced clinical disease. Although type

I IFN signaling protects against CHIKV pathogenesis, the function of individual IFN
subtypes remains poorly characterized. To begin to address this question, we evaluated
the pathogenesis of CHIKV in wild-type, IFN-�-KO, and IRF7-KO C57BL/6 mice. As
IRF7-KO mice lose amplification of IFN-� during CHIKV infection, with a minimal impact
on IFN-� production (11), these mice were utilized, since pan-IFN-� knockout mice are
not available. Animals were inoculated with 103 PFU of CHIKV (LR2006 OPY1 strain) and
monitored daily for foot swelling. Previous studies have described a biphasic swelling
pattern in the foot of CHIKV-infected wild-type mice, with a first peak observed at 2 to
3 days postinfection (dpi) and a second, larger peak at 6 to 7 dpi. Mice lacking IFN-�
developed more severe foot swelling, with kinetics similar to those seen in wild-type
mice (Fig. 1A). In contrast, mice lacking IRF7 developed a large initial peak of swelling
at 3 to 4 dpi and a delayed second peak at 11 dpi. Both IFN-�-KO and IRF7-KO mice also
displayed prolonged foot swelling through 28 dpi compared to wild-type mice, which
typically recover by about 12 dpi (Fig. 1A). These data suggest that IFN-� and IFN-�
have protective roles in limiting musculoskeletal disease during CHIKV infection.

Although IRF7 transcriptionally activates IFN-� production, it also regulates antiviral
gene expression independently of IFN production (36–38). To evaluate if the phenotype

FIG 1 IFN-� and IFN-� protect against CHIKV-induced clinical disease. Shown are data for swelling of the
ipsilateral feet of mice inoculated with 103 PFU of CHIKV. Foot swelling was measured daily for wild-type,
IFN-�-KO, or IRF7-KO mice (A) or for wild-type mice treated with anti-mouse IFN-� (TIF-3C5), anti-mouse
IFN-� (HD�-4A7), or isotype control antibody 1 day before and 1 day after infection (B), as described in
Materials and Methods. Data are reported as percent increases in foot area (vertical � horizontal [square
millimeters]) over baseline. Data are pooled from at least two experiments with 18 to 22 mice per group
(A) or 10 mice per group (B) and expressed as means � standard errors of the means (SEM) (*, P � 0.05;
**, P � 0.01; ***, P � 0.001; ****, P � 0.0001 [by two-way ANOVA with Dunnett’s posttest]).
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in IRF7-deficient mice was due to a loss of IFN-�, we utilized a pan-IFN-�-blocking mAb
(TIF-3C5). In parallel, we also used an IFN-�-specific blocking mAb (HD�-4A7) to assess
the impact of individual IFN subtypes on CHIKV pathogenesis (13, 27). Wild-type mice
were treated with the blocking antibodies 1 day before and 1 day after CHIKV infection
and monitored for swelling in the ipsilateral foot. Wild-type mice treated with anti-
IFN-� mAb blockade had similarly increased foot swelling as seen in IFN-�-KO mice (Fig.
1B). Moreover, administration of the pan-IFN-�-blocking antibody phenocopied the
foot swelling of IRF7-KO mice until approximately 9 to 10 dpi, with a severe increase in
foot swelling compared to isotype control mAb-treated mice observed at 3 to 5 dpi.
Pan-IFN-� mAb treatment, however, failed to reproduce the second swelling peak at
11 dpi observed in the IRF7-KO mice (Fig. 1B). This discrepancy may arise from an
incomplete blockade of IFN-� due to the administration of only two doses of blocking
antibody or from IFN-�-independent effects of IRF7. Regardless, these data confirm that
the early foot swelling phenotypes in IFN-�-KO and IRF7-KO mice are due to the loss of
IFN-� and IFN-�, respectively, and suggest that the differences in swelling are conferred
by distinct activities of IFN-� and IFN-�.

IFN-� but not IFN-� limits CHIKV replication and dissemination. To further
investigate the differential functions of IFN-� and IFN-� during CHIKV infection, we
determined the viral burden in the ipsilateral foot and distal tissues at several times
postinfection. Mice lacking IFN-� had viral loads in the ipsilateral foot that were similar
to those in wild-type mice at each time point analyzed, and clearance of replicating
virus occurred in both strains by 10 dpi (Fig. 2A). In contrast, mice deficient for IRF7
sustained increased viral loads compared to wild-type mice, with an �8-fold increase
in viral titers at 2 and 3 dpi and an �137-fold increase in viral titers at 7 dpi (Fig. 2A).

We evaluated the impact of the loss of IFN-� or IFN-� on dissemination of CHIKV to
distant tissues. The loss of IFN-� had little effect on viral dissemination. Viral burdens
in the serum were similar between wild-type and IFN-�-KO mice at all time points
examined. Similarly, we observed no differences in the dissemination to and clearance
from distant sites, except for an increase in viral titers in the quadriceps muscle
(�72-fold) and contralateral ankle (�6-fold) of IFN-�-KO mice only at 3 dpi (Fig. 2A).
Analogously, blockade of IFN-� with mAb treatment in wild-type mice had a minimal
impact on viral burden in the ipsilateral foot or distal sites compared to mice treated
with an isotype control mAb (Fig. 2B).

In contrast, IFN-� had a substantive role in regulating viral replication and dissem-
ination. IRF7-KO mice had high and prolonged viremia compared to wild-type and
IFN-�-KO mice, with �92-fold and �128,000-fold increases at 2 and 3 dpi, respectively
(Fig. 2A). Markedly elevated viral titers were also seen in the contralateral ankle
(�7,190-fold) and the quadriceps (�1,350-fold) of IRF7-KO mice at 2 dpi, at a time when
replication is only just detectable in wild-type and IFN-�-KO mice. These increased viral
loads were still present in the quadriceps and contralateral ankles of the IRF7-KO mice
at 5 and 7 dpi, respectively, when both IFN-�-KO and wild-type mice had cleared
infectious virus. This increase in viral replication and dissemination was due to the loss
of IFN-� since treatment of wild-type mice with the pan-IFN-�-blocking mAb also
resulted in an elevated viral load in the inoculated ankle at 7 dpi, severe viremia, and
substantially increased dissemination to the muscle and distal joints (Fig. 2B).

Previous studies using bone marrow chimeras demonstrated that IFN signaling is
required in nonhematopoietic cells to survive CHIKV infection (39). To determine if IFN
signaling on hematopoietic cells had any role in CHIKV-induced clinical disease, repli-
cation, or dissemination, we utilized Vav-Cre transgenic mice crossed onto the
IFNAR1flox/flox background, which removes IFN signaling from cells of hematopoietic
origin (Fig. 3A and B) (40, 41). Consistent with the bone marrow chimera studies,
infection of Vav-Cre� mice with 103 PFU of CHIKV in the foot resulted in no lethality and
did not yield any significant differences in foot swelling, compared to Cre� littermate
controls (Fig. 3C). We also observed no significant differences in viral replication in the
ipsilateral ankle or distant tissues, although there was a slight delay in clearance of
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CHIKV from the serum in the Vav-Cre� mice (Fig. 3D). These data confirm that type I
IFNs principally signal on nonhematopoietic cells to exert their protective effects on
CHIKV arthritis. Altogether, these data suggest distinct antiviral mechanisms of action,
with IFN-� controlling early replication and spread and IFN-� being largely dispensable
for these effects.

IFN-�-KO but not IRF7-KO mice have increased immune cell infiltration in the
joints during acute CHIKV infection. In a wild-type mouse, acute CHIKV infection
causes edema and swelling within the skin and subcutaneous tissues that are driven by
viral replication, cell death, and local proinflammatory cytokine production, and im-
mune cells infiltrating into the joint spaces, muscle, and surrounding soft tissues
(30–32, 42). We determined the impact of the loss of IFN-� or IFN-� on inflammatory
infiltrates in the joint-associated tissues. At 7 dpi, histology revealed that 100% of the
IFN-�-KO mice showed severe inflammation in the infected foot, whereas more vari-
ability existed in the wild-type and IRF7-KO mice (Fig. 4A to D and Q). All infected mice
showed edema in the hypodermis of the skin, and this was especially evident in the
IRF7-KO mice (Fig. 4E to H). Additionally, all infected mice showed evidence of cellular

FIG 2 IFN-� but not IFN-� limits CHIKV replication and dissemination. Mice were inoculated with 103 PFU
of CHIKV, and the levels of infectious virus were measured by a plaque assay in the ipsilateral ankle (Ips.
Ankle), serum, ipsilateral quadriceps muscle (Ips. Quad), and contralateral ankle (Contr. Ankle) at the
indicated time points from wild-type, IFN-�-KO, or IRF7-KO CHIKV-infected mice (A) or from wild-type
mice treated with anti-mouse IFN-� (TIF-3C5), anti-mouse IFN-� (HD�-4A7), or isotype control antibody
1 day before and 1 day after infection (B), as described in Materials and Methods. The dashed lines
represent the limit of detection. Data are pooled from 2 to 3 experiments with 6 to 8 mice per group and
are expressed as medians � SEM (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001 [by two-way
ANOVA with Dunnett’s posttest]).
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infiltrates in muscle tissues (Fig. 4I to L). Cellular infiltration into the joint spaces was
evident in wild-type, IFN-�-KO, and IRF7-KO mice (Fig. 4M to P), but only the IFN-�-KO
mice showed a significant increase in cellular infiltration into the midfoot joint spaces
(Fig. 4R). These data suggest that IFN-� modulates immune cell recruitment to a greater
degree than IFN-� during acute CHIKV infection.

IFN-�-deficient mice have increased neutrophil recruitment in the foot during
CHIKV infection. Macrophages, monocytes, and neutrophils are among the early cells
recruited to the infected foot that mediate clinical disease (30, 34, 43, 44). Because mice
lacking IFN-� developed increased foot swelling by 2 dpi and increased cellular infil-
trates in the joint spaces by as early as 3 dpi (Fig. 1 and 4), we hypothesized that IFN-�
might protect against host-mediated inflammation during CHIKV infection. To evaluate
this idea, cellular infiltrates in the foot of infected wild-type or IFN-�-KO mice were
isolated and analyzed at 2 or 3 dpi by flow cytometry to determine the total number of
live leukocytes (CD45�), neutrophils (Ly6G� CD11b�), monocytes (Ly6C� CD11b�

Ly6G�), and macrophages (F4/80� MERTK�) (Fig. 5A) (45). Although we detected no
significant difference in the total numbers of CD45� cells, monocytes, or macrophages

FIG 3 IFN-� and IFN-� protect against CHIKV-induced clinical disease by signaling on nonhematopoietic
cells. Vav-Cre� mice crossed to IFNAR1flox/flox mice or Cre� littermate controls were inoculated with 103

PFU of CHIKV. (A and B) Splenic single-cell suspensions were stained and analyzed by flow cytometry to
confirm IFNAR1 deletion. (A) Representative histograms for IFNAR1 from Vav-Cre� or Vav-Cre� mice
compared to a fluorescence-minus-one (FMO) control. (B) Quantification of the mean fluorescence
intensity (MFI) of IFNAR1 on CD45� splenic cells normalized to the FMO control MFI. Flow cytometry
results are representative of data from 2 independent experiments with 8 total mice per group, and data
are presented as means � SEM (***, P � 0.0001 [by an unpaired t test]). (C) Foot swelling in Vav-Cre� and
Vav-Cre� mice was measured daily with digital calipers. Results are pooled from two experiments with
6 to 9 mice per group, and swelling data are presented as means � SEM (not significant [P � 0.05] by
two-way ANOVA with Sidak’s posttest). (D) Infectious virus in the joints, muscle, and serum was
determined by a plaque assay at the indicated time points. Data are presented as medians � SEM
(*, P � 0.05 [by two-way ANOVA with Sidak’s posttest]).
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between wild-type and IFN-�-KO mice at 2 or 3 dpi, we observed increases in the
fraction and number of neutrophils (4-fold) in mice lacking IFN-� compared to wild-
type mice (Fig. 5B and C). By 3 dpi, there was no longer a difference in neutrophil
numbers, although there was still a small increase in the percentage of neutrophils
infiltrating the IFN-�-KO foot.

To determine the potential basis for the increased neutrophil numbers in the
IFN-�-KO mice, we next assessed local cytokine and chemokine levels in the ipsilateral

FIG 4 IFN-�-KO but not IRF7-KO mice have increased immune cell infiltration in the joints during acute CHIKV
infection. Wild-type, IFN-�-KO, or IRF7-KO mice were mock treated or inoculated with 103 PFU of CHIKV, and
ipsilateral ankles/feet were processed at 3 or 7 dpi for histological analysis by hematoxylin and eosin staining. (A
to P) Representative images of sections of the midfoot (tiled), skin, muscle, and synovium at 7 dpi. (E to H) The skin
and associated tissue sections show the epidermis (e), dermis (d), and hypodermis (h). (M to P) The synovium
sections show synovium (s) and bone (b), with arrows indicating immune infiltrates into the synovial cavity.
Bars 	 200 �m (A to D), 50 �m (E to H and M to P), and 100 �m (I to L). (Q) Feet and ankles were scored for
histological damage as described in Materials and Methods. (R) Quantification of inflammatory cells per high-power
field (HPF) in the midfoot joint spaces as described in Materials and Methods. For panels Q and R, data are pooled
from at least two experiments with 4 to 6 mice per group. Data were analyzed using one-way ANOVA (Q) or
two-way ANOVA (R) with Tukey’s posttest. All data are presented as means � SEM. (*, P � 0.05; **, P � 0.01; ***,
P � 0.001; ****, P � 0.0001).
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foot at 0.5, 1, 2, and 3 dpi. Unexpectedly, we did not observe elevated levels of common
neutrophil-attracting chemokines, such as CXCL1 (KC) or CXCL2 (MIP-2), in IFN-�-KO
mice compared to wild-type mice, nor was there an increase in proinflammatory
mediators, such as interleukin-1�/� (IL-1�/�) or tumor necrosis factor alpha (TNF-�)
(Fig. 6), which can modulate cellular recruitment by upregulating endothelial adhesion
molecules. Instead, in mice lacking IFN-�, there were significant decreases in IL-1�,
TNF-�, CXCL9 (MIG), CXCL10 (IP-10), CCL2 (MCP-1), CCL3 (MIP-1�), CCL5 (RANTES), and
eotaxin at 2 or 3 dpi (Fig. 6). Taken together with the Vav-Cre findings (Fig. 3), these
data suggest that IFN-� acts on nonhematopoietic cells to influence neutrophil recruit-
ment and/or accumulation in the foot during acute CHIKV infection by an unclear
mechanism.

Depletion of neutrophils alleviates the increased foot swelling in CHIKV-
infected IFN-�-KO mice but not IRF7-KO mice. We next assessed whether greater

FIG 5 IFN-�-deficient mice have increased neutrophil recruitment in the foot during CHIKV infection.
Wild-type or IFN-�-KO mice were inoculated with 103 PFU of CHIKV, and cells were isolated from the
ipsilateral foot at 2 or 3 dpi and analyzed by flow cytometry as described in Materials and Methods. (A)
Gating strategy showing subpopulations of live CD45� cells in wild-type (WT) and IFN-�-KO mice. (B and
C) Total number of isolated CD45� leukocytes and total number (B) or percentage (C) of CD11b� Ly6G�

neutrophils, CD11b� Ly6C� Ly6G� monocytes, and F4/80� MERTK� macrophages. Results are pooled
from two experiments with 6 to 7 mice per group and represent the means � SEM (*, P � 0.05; **,
P � 0.01; ****, P � 0.0001 [by two-way ANOVA with Sidak’s posttest]).
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numbers of infiltrating neutrophils were responsible for the enhanced clinical disease
severity in the IFN-�-KO mice. We depleted neutrophils by intraperitoneal administra-
tion of anti-Ly6G mAb (clone 1A8) 1 day before infection and every other day through
7 dpi in wild-type, IFN-�-KO, and IRF7-KO mice. Neutrophil depletion was confirmed by
flow cytometry of cells isolated from peripheral blood and the ipsilateral foot at 2 dpi
(Fig. 7A and B). Whereas neutrophil depletion had no effect on foot swelling in
wild-type mice, it alleviated the increased foot swelling observed in the IFN-�-KO mice
(Fig. 7C and D). The beneficial effects of neutrophil depletion in the IFN-�-KO mice
began at 2 dpi, when differences in foot swelling are first observed, and this protective
effect persisted throughout the course of acute infection (Fig. 7D). In contrast, neutro-
phil depletion had no effect on the increased foot swelling observed in the IRF7-KO
mice (Fig. 7E). Thus, neutrophils are required for the exacerbated clinical disease
observed in IFN-�-deficient mice during CHIKV infection, and this further highlights the
distinct mechanisms that drive pathogenesis in IFN-�-KO versus IRF7-KO mice.

DISCUSSION

Much of what is known about type I IFN effects on viral replication and pathogenesis
in vivo comes from the use of animals lacking IFN signaling through IFNAR1 deletion,
which has not allowed delineation of the roles of individual IFN subtypes. Advances in
generating mice that specifically lack IFN-� and mAbs that block specific IFN subtypes
have enabled investigation of the functional differences between IFN-� and IFN-�. In
this study, we show that IFN-� and IFN-� have distinct protective roles during acute
CHIKV infection. IFN-� subtypes limited CHIKV replication and spread, whereas IFN-�
functioned primarily to limit inflammation by modulating neutrophil accumulation at
the site of infection.

We demonstrate an important role for IFN-� in controlling CHIKV replication and
dissemination. IRF7-KO mice developed worse clinical disease and sustained higher
viral loads in the inoculated foot. The most striking phenotype observed in the IRF7-KO
mice was the markedly increased viremia and dissemination to distal sites. This severe
disseminated CHIKV infection may be the result of decreased IFN-� activity in the serum
of IRF7-KO mice (11, 12). Indeed, multiple studies have demonstrated that IRF7-KO mice

FIG 6 Cytokine and chemokine levels in the ipsilateral feet of wild-type and IFN-�-KO mice. Mice were
inoculated with 103 PFU of CHIKV via the subcutaneous route. Cytokine and chemokine levels in the
ipsilateral foot were determined using Luminex technology (Millipore) at the indicated time points as
described in Materials and Methods. Results are pooled from two experiments with 6 to 7 mice per group
and represent the means � SEM (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001 [by two-way
ANOVA with Sidak’s posttest]). Dashed lines indicate the limit of detection.
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produce little to no systemic IFN-� during infection with LCMV, WNV, dengue virus
(DENV), herpes simplex virus 1 (HSV-1), and encephalomyocarditis virus (EMCV), and
IRF7-KO mice display increased susceptibility to these infections (10–16). We confirmed
that the major protective function of IRF7 during CHIKV infection was the production
and amplification of IFN-�, since pan-IFN-� mAb blockade mimicked the clinical and
virological phenotypes observed in IRF7-KO mice during acute CHIKV infection. Other
studies have also demonstrated an antiviral role of IFN-� in vivo. During persistent
LCMV (clone 13) infection, the blockade of IFNAR led to increased early dissemination,
and this was attributed to a loss of IFN-�, as the loss of IFN-� did not have this effect.
Moreover, the specific blockade of IFN-� with a pan-IFN-� antibody led to increased
viral loads late in infection, which was not observed with blockade or genetic deletion
of IFN-� (27). Our findings are consistent with evidence pointing to the importance of
IFN-� in restricting viral replication and spread.

The cell types involved in IFN-� antiviral responses depend on the model. For
example, IFN signaling on CD11c� and LysM� myeloid cells is critical for controlling
WNV and DENV infections (46, 47), and IFN signaling in astrocytes regulates blood-brain
barrier permeability in the hindbrain region during WNV infection (48). Loss of IFNAR1
expression during persistent LCMV infection led to early increased viral replication in
splenic dendritic cells and macrophages, and this was attributed to a loss of IFN-�, since
the loss of IFN-� had no impact on viral loads at these early time points (27). In addition,
IFNAR1 deletion during infection with Sindbis virus (SINV), an alphavirus related to

FIG 7 Depletion of neutrophils alleviates the increased foot swelling in CHIKV-infected IFN-�-KO mice
but not in IRF7-KO mice. Wild-type, IFN-�-KO, or IRF7-KO mice were inoculated with 103 PFU of CHIKV
and administered anti-Ly6G (1A8) or isotype control (Iso.) antibody beginning 1 day before infection and
then every other day through 7 dpi. (A and B) Cells were isolated from blood (A) or foot tissue (B) at 2 dpi
and analyzed by flow cytometry to confirm neutrophil depletion as described in Materials and Methods.
Results are pooled from two experiments with 4 to 6 mice per group and reported as the means � SEM
(*, P � 0.05; **, P � 0.01; ****, P � 0.0001 [by one-way ANOVA with Tukey’s posttest]). (C to E) Swelling of
the ipsilateral feet/ankles of wild-type (WT) (C), IFN-�-KO (D), or IRF7-KO (E) mice. Swelling data are
pooled from two experiments with 5 to 8 mice per group and reported as the means � SEM (**, P � 0.01;
***, P � 0.001; ****, P � 0.0001 [by two-way ANOVA with Dunnett’s posttest]).
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CHIKV, resulted in increased susceptibility to infection and altered tropism of myeloid
cells in the draining lymph node and spleen (49). We show that deletion of IFNAR
expression on all immune cells through the utilization of Vav-Cre� IFNAR1flox/flox mice
did not impact CHIKV-induced foot swelling and had a minimal impact on CHIKV
replication and spread, indicating that IFN-� and IFN-� exert their protective effects
through their action on nonhematopoietic cells. These findings agree with bone
marrow chimera studies that demonstrated that IFN signaling is required on nonhe-
matopoietic cells to survive CHIKV infection (39). These nonhematopoietic cells likely
include muscle fibers, myoblasts, muscle satellite cells, dermal and synovial fibroblasts,
and osteoblasts, all of which are targets of CHIKV infection (11, 50, 51).

While most published studies on IFN-� support its important role in limiting viral
replication and spread, the functions attributed to IFN-� vary with the virus studied. In
some models, IFN-� limits viral replication. For example, loss of IFN-� during infection
with WNV or vaccinia virus led to higher viral loads in some but not all tissues (21, 24).
Loss of IFN-� resulted in a significant increase in WNV replication in dendritic cells,
macrophages, some neuron populations, and, to a lesser extent, fibroblasts. In our
study, the loss of IFN-� exacerbated acute CHIKV clinical disease, with a minimal impact
on the viral load at the site of inoculation or in distant tissues, suggesting that IFN-�
functions dominantly as an immunomodulatory molecule. IFN-� has documented
immunomodulatory activities, and the therapeutic benefits of this property are dem-
onstrated in its efficacy against multiple sclerosis. In this context, IFN-� treatment
improves the frequency and suppressive function of regulatory T cells and also down-
regulates antigen presentation and T cell stimulation in myeloid cells (52, 53). However,
there is growing appreciation that IFNs can also have detrimental consequences,
especially during chronic viral infections and some bacterial infections (1). During
chronic LCMV infection, IFN-� was dispensable for controlling early viral replication but
had a detrimental role for the host in promoting LCMV persistence (27). Selective
blockade of IFN-� led to accelerated virus clearance through improved antiviral T cell
responses (27, 54). Even though CD4� T cells contribute to acute CHIKV pathogenesis
(31), we found that the loss of IFN-� led to an early (2 dpi) worsening of clinical disease
that correlated with increased neutrophil accumulation at the site of infection. More-
over, neutrophils are required for the phenotype in IFN-�-KO mice, as their depletion
reversed the disease exacerbation.

Dysregulated neutrophil recruitment has been associated with acute CHIKV disease.
Mice deficient for chemokine receptor 2 (CCR2) or Toll-like receptor 3 (TLR3) developed
more severe CHIKV arthritis, and this was correlated with early and severe neutrophil
infiltration (44, 55). The loss of CCR2 did not impact viral loads, and the increased
neutrophils seen in the feet of infected mice were accompanied by a decrease in the
recruitment of monocytes and increases in CXCL1, CXCL2, and IL-1� mRNA levels in the
infected foot (44). In the case of TLR3 deficiency, viral loads were increased at distant
tissue sites but were less affected in the infected foot, and increased neutrophils were
associated with decreased CCR2 expression and increased IL-1� expression in the foot
tissue (55). The mechanism by which IFN-� regulates neutrophil recruitment to the
joints during CHIKV infection remains unclear. Although neutrophil numbers were
increased, we did not observe a significant decrease in monocyte recruitment or
alterations in other cells types or in total immune cells. Our antibody staining panel was
not exhaustive, and there could be other cell types altered in the immune infiltrate of
IFN-�-KO mice, such as mast cells or basophils. Neutrophil recruitment to inflamed
tissues requires coordination between multiple proinflammatory cytokines and chemo-
kines, especially the CXCR2 ligands CXCL1 (KC) and CXCL2 (MIP-2) (56). In a cancer
model, the loss of IFN-� resulted in increases in the expression of CXCL1 and CXCL2,
altering neutrophil infiltration into the tumor environment (57), yet our analysis re-
vealed no such increase in levels of these chemokines or proinflammatory cytokines,
including TNF-�, IL-1, or IL-6, in the foot tissue of IFN-�-KO mice. Instead, we observed
decreased levels of many proinflammatory cytokines and chemokines, which may
reflect that the ligands for CXCR3—CXCL9, CXCL10, and CXCL11—are all ISGs induced
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downstream of type I IFN and type II IFN (IFN-�) signaling (17, 58–60). While we did not
observe an increase in cytokine or chemokine levels, there could be other mediators of
inflammation, such as leukotrienes or complement, contributing to neutrophil accu-
mulation in the IFN-�-KO mice (56, 61, 62).

Neutrophils can eliminate microbial agents through multiple mechanisms, including
phagocytosis, the production of neutrophil extracellular traps (NETs), and degranula-
tion of antimicrobial peptides and enzymes, which kill microbial agents but can also
damage the host (63). Type I IFNs can prime neutrophils to produce NETs and may
therefore alter their function (64). In addition, recruited neutrophils die through various
mechanisms after infiltrating the site of inflammation, and the loss of IFN-� has been
previously described to promote the longevity of tumor-associated neutrophils (57). We
cannot rule out the possibility that the loss of IFN-� qualitatively alters neutrophil
activation, function, or survival akin to that seen with IFN-	 (65–67). However, it is
important to point out that the removal of IFN signaling from immune cells did not
alter CHIKV-induced foot swelling, suggesting that if neutrophil function or longevity is
altered, it would be from indirect effects of IFN-� signaling on nonimmune cells in
musculoskeletal tissues. Studies exploring the responses of muscle cells and synovial
and dermal fibroblasts to type I IFNs may be needed to understand how this microen-
vironment regulates the recruitment and the function of immune cells, including
neutrophils, in the inflamed joint.

Our studies add to the accumulating evidence that IFN subtypes have distinct
activities in vivo, and the mechanisms underlying the differential functions can vary
depending on the biological context. We propose a model in which IFN-� is the
dominant subtype eliciting antiviral responses, thus controlling CHIKV replication and
spread even in the absence of IFN-�. In contrast, IFN-� modulates host immunity to
protect against inflammation mediated by neutrophils during acute CHIKV infection.
Both IFN-� and IFN-� exert their effects by signaling on nonhematopoietic cells, which
may include dermal and synovial fibroblasts and muscle cells. While the antiviral effects
of IFN-� on these cell types are direct and limit viral replication, IFN-� signals on
nonhematopoietic cells to influence neutrophil recruitment and/or activation, making
its activity an indirect effect. Our studies highlight the need for continued work to
delineate the biological activities of specific IFN subtypes. These efforts may clarify why
the multigene nature of type I IFN is conserved across multiple species and may lead
to more effective IFN therapies with fewer off-target effects.

MATERIALS AND METHODS
Ethics statement. Experiments were approved and performed in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (68).
The protocols were approved by the Institutional Animal Care and Use Committee at the Washington
University School of Medicine (assurance number A-3381-01).

Mice. All animal experiments were performed in accordance with Washington University Institutional
Animal Care and Use Committee guidelines, and all CHIKV infection studies were performed in an animal
biosafety level 3 laboratory. Experiments were performed with 4-week-old male mice, unless otherwise
specified. C57BL/6J wild-type, IFN-�-KO (Ifnb�/�) (20), and IRF7-KO (Irf7�/�) (14) mice were bred and
maintained on the C57BL/6J background in our mouse colony before being transferred to the animal
biosafety level 3 laboratory for infection experiments. In some experiments, 4-week-old male and female
Vav-iCre�/� [B6.Cg-Tg(Vav1-cre)A2Kio/J] � Ifnar1flox/flox mice (Vav-Cre�) or Vav-iCre� � Ifnar1flox/flox

littermate controls (Vav-Cre�) were used, which were also bred and maintained in our colony and
genotyped prior to use in experiments (40, 41).

Virus experiments. A recombinant strain of CHIKV (LR2006 OPY1) was provided by S. Higgs (Kansas
State University) and generated from in vitro-transcribed cDNA, as previously described (69). At 4 weeks
of age, mice were inoculated in the left rear footpad with 103 PFU of the LR2006 OPY1 strain of CHIKV
in a volume of 10 or 20 �l. Infected mice were monitored daily for foot swelling with digital calipers for
14 to 28 days. At the termination of experiments, mice were sedated with a ketamine-xylazine cocktail,
euthanized, and perfused via intracardiac injection with phosphate-buffered saline (PBS). Tissues (ipsi-
lateral left ankle, contralateral right ankle, and ipsilateral quadriceps muscle) were harvested into 0.65 ml
PBS and then stored at �80°C until processing for viral burden. “Ankle” refers to the distal foot with the
skin and digits removed, and “foot” refers to the distal foot with cutaneous and subcutaneous tissues
everted but still attached to the distal digits. For serum analysis, blood was collected at the time of
sacrifice. After clotting, blood was centrifuged for 10 min at 10,000 � g and stored at �80°C. Samples
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harvested for cytokine and chemokine analysis were collected into 0.5 ml PBS with 0.1% bovine serum
albumin (BSA) added and stored at �80°C until processing.

Tissue viral burden. Organs were harvested into 0.65 ml PBS and homogenized with 1.0-mm-
diameter zirconia-silica beads (BioSpec Products) with 2 pulses of 3,000 rpm for 30 s with a MagNA Lyser
(Roche) prior to plaque assays on BHK21 cells. Two-hundred-microliter serial dilutions of organ homog-
enates or serum in Dulbecco’s modified Eagle’s medium (DMEM) with 1% fetal bovine serum (FBS) was
added to BHK21 cells (5 � 105 cells for 6-well plates), and the cells were incubated for 1 h at 37°C, with
rocking every 20 min. A minimal essential medium (MEM) agar overlay was then added to the cells, and
the cells were incubated for approximately 60 h at 37°C or until plaques were visible by visual
examination. Plates were then fixed with 1% formaldehyde (at least 30 min at room temperature), and
agar plugs were removed. Plaques were visualized using a 1% crystal violet solution and counted.

Histopathological analysis. The ipsilateral feet of infected mice were treated with Nair to remove
fur, and the mice were then sacrificed with a ketamine-xylazine cocktail and perfused by intracardiac
injection of PBS at the indicated time point. The whole foot tissue (with the skin intact) was dissected
above the ankle and fixed in 4% paraformaldehyde for 48 h, followed by decalcification in 10 ml of 14%
acid-free EDTA (pH 7.2) for 10 to 14 days, with the buffer changed every couple of days. Decalcified
tissues were dehydrated with increasing ethanol gradients (30%, 50%, and then 70%) for 30 min each
and subsequently embedded in paraffin with 5-�m sections prepared. Tissue sections were stained with
hematoxylin and eosin (H&E). Embedding, sectioning, and staining were performed by the Washington
University Musculoskeletal Histology and Morphometry Core.

For quantification of cells in the joint space, slides were imaged with a Zeiss Axio Imager Z2
microscope equipped with a color charge-coupled-device (CCD) camera (Washington University Center
for Cellular Imaging). The investigator was not blind to the identity of the samples at the time of imaging,
but all midfoot synovial caps for each section were imaged and then blinded for quantification by a
second investigator. The data are presented as the number of cells in the synovial space per high-power
field (HPF). For overall inflammation scoring, the slides were scored by a pathologist blind to the group
and time point. The pathologist noted the absence or presence of joint space inflammation, myositis, and
tenosynovitis and then gave an overall inflammation score based on the following criteria: 0 for no
inflammation, 1 for mild inflammation, 2 for moderate inflammation, and 3 for severe inflammation.

Immune cell flow cytometry analysis. Mice were sacrificed 2 or 3 days after inoculation and
perfused with PBS. The foot was disarticulated at the ankle without fracturing the bone. Cutaneous and
subcutaneous tissues were everted but still attached to the distal foot and digits during digestion. Tissues
were incubated for 2 h at 37°C in 5 ml digestion buffer, with manual shaking every 20 to 30 min.
Digestion buffer consisted of RPMI (Sigma), type IV collagenase (2.5 mg/ml; Sigma), DNase I (10 mg/ml;
Sigma), 15 mM HEPES buffer (Corning), and 10% FBS (BioWest). Digested tissues were passed through a
70-�m cell strainer and washed once with 40 ml PBS containing 4% FBS. The number of viable cells was
quantified by trypan blue staining. For other experiments, whole blood was collected into BD Microtainer
tubes with K2E (K2EDTA) (Becton, Dickinson) and then treated with two rounds of red blood cell lysis
buffer (Sigma).

The single-cell suspension was transferred to a 96-well V-bottom plate, incubated with anti-mouse
CD16/CD32 (clone 93; BioLegend) for 10 min at 4°C, and then surface stained in PBS containing 4% FBS
for 1 h at 4°C. The following antibodies, all from BioLegend unless otherwise specified, were used:
anti-CD45 FITC (fluorescein isothiocyanate) (1:400) (clone 30-F11), anti-CD11b brilliant violet 605 (1:200)
(M1/70), anti-CD3e brilliant violet 510 (1:200) (145-2C11), anti-CD19 brilliant violet 510 (1:400) (1D3; BD
Biosciences), anti-F4/80 APC (allophycocyanin)-Cy7 (1:200) (BM8), anti-Ly6C Alexa Fluor 700 (1:200)
(HK1.4), anti-MERTK PE (phycoerythrin) (1:200) (2B10C42), anti-Ly6G PE-Cy7 (1:200) (1A8), anti-IFNAR1
APC (1:200) (MAR1-5A3; Leinco Technologies), and eFluor 506 fixable viability dye (1:500) (eBioscience).

After staining, cells were washed and fixed at 4°C for 10 min in 4% paraformaldehyde (Electron
Microscopy Sciences). The fixed cells were washed and resuspended in PBS containing 4% FBS. Cells were
processed on an LSR Fortessa flow cytometer (Becton, Dickinson) managed by the Flow Cytometry and
Fluorescence Activated Cell Sorting Core at Washington University and analyzed using BD FACSDiva and
FlowJo V10 software.

In vivo IFN blockade. Wild-type mice were administered 1 mg of anti-mouse pan-IFN-� (TIF-3C5),
1 mg of anti-mouse IFN-� (HD�-4A7), or 1 mg of the isotype control (PIP) (all from Leinco Technologies)
1 day before and 1 day after infection by the intraperitoneal route (13, 27).

In vivo neutrophil depletion. Wild-type, IFN-�-KO, or IRF7-KO mice were treated with 0.25 mg of
anti-mouse Ly6G (1A8) or the isotype control (rat IgG2a clone 1-1) (Leinco) 1 day before infection and
every other day through 7 dpi by the intraperitoneal route. Neutrophil depletion was verified by flow
cytometry of peripheral blood cells (Fig. 7A) and foot infiltrates (Fig. 7B) at 2 dpi. Because anti-Ly6G
antibody was utilized to deplete neutrophils, an alternative gating scheme was used for these experi-
ments. In the blood, we first identified CD3� T cells and CD19� B cells from live CD45� cells, and the
remaining CD3� CD19� cells were analyzed for Ly6C and CD11b expression, which revealed three
distinct populations of cells. The cells with intermediate Ly6C expression were Ly6G� neutrophils. In the
foot, MERTK� F4/80� macrophages were gated from live CD45� cells, and the remaining cells were
analyzed for Ly6C and CD11b expression, revealing two populations of cells. Similar to what was
observed in the blood, the Ly6C-intermediate group contained Ly6G� neutrophils. These analyses
demonstrate significant neutrophil depletion from both the blood and the foot tissue.

Cytokine and chemokine analysis. Foot tissues (with the cutaneous and subcutaneous tissues
everted but still attached to the distal foot and digits) were harvested from euthanized infected mice at
0.5, 1, 2, and 3 dpi and collected in 500 �l PBS with 0.1% BSA added. At the time of the assay, the samples

Role of Interferons in Chikungunya Virus Pathogenesis Journal of Virology

January 2020 Volume 94 Issue 1 e00841-19 jvi.asm.org 13

https://jvi.asm.org


were homogenized with 1.0-mm-diameter zirconia-silica beads (BioSpec Products) with two pulses of
3,000 rpm for 30 s with a MagNA Lyser (Roche). Cytokine and chemokine levels in the homogenates were
measured using Luminex technology with a mouse 25-plex assay (Millipore), according to the manu-
facturer’s instructions, with modifications recommended for “sticky” samples in the Millipore “tips and
tricks” brochure (version 1.0 2017-01180). In brief, these modifications included pelleting tissue debris
with a 5-min centrifugation step (600 � g) before adding samples to the 96-well assay plate and running
the plate in 1� wash buffer instead of sheath fluid.

Quantification and statistical analysis. All statistical analyses were performed with GraphPad Prism
8 software. For foot swelling over time (3 experimental groups; multiple time points) two-way analysis
of variance (ANOVA) with Dunnett’s posttest was used. For viral burden analysis (3 experimental groups;
multiple time points), two-way ANOVA with Dunnett’s posttest was used. For cytokine/chemokine and
immune infiltrate analyses (2 experimental groups; multiple time points), two-way ANOVA with Sidak’s
posttest was used. For histological scoring and quantification of cells per HPF (3 experimental groups; 1
time point), one-way ANOVA with Tukey’s posttest was used. A P value of �0.05 indicated statistically
significant differences.
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