Skip to main content
. 2019 Nov 7;8(11):1906. doi: 10.3390/jcm8111906

Table 2.

AUC with 95% confidence interval and the accuracy rate of various methods in predicting 28-days mortality and compared with CNN plus SoftMax by Delong test.

Algorithms AUC SE 95%CI Compared with CNN + SoftMax Acc (%)
SIRS 0.59 0.0063 0.59–0.60 p < 0.0001 59.43
qSOFA 0.68 0.0061 0.67–0.69 p < 0.0001 67.27
RF 0.89 0.0032 0.89–0.89 p < 0.0001 62.56
KNN 0.84 0.0047 0.83–0.84 p < 0.0001 77.31
SVM 0.90 0.0031 0.89–0.90 p < 0.0001 74.33
SoftMax 0.88 0.0034 0.90–0.89 p < 0.0001 82.73
PCA + RF 0.89 0.0034 0.89–0.89 p < 0.0001 62.62
PCA + KNN 0.84 0.0050 0.84–0.85 p < 0.0001 81.67
PCA + SVM 0.89 0.0033 0.88–0.89 p < 0.0001 78.91
PCA + SoftMax 0.91 0.0031 0.90–0.91 p < 0.0001 83.48
AE + RF 0.84 0.0037 0.83–0.84 p < 0.0001 63.52
AE + KNN 0.81 0.0042 0.81–0.82 p < 0.0001 80.64
AE + SVM 0.89 0.0033 0.89–0.90 p < 0.0001 78.76
AE + SoftMax 0.90 0.0032 0.89–0.90 p < 0.0001 84.17
CNN + RF 0.90 0.0032 0.90–0.91 p < 0.0001 61.03
CNN + KNN 0.86 0.0040 0.85–0.86 p < 0.0001 81.73
CNN + SVM 0.92 0.0027 0.91–0.92 p < 0.0001 84.96
CNN + SoftMax 0.92 0.0027 0.92–0.92 None 87.01

Abbreviation: SIRS, systemic inflammatory response syndrome; qSOFA, quick sepsis-related organ failure assessment; RF, random forest; KNN, K nearest neighbor; SVM, support vector machine; PCA, principal component analysis; AE, autoencoder; CNN, convolutional neural network; AUC, area under the curve; SE standard error; CI, confidence interval; Acc, accuracy.