Table 2.
Algorithms | AUC | SE | 95%CI | Compared with CNN + SoftMax | Acc (%) |
---|---|---|---|---|---|
SIRS | 0.59 | 0.0063 | 0.59–0.60 | p < 0.0001 | 59.43 |
qSOFA | 0.68 | 0.0061 | 0.67–0.69 | p < 0.0001 | 67.27 |
RF | 0.89 | 0.0032 | 0.89–0.89 | p < 0.0001 | 62.56 |
KNN | 0.84 | 0.0047 | 0.83–0.84 | p < 0.0001 | 77.31 |
SVM | 0.90 | 0.0031 | 0.89–0.90 | p < 0.0001 | 74.33 |
SoftMax | 0.88 | 0.0034 | 0.90–0.89 | p < 0.0001 | 82.73 |
PCA + RF | 0.89 | 0.0034 | 0.89–0.89 | p < 0.0001 | 62.62 |
PCA + KNN | 0.84 | 0.0050 | 0.84–0.85 | p < 0.0001 | 81.67 |
PCA + SVM | 0.89 | 0.0033 | 0.88–0.89 | p < 0.0001 | 78.91 |
PCA + SoftMax | 0.91 | 0.0031 | 0.90–0.91 | p < 0.0001 | 83.48 |
AE + RF | 0.84 | 0.0037 | 0.83–0.84 | p < 0.0001 | 63.52 |
AE + KNN | 0.81 | 0.0042 | 0.81–0.82 | p < 0.0001 | 80.64 |
AE + SVM | 0.89 | 0.0033 | 0.89–0.90 | p < 0.0001 | 78.76 |
AE + SoftMax | 0.90 | 0.0032 | 0.89–0.90 | p < 0.0001 | 84.17 |
CNN + RF | 0.90 | 0.0032 | 0.90–0.91 | p < 0.0001 | 61.03 |
CNN + KNN | 0.86 | 0.0040 | 0.85–0.86 | p < 0.0001 | 81.73 |
CNN + SVM | 0.92 | 0.0027 | 0.91–0.92 | p < 0.0001 | 84.96 |
CNN + SoftMax | 0.92 | 0.0027 | 0.92–0.92 | None | 87.01 |
Abbreviation: SIRS, systemic inflammatory response syndrome; qSOFA, quick sepsis-related organ failure assessment; RF, random forest; KNN, K nearest neighbor; SVM, support vector machine; PCA, principal component analysis; AE, autoencoder; CNN, convolutional neural network; AUC, area under the curve; SE standard error; CI, confidence interval; Acc, accuracy.