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Abstract

Rationale:Analyzing themolecular heterogeneity of different forms
of organ fibrosis may reveal common and specific factors and thus
identify potential future therapeutic targets.

Objectives:We sought to use proteome-wide profiling of human
tissue fibrosis to (1) identify common and specific signatures across
end-stage interstitial lung disease (ILD) cases, (2) characterize ILD
subgroups in an unbiased fashion, and (3) identify common and
specific features of lung and skin fibrosis.

Methods:We collected samples of ILD tissue (n = 45) and healthy
donor control samples (n = 10), as well as fibrotic skin lesions from
localized scleroderma and uninvolved skin (n = 6). Samples were
profiled by quantitative label-free mass spectrometry, Western
blotting, or confocal imaging.

Measurements andMainResults:Wedetermined the abundance
ofmore than 7,900 proteins and stratified these proteins according to
their detergent solubility profiles. Common protein regulations

across all ILD cases, as well as distinct ILD subsets, were
observed. Proteomic comparison of lung and skin fibrosis
identified a common upregulation of marginal zone B- and B1-cell–
specific protein (MZB1), the expression of which identified
MZB11/CD381/CD1381/CD271/CD452/CD202 plasma B cells
infibrotic lung and skin tissue.MZB1 levels correlated positivelywith
tissue IgG and negatively with diffusing capacity of the lung for
carbon monoxide.

Conclusions: Despite the presumably high molecular and
cellular heterogeneity of ILD, common protein regulations
are observed, even across organ boundaries. The surprisingly
high prevalence of MZB1-positive plasma B cells in tissue
fibrosis warrants future investigations regarding the
causative role of antibody-mediated autoimmunity in
idiopathic cases of organ fibrosis, such as idiopathic
pulmonary fibrosis.
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Tissue fibrosis is a major health burden,
accounting for about 45% of deaths in
the developed world, both directly and
indirectly (1). Replacement of normal tissue
architecture by extracellular matrix (ECM)-
rich scar tissue in fibrosis impedes organ
functionality and regeneration after injury.
More than 200 different chronic lung
disorders are characterized by lung fibrosis.
Many of these interstitial lung diseases (ILDs)

exhibit poor prognosis, such as idiopathic
pulmonary fibrosis (IPF), with a median
survival time of 3–5 years after diagnosis (2).
In localized scleroderma (morphea),
autoimmune-mediated chronic inflammation
leads to severe fibrotic plaques restricted to
the skin (3). This disease represents a
particularly good model system for study of
fibrotic reactions because involved and
uninvolved areas can be directly identified
and compared in the same patient.

Inmanycases, thetrueoriginandcauseof
fibrosis remain unknown. Possible causes of
idiopathic fibrosis discussed today include
persistent tissue injury or inflammation,
impaired tissue regeneration or repair,
distorted proteostasis (e.g., during aging),
or autoimmunity (4). ILD caused by
autoimmunity is well known in connective
tissue disease (CTD) (5), but the involvement
of autoimmunity in IPF has also been
discussed, owing to thepresenceof circulating
immune complexes (6). However, definitive
evidence remains limited, owing to a lack of
specific diagnostic tests. Recent experimental
evidence shows that autoimmunity to a lung-
specific autoantigen can drive pulmonary
fibrosis (7), suggesting that the presence of
other unidentified autoantigens may drive
IPF. Furthermore, impaired regeneration
and subsequent fibrosis upon injury are
associated with dysregulated developmental
pathways, such as the Wnt, bone
morphogenetic protein/transforming growth
factor-b, or sonic hedgehog (Shh) signaling
pathways (8–11). The interactions of secreted
morphogens of these pathways with the ECM
affect its function as an “instructing niche”
(12), which has motivated the recently
growing interest in ECM structure and
function (13).

The tissue- and disease-specific
composition of the ECM proteome
(matrisome) in vivo, as well as its specific
architecture and dynamic association
with secreted proteins, is still largely
unexplored because of challenging technical
limitations. We recently developed a
quantitative detergent solubility profiling
(QDSP) method that greatly improved the
in-depth analysis of tissue proteomes and
matrisomes (14). In the present study, we
used the QDSP method to characterize
human tissue proteomes from lung and
skin fibrosis to identify common and
distinct molecular alterations in cases of
ILD and morphea. We provide a
comprehensive resource of protein regulation
in human tissue fibrosis and describe a

surprisingly high prevalence of marginal zone
B- and B1-cell–specific protein (MZB1)-
positive plasma B cells in IPF.

Methods

Human Patient Material
Resected human lung tissue and explant
material was obtained from the bioarchive at
the Comprehensive Pneumology Center in
Munich. Biopsies were obtained from 10
healthy donors and 45 patients with end-
stage ILD (see Tables E3 and E7 in the online
supplement for clinical baseline
characteristics). Segments of the resected
fresh frozen lung tissue that were
histologically characterized with fibrosis
were used for the proteomic analysis. All
participants gave written informed consent,
and the study was approved by the local
ethics committee of Ludwig-Maximilians
University of Munich, Germany (333-10).
Skin biopsies were taken from six patients
(three females, three males; mean age, 66 yr)
with localized scleroderma (morphea). From
each patient, one biopsy was obtained from
an involved area that was clinically
characterized by sclerosis and inflammation,
and another one was taken from a distant,
clinically uninvolved site. Samples were
immediately snap frozen in liquid nitrogen.
The study was approved by the local ethics
committee at University Hospital of
Cologne, Germany (08144). Human lung
tissue–derived proteins for the University of
Colorado at Denver cohort were obtained
from the National Jewish Health Interstitial
Lung Disease Program, including IPF (n = 4)
and nonfibrotic control (n = 5) samples.
Control tissue was obtained from transplant
specimens that failed regional lung selection
(at National Jewish Health). The diagnosis
of IPF was determined by a pathology core
consisting of two pulmonary pathologists, a
radiology core consisting of three pulmonary
radiologists, and a clinical core consisting
of five pulmonary physicians. All diagnoses
were made in accordance with established
criteria. The institutional review board at
National Jewish Health approved the
collection and use of tissue.

Results

QDSP of Human Fibrotic Lung and
Skin
We used mass spectrometry to analyze
human tissue fibrosis biopsies. Segments of

At a Glance Commentary

Scientific Knowledge on the
Subject: Organ fibrosis is a major
clinical problem with limited to no
therapeutic options, depending on
organ manifestation. Fibrosis can occur
as a result of persistent tissue injury and
inflammation, impaired regeneration or
repair pathways, distorted proteostasis
(e.g., during aging), or autoimmunity. It
is unclear whether organ-specific
fibrotic diseases such as idiopathic
pulmonary fibrosis have a common
underlying pathophysiology compared
with other fibrotic syndromes or
whether tissue-specific mechanisms of
fibrosis exist that allow targeted
therapeutic intervention.

What This Study Adds to the
Field: The analysis of tissue fibrosis has
relied mainly on gene expression data to
date, but full-scale quantitative proteome
approaches to fibrosis are limited. It is
well documented that changes in protein
abundance are not necessarily reflected at
the mRNA level, and novel therapeutic
compounds act largely on proteins. We
provide the most comprehensive
proteomic resource of human tissue
fibrosis, containing information about the
abundance, stoichiometry, and detergent
solubility of proteins. We identified
common and distinct features of lung
fibrosis in comparison with skin fibrosis
of patients with localized scleroderma.
The most significant commonality of
different interstitial lung diseases
and skin fibrosis was the prevalent
occurrence of marginal zone B- and B1-
cell–specific protein–positive plasma
B cells, which points to a common
involvement of antibody-mediated
autoimmunity in at least two forms of
tissue fibrosis.
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the resected lung and skin tissue were
histologically analyzed to confirm fibrosis in
this region and then used for the proteomic
analysis. From each sample, the proteins
were extracted with increasing stringency
into four fractions by changing the detergent
and buffer conditions as described in the
QDSP protocol (14). We then subjected
each protein fraction individually to our
shotgun proteomic analysis pipeline using
a 4-hour gradient measurement on a
Quadrupole-Orbitrap mass spectrometer
(Q Exactive; Thermo Scientific, Waltham,
MA) and subsequently to label-free protein
quantification and data analysis with the
MaxQuant (15) and Perseus (16) software
packages, as well as custom-built analysis
scripts (Figure 1A). We quantified 7,907
proteins in the ILD analysis (Table E1) and
5,826 proteins in the analysis of the
morphea biopsies (Table E2). The QDSP
method adds an additional dimension to
the tissue proteome by separating proteins
by their detergent solubility. As expected,
we observed a significant separation of
cytoplasmic, membrane, nuclear, and ECM
proteins, with ECM proteins being most
insoluble (Figure 1B). This analysis is
particularly interesting for secreted
proteins, which might stay soluble upon
secretion, or they may become incorporated
into the ECM, which renders them
insoluble. We used UniProt keywords and
the Matrisome annotations (17) to identify
550 proteins in our dataset that were
previously annotated to be secreted by cells,
and we performed a principal component
analysis (PCA) with this subset of the data.
This analysis efficiently separated the four
protein fractions in component 1, which
accounted for 38.8% of the data variability,
and separated healthy donor controls from
end-stage ILD in component 4, which
accounted for 4.4% of the data variability
(Figure 1C). Principal component 4 was
significantly enriched for the gene categories
“antimicrobial” and “innate immunity,”
which were higher in the healthy controls,
and “proteoglycans” and “extracellular
matrix,” which were higher in the ILD
proteomes. A scatterplot of the loadings of
the PCA revealed the position of individual
proteins in the data space (Figure 1D).

We next determined the total
abundance of proteins in the tissue biopsies
by summing up the mass spectrometric
intensities of the four individual protein
fractions. We performed a t test to compare
ILD and donor lung tissue proteomes

(Figure 2A), as well as the skin lesions from
patients with localized scleroderma with the
respective healthy skin from the same
patient (Figure 2B). To identify common
factors in different forms of ILD, we began
our proteomic investigation with a
heterogeneous group of patients (see Table
E3 for clinical baseline characteristics).
Regardless of the expected heterogeneity of
the patient biopsies, we observed significant
alterations in both ILD and localized
scleroderma compared with the respective
controls. At a false discovery rate (FDR) of
10%, 44 proteins were regulated in the ILD
cohort (Figure 2A). Hierarchical clustering
analysis (Pearson correlation) of these 44
proteins sorted patients by diagnostic
classes (Figure 2C). The most significant
common factor in all forms of ILD analyzed
was matrix metalloproteinase 19 (MMP19),
which was previously shown to be
upregulated in pulmonary fibrosis in both
mice and humans (18). MMP19 was
enriched mostly in the detergent-insoluble
fraction, indicating its association with the
ECM upon secretion (Figure 2D). We also
found common upregulation of the
collagen chaperone FKBP10 that we
previously identified to be upregulated in
the bleomycin model of lung fibrosis and
IPF (19). Furthermore, we also observed
increased expression of the prolyl 3-
hydroxylase 1 protein (LEPRE1), which is
involved in collagen hydroxylation (20, 21)
and thus may serve the increased
production of collagen in fibrotic tissue. We
confirmed the upregulation of KRT17 and
SDF4 using Western blot analysis of IPF
samples from an independent U.S. cohort
(Figures E1A and E1B).

Finally, we compared our ILD
proteomic dataset with the currently largest
(to our knowledge) available transcriptomic
dataset of human ILD (n = 194) and control
tissue (n = 91) (Gene Expression Omnibus
dataset GSE47460), published by the Lung
Tissue Research Consortium, and we
identified many proteins that are regulated
on both the RNA and proteome levels,
including the proteins KRT17 and MZB1
(Figure E1C). In this comparison, the
Pearson correlation of protein and mRNA
copy numbers was weak (Figures E1D and
E1E), confirming the known fact that
protein and mRNA abundances do not
always correlate well, even in matched
samples. Of note, some of the proteins we
identified as upregulated in ILD by mass
spectrometry, such as LEPRE1 and

MMP19, were not found to be increased in
total ILD tissue mRNA abundance by
microarray analysis (Figure E1C).

In localized scleroderma, 1 protein
(LTBP2) was detected at less than 1% FDR,
10 proteins were detected at less than 5%
FDR, and a total of 27 proteins were
detected at less than 20% FDR (Figure 2B).
One of the most upregulated proteins in the
fibrotic skin lesions was the cartilage
oligomeric matrix protein (Figure 2B),
which we previously showed to be
increased in skin fibrosis to regulate dermal
collagen ultrastructure (22, 23) and collagen
secretion (24). The analysis identified
several interesting proteins that are not
well studied in the context of fibrosis,
including LTBP2 and CPXM2. Interestingly,
LTBP2 was recently shown to bind basic
fibroblast growth factor FGF-2 in
hypertrophic scars, thereby blocking cell
proliferation (25, 26). In summary, we
provide a comprehensive biochemical
characterization of the ECM proteome in
human lung and skin fibrosis, and we
identify previously known as well as novel
alterations in protein abundance.

Molecular Heterogeneity of ILD
Tissue Proteomes
ILD pathophysiology can be highly
heterogeneous. Thus, it was conceivable that
we would encounter wide variability
between patients, even though all 11 lung
biopsies were taken from diseased areas that
underwent fibrotic remodeling and showed
uniform upregulation of fibrosis markers
such as MMP19 (Figure 2). To identify the
proteins with highest differences between
ILD samples, we calculated the coefficient
of variation (CV) for each protein and
plotted it against the protein abundance
rank (Figure 3A). We identified 133
proteins with a high CV between patient
samples, which were quantified in at least 5
of 11 ILD biopsies (Figure 3A). To reveal
gene categories that show high variation
between patients, we performed two-
dimensional annotation enrichment
analyses (27) for protein abundance ranks
versus CV ranks. We also calculated the
enrichment score of the CV quantiles,
showing that there is a mild increase in data
dispersion with decreasing abundance
(Figure 3B and Table E4). Interestingly, the
upper 20% quantile (Q1) with highest CV
breaks the trend and shows a slightly higher
abundance rank than Q2. This indicates
that many highly abundant proteins also
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showed high data dispersion. In the upper
right quadrant of the two-dimensional
annotation enrichment plot, the gene
categories enriched within highly abundant
proteins with high CV (including ECM
proteins, antibodies, and antimicrobial
peptides) are depicted (Figure 3B).

Interestingly, many of the high CV
proteins are cell type–specific genes, such as
BPIFB1, mucin 5B (MUC5B; goblet cells),
AGER (type 1 pneumocytes), KRT5, or
KRT14 (basal cells), indicating that we do
observe differences in cellular composition
between samples. The average levels of
AGER were only mildly reduced in ILD
samples compared with donor lungs;
however, a few patient samples showed

drastic changes with at least 60-fold
reduced protein levels, explaining its high
CV. Interestingly, a subset of three ILD patient
biopsies showed at least 60-fold increased
levels of MUC5B, which is normally expressed
by goblet cells in the bronchi. The same three
patient samples were strongly enriched for
matrilysin (MMP7), which was shown to be a
key regulator of pulmonary fibrosis in mice
and humans (28) and one of the most
upregulated genes in microarray studies of IPF
(29). Interestingly, these samples did not
display significantly different levels of
neutrophil defensin 3 (DEFA3), which
was shown to be a marker of acute
exacerbations of IPF (29), compared with
donor lungs (Figure 3C).

We next determined the Pearson
correlation coefficients between the mass
spectrometric intensity profiles of the 133
proteins (Table E5) and group proteins by
similarity. Unsupervised hierarchical
clustering (Pearson correlation) of these
correlation coefficients revealed three
main groups of proteins, which were
anticorrelated (Figure 3C). In group 1, we
detected markers for type 1 (AGER) and
type 2 (SFTPC) pneumocytes, whereas in
group 2, we found markers of lung fibrosis,
such as MMP7 (28), as well as the basal
stem cell markers KRT5 and KRT14 (30).
The third distinct group showed higher
correlation with group 2 than with group 1
and contained proteins with functions in
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highest to lowest abundance (mass spectrometric [MS] intensity normalized by number of theoretical tryptic peptides by intensity-based absolute quantification) and
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innate immune defense (DEFA3, ELANE),
as well as immunoregulatory proteins
(CXCL13) (Figure 3D).

To visualize patient heterogeneity, we
used PCA of 1,037 proteins representing
the upper 20% quantile (Q1) of the CV
(Figure 4A), and we selected two ILD
subgroups that were characterized by a
distinct protein profile compared with
healthy donor controls (Figures 4B and 4C).
Clinically, ILD group 1 (one IPF and two
hypersensitivity pneumonitis) had a lower
DLCO than group 2 (three unclassifiable
ILDs) (see Table E3). To determine which
proteins in these patient subsets were
significantly different from healthy donor
controls, we used a two-sided t test, which
produced 272 significantly regulated
proteins (FDR, ,10%) in group 1 and 262
significantly regulated proteins (FDR,

,10%) in group 2 (Figures 4D and 4E and
Table E1). In summary, the application of
unsupervised exploratory statistics on the
proteomic data uncovered correlated groups
of proteins and enabled the stratification of
patients with ILD, revealing patient groups
with distinct protein composition.

Enrichment of MZB1-Positive Tissue-
Resident Plasma B Cells Is a Highly
Prevalent Feature of Lung and Skin
Fibrosis
Wematched the two proteomic datasets and
compared fold changes in ILD and localized
scleroderma biopsies. To reveal common
and distinct gene categories in lung and skin
fibrosis, we first performed two-dimensional
annotation enrichment analysis (27)
(Table E6). We observed common
upregulation of ECM genes, complement

activation, N-glycan biosynthesis, and
plasma lipoprotein particles, and most
significantly, we found a common increase
in the abundance of antibodies (Figures 5A
and 5B). Comparing the protein outliers
with the highest fold changes, we identified
a number of interesting differences as well
as similarities between both datasets. For
instance, the ECM protein tenascin C,
which is known to be increased in IPF (31),
was upregulated in both datasets.
Surprisingly, the most significant similarity
with highest fold changes in both lung
and skin fibrosis was an upregulation of
MZB1 (Figure 5B), which are known to
be expressed in certain B-cell subsets to
diversify peripheral B-cell functions by
regulating Ca21 stores, antibody secretion,
and integrin activation (32). We validated
this finding by staining MZB1 in tissue
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sections from patients with ILD and
patients with scleroderma (Figures 5C and
E3–E7). MZB1 localized to cells with a
considerable volume of cytoplasm that were
found in higher numbers in fibrotic tissue
than in controls and were localized typically
in perivascular regions.

MZB1 is an endoplasmic reticulum
(ER)-resident protein that is important for
antibody secretion and is thus upregulated
in cells with high antibody secretory activity
(33). We confirmed this finding by treating
human peripheral blood mononuclear cells
with IL-2 and the Toll-like receptor 7/8
ligand R848, which induces differentiation of
memory B cells to immunoglobulin-
secreting cells (34), and analyzing MZB1
expression. IL-2/R848 treatment induced
IgG production and expression of
BLIMP1, a transcription factor essential
for plasma cell function (35). Indeed,
expression of MZB1 on both transcript
and protein levels was drastically increased
under these conditions (Figure E2),
confirming its specific expression in
antibody-secreting cells.

To establish MZB1 as a marker
for antibody-secreting plasma B cells in
human ILD tissue, we performed
coimmunostaining with several lineage
markers. The MZB1-positive cells were
negative for the T-lymphocyte lineage
marker CD3 (Figures E3A and E6A), and
they were also completely negative for the
B-cell lineage marker CD20 (Figures E3B
and E6B) and the leukocyte lineage marker
CD45 (Figures E4A and E7A). Coexpression
of MZB1 with CD38 (Figure 5C), CD138
(Figure E4B), and CD27 (Figure E5A)
clearly identified the MZB1-positive cells as
terminally differentiated plasma B cells in
ILD tissues (36). Similarly, we also found
MZB11/CD381 double-positive cells that
were CD202/CD452 double negative
(Figures E6 and E7) in the skin.
Furthermore, consistent with the notion
that we identified tissue-resident plasma
B cells, we also found positive staining of

MZB1-positive cells with an antibody
against human IgG (Figure E5B).

Finally, to increase the overall number
of samples and validate our findings in an
independent cohort, we performed Western
blot analysis of 34 additional ILD tissues
(IPF, n = 14; HP, n = 7; CTD-ILD, n = 2;
non-specific interstitial pneumonia, n = 3;
unclassifiable ILD, n = 12; other ILD, n = 3)
and 7 healthy donor controls (see Table E7
for clinical baseline characteristics). We
found that MZB1 was significantly
increased in both IPF and non-IPF ILD
tissue compared with healthy donor tissue
(Figures 6A and 6B). We also reconfirmed
our findings by Western blotting of MZB1
protein in three additional samples from
patients with localized scleroderma
(Figure 6C). Importantly, the quantification
of total tissue IgG and MZB1 levels showed
a significant positive correlation, again
indicating that MZB1 amounts are
predictive for local antibody secretion
(Figure 6D). Increased abundance of MZB1
transcripts in ILD compared with healthy
donor controls and chronic obstructive
pulmonary disease cases were also found in
an independent large U.S. cohort
microarray study (Gene Expression
Omnibus dataset GSE47460) (Figure 6E).
Of note, the same dataset shows
increased abundance of CD38 in ILD
tissues (Figure E1), thus providing an
independent confirmation for the
prevalence of plasma B cells. MZB1 levels
were independent of age, vital capacity, sex,
and treatment with steroids or antifibrotics
(Figure E8), but they showed a
significant negative correlation with
DLCO (%) in both cohorts analyzed
(Figures 6F and 6G). In summary, the
unbiased proteomic analysis of human lung
and skin fibrosis uncovered a surprising
prevalence of MZB11/CD381/
CD1381/CD271/CD202/CD452 plasma
B cells, which is an indication of a
common involvement of antibody-mediated
autoimmunity in idiopathic organ fibrosis.

Discussion

Mass spectrometry–driven proteomics has
evolved into a highly sensitive and accurate
technology that enables the precise
quantification of thousands of proteins at
once (37). In this study, we used the
recently developed QDSP method to
analyze tissue biopsies of human lung and
skin fibrosis at a depth of more than 7,900
proteins quantified. We provide the most
comprehensive proteomic resource of
human tissue fibrosis, containing information
about the abundance, stoichiometry, and
detergent solubility of proteins, as well as the
first cross-organ comparison of tissue fibrosis.
Profiling lung biopsies from a heterogeneous
cohort of human ILD together with skin
biopsies from patients with localized
scleroderma (morphea) enabled the
identification of common and distinct protein
regulation in various forms and stages of
fibrotic remodeling.

Proteomic analysis of tissue
composition is particularly powerful for
secreted proteins, whose protein abundance
very often does not correlate with total tissue
mRNA quantification in RNA sequencing
assays (14). Thus, our data represents an
essential addition to existing transcriptomic
studies of human lung and skin fibrosis.
Furthermore, the QDSP method captures
the interactions of morphogens and other
secreted proteins with the ECM in an unbiased
way, revealing those that are bound to the
matrix by their decreased detergent solubility.
Thus, we added an additional dimension to
the human lung and skin proteome, which for
the first time revealed the association of
secreted proteins with the ECM.

The use of unsupervised statistical tests
such as PCA clearly showed the high degree
of molecular heterogeneity between
samples. This was no surprise, because we
intentionally selected a diverse patient
cohort to screen for molecular events that
are commonly present in all forms of
fibrosis. We made use of patient

Figure 6. (Continued). lower and upper quartiles, and the maximum range of values. (C) Tissue homogenates of the indicated groups were subjected to Western
blot analysis with antibodies against MZB1 and human IgG. Blots were stained with amido black for quantification of total protein loading. (D, F, G) Linear
regression analyses. Clinical classifications are color coded as indicated, and the P values of the linear regressions and the Pearson correlation coefficients
(r) are shown. (D) Positive correlation of IgG and MZB1 levels (normalized to total protein analyzed using amido black quantification). (E) Quantification of MZB1
tissue abundance by microarray in a large U.S. cohort (Gene Expression Omnibus dataset GSE47460 published by the Lung Tissue Research Consortium).
The box-and-whisker plot shows the median, lower and upper quartiles, and the maximum range of values. The outliers show the 2nd and the 98th
percentiles. (F) Negative correlation of DLCO (%) and MZB1 levels (quantified by mass spectrometry [mass spec]). (G) Negative correlation of DLCO (%) and MZB1
levels (normalized to total protein analyzed using amido black quantification). AU= arbitrary units; COPD= chronic obstructive pulmonary disease; CTD=
connective tissue disease; HP = hypersensitivity pneumonitis; ILD = interstitial lung disease; IPF = idiopathic pulmonary fibrosis; NSIP = nonspecific interstitial
pneumonia; unclass. ILD = unclassifiable ILD; WB=Western blot.
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heterogeneity by grouping proteins with
high abundance variation across samples by
their Pearson correlation. The correlation
of proteins in this analysis can be explained
by, for instance, their cell type–specific
expression and thus their capacity to report
differences in the relative amount of cell
types in the respective biopsies. Along these
lines, the recent development of high-
throughput technologies in the field of
single-cell mRNA sequencing (38) will likely
enable future attempts to study cellular
heterogeneity in chronic lung disease in
great detail. Given the high amount of
biological variation and heterogeneity of
cellular composition observed in our ILD
cohort, it is remarkable that we identified a
substantial number of common factors that
were increased in all samples.

The most significant common factor
across ILD and scleroderma samples was
the protein MZB1, which we localized to
CD381/CD1381/CD271/CD202/CD452

B cells. In respiratory immunity, B cells can
be recruited to tertiary lymphoid organs
around the bronchi, where they are
organized in B-cell follicles (39, 40). In
our analysis, MZB1-positive cells were
found to be quite dispersed in the tissue
and not necessarily associated with tertiary
lymphoid structures, but with predominant
perivascular abundance. MZB1 has
important functions in the ER of B cells
that undergo ER stress upon high antibody
secretory activity (32, 33). In our
immunostaining experiments, we observed
MZB1-high and MZB1-low cells, indicating
that the expression level is tightly regulated

in B cells. MZB1-high cells had a large
cytoplasm and were positive for a
comprehensive panel of known mature
plasma B-cell markers, which clearly
identifies them as terminally differentiated
antibody-producing tissue-resident plasma
cells. Because most of the samples in our
study were biopsies from idiopathic forms of
ILD, we believe that this observation warrants
future investigation regarding the causative
role of antibody-mediated autoimmunity in
idiopathic cases of organ fibrosis. Of note,
it has been recognized that many patients
with idiopathic interstitial pneumonia have
clinical features that suggest an underlying
autoimmune process but do not meet
established criteria for a CTD. To address
this problem, a European Respiratory
Society/American Thoracic Society task force
recently proposed the term “interstitial
pneumonia with autoimmune features” and
offered several classification criteria (41).

Circulating autoantibodies in IPF
were first described long time ago (6), and
a causative role for B-cell–mediated
autoimmunity for idiopathic ILD has been
discussed (42, 43). In localized scleroderma,
the role of autoantibodies is unclear, but
the histology of the fibrotic reaction,
involving a strong inflammatory infiltrate
around the blood vessels, is identical to the
lesions found in patients with systemic
scleroderma, who all have circulating
autoantibodies (44). A recent study
demonstrated that autoantibodies against
the lung-specific protein BPIFB1 occur in
12% of patients with idiopathic ILD (7).
Importantly, the authors of this landmark

study also demonstrated that T cells specific
for a single autoantigen (Bpifb1) are
sufficient to induce full-blown and
irreversible lung fibrosis in mice (7). It is
thus conceivable that (1) the presence of
autoantibodies and autoreactive T cells
against unknown antigens may cause or
at least perpetuate many if not most
idiopathic interstitial pneumonias and (2)
the identification of these unknown
autoantigens in patient plasma may serve
as a powerful tool for both patient
stratification and future immunotherapy-
based approaches to treatment of ILD.
The recent use of chimeric antigen
receptor T cells specific for autoantigen-
producing B cells for targeted therapy of
autoimmune disease (45) introduces an
exciting new avenue for eliminating
autoreactive B-cell clones while
maintaining protective adaptive immunity.
Such future therapeutic approaches will
depend on the identification of disease-
specific autoantigens and appropriate
preclinical models to test if indeed certain
antigens have causative roles in idiopathic
forms of organ fibrosis. n
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O, Yildirim AÖ. Cigarette smoke-induced iBALT mediates
macrophage activation in a B cell-dependent manner in COPD. Am J
Physiol Lung Cell Mol Physiol 2014;307:L692–L706.

40. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F,
Goodrich S, Woodland DL, Lund FE, Randall TD. Role of inducible
bronchus associated lymphoid tissue (iBALT) in respiratory
immunity. Nat Med 2004;10:927–934.

41. Fischer A, Antoniou KM, Brown KK, Cadranel J, Corte TJ, du Bois RM,
Lee JS, Leslie KO, Lynch DA, Matteson EL, et al.; ERS/ATS Task
Force on Undifferentiated Forms of CTD-ILD. An official European
Respiratory Society/American Thoracic Society research statement:
interstitial pneumonia with autoimmune features. Eur Respir J 2015;
46:976–987.

42. Xue J, Kass DJ, Bon J, Vuga L, Tan J, Csizmadia E, Otterbein L,
Soejima M, Levesque MC, Gibson KF, et al. Plasma B lymphocyte
stimulator and B cell differentiation in idiopathic pulmonary fibrosis
patients. J Immunol 2013;191:2089–2095.

43. Donahoe M, Valentine VG, Chien N, Gibson KF, Raval JS, Saul M, Xue
J, Zhang Y, Duncan SR. Autoantibody-targeted treatments for acute
exacerbations of idiopathic pulmonary fibrosis. PLoS One 2015;10:
e0127771.

44. Fleischmajer R, Nedwich A. Generalized morphea. I. Histology of
the dermis and subcutaneous tissue. Arch Dermatol 1972;106:
509–514.

45. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G,
Lanzavecchia A, Seykora JT, Cotsarelis G, et al. Reengineering
chimeric antigen receptor T cells for targeted therapy of autoimmune
disease. Science 2016;353:179–184.

ORIGINAL ARTICLE

1310 American Journal of Respiratory and Critical Care Medicine Volume 196 Number 10 | November 15 2017


	link2external
	link2external
	link2external

