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ABSTRACT

Objective: This article describes an ensembling system to automatically extract adverse drug events and drug

related entities from clinical narratives, which was developed for the 2018 n2c2 Shared Task Track 2.

Materials and Methods: We designed a neural model to tackle both nested (entities embedded in other entities)

and polysemous entities (entities annotated with multiple semantic types) based on MIMIC III discharge sum-

maries. To better represent rare and unknown words in entities, we further tokenized the MIMIC III data set by

splitting the words into finer-grained subwords. We finally combined all the models to boost the performance.

Additionally, we implemented a featured-based conditional random field model and created an ensemble to

combine its predictions with those of the neural model.

Results: Our method achieved 92.78% lenient micro F1-score, with 95.99% lenient precision, and 89.79% lenient

recall, respectively. Experimental results showed that combining the predictions of either multiple models, or of

a single model with different settings can improve performance.

Discussion: Analysis of the development set showed that our neural models can detect more informative text

regions than feature-based conditional random field models. Furthermore, most entity types significantly bene-

fit from subword representation, which also allows us to extract sparse entities, especially nested entities.

Conclusion: The overall results have demonstrated that the ensemble method can accurately recognize entities,

including nested and polysemous entities. Additionally, our method can recognize sparse entities by reconsi-

dering the clinical narratives at a finer-grained subword level, rather than at the word level.

Key words: adverse drug event, nested named entity recognition, information extraction, natural language processing, electronic

health record

INTRODUCTION

Electronic health records (EHRs)—a digital version of a patient’s in-

formation and medical history—are an important source of health

data that can impact on a patient’s care. Mining such data would

help improve the understanding of treatment and diagnosis of dis-

ease.1,2 Among the many known application areas of EHR

mining,2,3 adverse drug event detection has been proven to improve

and complement drug safety surveillance strategies.

The World Health Organization defines an adverse drug event

(ADE) as “an injury resulting from medical intervention related to a

drug.”4 This work focuses on extracting such ADE mentions and

their related medications from EHRs. We base our analysis on data
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sets provided by the n2c2 Shared Task Track 2, consisting of dis-

charge summaries drawn from the MIMIC-III clinical care data-

base.5 This task involves identification of nine entity types: ADE,

Dosage, Duration, Drug, Form, Frequency, Reason, Route, and

Strength.

Approaches to ADE detection in EHRs are divided into rule-

based, machine learning-based and neural network-based categories.

Iqbal et al6 detected ADEs based on a predefined dictionary and

postprocessing rules. Similarly to Iqbal et al,6 Yeleswarapu et al7

detected drugs and ADEs from multiple data sources using dictio-

naries compiled from the Medical Subject Headings (MeSH)8 and

Medical Dictionary for Regulatory Activities (MedDRA),9 respec-

tively. Wang et al10 proposed a framework to extract vaccine ADEs

by combining formal ADE reports from Vaccine Adverse Event

Reporting System (VAERS) with ADEs in social media (Twitter)

and applying multi-instance learning methods. Nikfarjam et al11

also extracted adverse drug reactions from social media by utilizing

word embedding cluster features, whereas Korkontzelos et al12 used

sentiment analysis features.

The Text Analysis Conference (TAC) 2017 Adverse Reaction Ex-

traction from Drug Labels Track13 is a similar shared task to the

n2c2 Shared Task, but it focuses instead on drug labels. Of the tasks

in TAC 2017, one was to recognize six ADE types: adverse reaction,

drug class, severity, factor, animal, and negation. The most common

approach was the use of bi-directional long short-term memory

(BiLSTM) with conditional random fields (CRFs).14–19 These sys-

tems were implemented with precalculated word embeddings and

dynamically learned character embeddings. Several external resour-

ces were also used, such as MEDLINE, MedDRA, SIDER, and Uni-

fied Medical Language System (UMLS).

The MADE1.0 NLP challenge (http://bio-nlp.org/index.php/

announcements/39-nlp-challenges) was another similar shared task,

involving detection of mentions of medication names and their

attributes (dosage, frequency, route, and duration), as well as men-

tions of ADEs, indications, and other signs and symptoms in EHRs

of cancer patients. Neural network models (eg, long short-term

memory (LSTM),20 bidirectional long short-term memory

(BiLSTM),21 and BiLSTM-CRF,22–24 were the most popular

approaches for ADE detection.

OBJECTIVE

This study presents an ensemble system to automatically extract

ADEs and information about medications from EHRs, based on the

2018 n2c2 Shared Task Track 2. We have focused on subtask 1: the

identification of drugs and their attributes, hereafter referred to as

entities. Unlike existing models that focus on flat (ie, non-nested) en-

tities,25–27 our model can detect both flat and nested entities (entities

embedded in other entities) including polysemous entities (ie entities

annotated with multiple semantic types), without depending on any

external knowledge resources or hand-crafted linguistic features.28

To improve the extraction of sparse entities, we further incorporated

subwords using byte pair encoding.29 To take advantage of feature-

based models, we additionally implemented a CRF model with

token-based features, dictionary features, and cluster features. We

created two types of ensemble using majority voting30: (1)

intra-ensemble that combines different versions of the same model

with different parameter settings, and (2) inter-ensemble, which

combines different models or different intra-ensembles. We refer to

the models with intra- and inter-ensemble settings as intra-model

and inter-model, respectively.

Experimental results showed that, in most cases, the CRF model

produced better precision, whereas the neural network (NN) model

attained higher recall. The combination of these two models yielded

the highest lenient recall on the development set, whereas the best le-

nient F-score was produced by an inter-ensemble of the NN models.

We show that our ensemble neural models using subwords are effec-

tive not only in extracting nested entities but also in improving the

recognition of sparse entities, achieving 92.78% micro F-score with

95.99% precision and 89.78% recall on the test set in terms of le-

nient matching.

MATERIALS AND METHODS

In this section, we describe our methods to address the task of entity

recognition in EHRs. We consider entity recognition as a sequence

labeling task whose goal is to assign one of B (Beginning), I (Inside),

or O (Outside) tags to each word. As illustrated in Figure 1, we

firstly preprocessed EHRs using sentence segmentation and

tokenization. We then implemented feature-based and neural

network-based models to detect ADEs and related medications.

Data preprocessing
We applied two natural language processors to the EHRs: the Ling-

Pipe sentence splitter31 and the OSCAR4 tokenizer.32 Because EHRs

usually contain noisy text, such as deidentified terms, special sym-

bols, texts in tables and random new lines, we revised the original

text as well as the output of the sentence splitter and the tokenizer

to obtain better sentences and tokens. Specifically, we replaced all

deidentified terms with the static string “DEIDTERM” (eg, both

“[**Known lastname 3234**]” and [**2115-2-22**]” are con-

verted to DEIDTERM). We then implemented two rules to postpro-

cess the resulting sentences and tokens. Since the sentence splitter

ignores new line characters (“\n”) when segmenting sentences, we

further split sentences containing any of the following strings:

“\n\n,” “:\n,” or “]\n.” Tokens containing any of the following spe-

cial characters were broken into fine-grained tokens: @, *,? , �, %,)

and (.

Feature-based CRF model
For the feature-based model, we used NERSuite33 with three differ-

ent groups of features. The first group consists of token-based fea-

tures corresponding to orthographic, lexical, and syntactic

information. For orthographic features, we used word shape in

which all uppercase letters were converted to “A,” all lowercase let-

ters were converted to “a,” all digits were converted to “#,” and

other symbols were retained. Lexical–syntactic features were

obtained using the GENIA tagger.34 The second group consists of

dictionary features generated using a disease list obtained from the

Human Disease Ontology35 and a list of ADE terms. The list of

ADE terms was compiled from MedDRA side effects,9 the Ontology

of Drug Adverse Events,36 and adverse reaction entities were

extracted from the TAC 2017 Shared Task corpus.13 The coverage

of these dictionaries is listed in Supplementary Table 5 of the Appen-

dix. The third group includes cluster features inspired by Lance

et al.37 To produce word clusters, we used word2vec38 to train word

vectors on 59 652 discharge summaries of MIMIC III.5 We varied

the window sizes (2 and 5) and the number of clusters (128, 256,

and 512) following Lance et al.37 We also tried 1024 clusters, but

the performance was not improved.
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NN-based model
We implemented the NN model proposed in Ju et al,28 which

extracts both nested and flat (non-nested) entities without using any

linguistic features or external knowledge. As an example of nested

entities, consider Figure 2, where the Drug entity is embedded

(nested) inside Reason and ADE. In addition, ADE and Reason are

polysemous entities, since they both cover the same text span; we

treat these as a special case of nested entities.

The architecture of the model, which dynamically extracts nested

entities in an inside-outside (innermost-outermost) order, is depicted

in Figure 3. Specifically, it firstly maps each word to a vector (ie,

word embedding) by looking up the corresponding pretrained word

embeddings. To capture orthographic features, character embed-

dings are concatenated with word embeddings and serve as the input

of a BiLSTM to generate context features. On top of the BiLSTM

layer, a CRF layer is introduced to predict word labels based on the

maximum joint probability of the input word sequence. In essence,

the BiLSTM and CRF layers together constitute a flat named entity

recognition (NER) layer. When entities are nested, the inner entities

can provide informative clues for the detection of outer entities. To

make use of such information, the model automatically stacks flat

NER layers for outer entities on top of the inner entity recognition

layer. The model directly takes the corresponding context represen-

tation produced by the flat NER layer for each nonentity word. For

each detected entity, the model automatically averages the context

representation of words in the entity to encode inner entity informa-

tion as well as facilitating outer entity detection. Then, it automati-

cally stacks flat NER layers until no further entities are detected,

which enables both inner and outer entity detection in a dynamic

manner. As a result, the number of flat NER layers depends on the

degree of nestedness of entities contained in the input word sequen-

ces. The dynamic nature of our model enables us to extract polyse-

mous entities by stacking flat NER layers to recognize other

categories with the same text span.

Table 1 provides statistics regarding the training data. We ob-

serve that there are many rare and unknown words (words that are

unseen in the training data) included in entities, which makes their

extraction challenging. To address this problem, we used byte pair

encoding29 that represents words by iteratively merging the most

frequent adjacent/consecutive characters into longer character

sequences (ie, subwords). We collected all the words occurring in

the training data and iteratively combined the most frequent pairs of

neighboring characters or character sequences, resulting in a

tokenization model in which each line contains one subword cou-

pled with its unique id. The tokenization model was used to split

word sequences into subword sequences that may carry patterns of

informative words in entities. We then concatenated the subword

embeddings with word embeddings which were used as input to our

model.

Experimental design
The 2018 n2c2 Shared Task Track 2 provided 505 annotated dis-

charge summaries extracted from MIMIC III, of which 303 were re-

leased for training and 202 were used for testing. The statistics are

shown in Table 1. To determine the best ensemble setting, we fur-

ther divided the training set into two subsets: 80% for training and

20% for development; the latter is used to validate the models. We

evaluated all models using lenient metrics in terms of precision, re-

call, and F-score, which were the main ones used in Track 2.

According to lenient metrics, a predicted entity is considered to be

correct if its category is correct, and its span partially overlaps with

that of the gold standard entity.

Regarding the CRF model, since lexical and syntactic features

are default input features of NERSuite, we treated them as baseline

features and evaluated the combinations of the remaining features

(ie, word shape, dictionary, and cluster features). For the NN mod-

els, we experimented with following settings:

Figure 1. An overview of our work. Intra-ensemble refers to the combination of different versions of the same model with different parameter settings. Inter-en-

semble represents the combination of different models or different intra-ensembles.

Figure 2. An example of nested entities.
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1. baseline model: using word embeddings concatenated with char-

acter embeddings as the input to the neural layered model. We

excluded part-of-speech and dictionary features from the base-

line model because experimental results showed that those fea-

tures slightly harmed the performance. We randomly initialized

a vector for each character. Given a word, we fed its character

sequence to a BiLSTM and concatenated the bidirectional last

hidden states as the character embeddings.

2. csub model: using subword embeddings and character embed-

dings as the input to the model. Similarly to character embed-

dings, we used a different BiLSTM to obtain subword

embeddings. We used varying vocabulary sizes of [300; 1000;

4000; 8000; 16 000] to train different tokenization models. As a

result, we generated five different versions of subword sequences

for a given input word sequence. An example is shown in Sup-

plementary Table 6 of the Appendix. Each different version of

subword sequences produced subword embeddings, which were

individually used in the model. Instead of predicting label

sequences at the word level, we predicted the label for each

word at the subword level. When merging the subword labels

into their corresponding word labels, we kept the first subword

label as their word label. Taking the entity “vincristine toxic pol-

yneuropathy” as an example, we selected one version of the

tokenization model to generate its subword sequence “-v, in, c,

r, ist, ine, -toxic, -poly, ne, u, rop, athy” where “-” represents a

whitespace character. Using the csub model, the predicted

subword-level label sequence is [B-ADE, I-ADE, I-ADE, I-ADE,

I-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-

ADE], while the corresponding word-level label sequence is [B-

ADE, I-ADE, I-ADE]. When merging subword-level labels for

each word, we picked up the first subword label (eg, “B-ADE”)

among subword labels and attached it to the word “vincristine”

as the final word-level label.

3. wsub model: using the concatenation of word embeddings and

each version of the subword sequences obtained from 2 as the in-

put to the model.

4. wcsub model: using the concatenation of baseline embeddings

(ie, word and character embeddings) and each version of the

subword sequences obtained from 2 as the input to the model.

Figure 3. The architecture of the neural model. (a) is the model architecture while (b) is the composition of the word embeddings.

Table 1. Statistics of the data set. Rare words are words that occur

only once in the data. Unknown words refer to words that are not

seen in the training set

Item Training Development

Document 242 61

Entities 41 171 9776

Nest level 1 entity (flat entities) 41 109 9760

Nest level 2 entity 61 16

Nest level 3 entity 1 0

Polysemous entity 47 13

Textually nested entity 15 3

ADE 785 174

Dosage 3401 820

Drug 13 109 3114

Duration 499 93

Form 5340 1311

Frequency 5075 1205

Reason 3105 750

Route 4479 996

Strength 5378 1313

Unknown words /Unique words – 17.00%

Rare words /Unique words 37.19% 37.69%

EUNKs/All entities – 2.67%

ERAREs /All entities 1.89% 3.88%

Abbreviations: ADE, adverse drug event; EUNKs, entities that contain un-

known words, ERAREs, entities that contain rare words.
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By combining these settings, we have 16 models in total.

We produced different combinations of intra- and inter-models

using the majority voting method.30 Specifically, we merged predic-

tions from: (1) different feature combinations of the CRF models,

(2) combinations of NN baseline and the remaining NN models,

which were internally ensembled with vocabulary sizes; and (3) all

of the previously mentioned settings. We selected entities that have

the most votes for their specific span.

RESULTS

The following experimental results were calculated using our devel-

opment set and the official test set. Table 2 summarizes lenient per-

formance of the CRF and NN models, including their combinations,

on the development set. The NN-based models were tuned using

Bayesian optimization.40 The best hyper parameter values are listed

in Table 7 in the Appendix. Please refer to Supplementary Table 8 in

the Appendix for detailed performances. As shown in Table 2, using

word shape (ws) or dictionary features (df) alone reduced the CRF

performance, whereas their combination produced the highest le-

nient precision. Our CRF model achieved the best lenient F-score

when using only cluster features (cf) and the highest recall when fur-

ther combined with df.

Compared with the CRF models, our NN models obtained con-

sistent improvements in terms of lenient recall and F-score. We

obtained the best performance with the wcsub model, which

employs the embeddings of words, subwords, and characters. The

removal of word embeddings yielded the best precision without sig-

nificantly sacrificing recall, thus achieving comparable lenient F-

score. The introduction of subwords to each individual character or

word embedding produced better performance than their combina-

tion (ie, the NN baseline model).

Ensemble of models outperformed their individual ones except

the inter-CRF. We obtained the best lenient F-score when externally

combining each intra-NN model, whereas the best recall was pro-

duced using an ensemble of inter-CRF and inter-NN models (ie,

NN-CRF).

Table 3 shows the performance of two ensemble settings on the

test set. The first setting was our submission setting, which was an

ensemble of inter-CRF, intra-csub, intra-wsub, and wcsub models

(initialized only with vocabulary sizes of 1000 and 4000). Using this

setting, our ensemble model performed well in predicting entity

types such as Strength and Frequency. The second setting was the

inter-NN model setting, which produced the best lenient F-score.

However, it was not selected for submission to the shared task due

to time limitations. We refer readers to Supplementary Table 9 in

the Appendix for details.

DISCUSSION

We conducted an error analysis of predictions on the development

set for the best individual and ensemble models. We divided false

positive entities into two classes: (1) category error (CE), corre-

sponding to entities that have correct lenient spans but incorrect cat-

egories; and (2) span error (SE), corresponding to entities that have

both incorrect spans and categories.

Figure 4 shows the statistics of CEs and SEs for our best individ-

ual and ensemble model on the development set. In general, our

wcsub model produced more CEs than the CRF model, indicating

that the wcsub model detected more informative text regions. One

reason is that our wcsub model uses word embeddings, which en-

code denser context features than the hand-crafted feature set used

in the CRF model, thus leading to enhanced detection of relevant

text regions. Another reason is that our CRF model only handles flat

entities (ie, it can only detect outermost entities), and it can only pre-

dict a single category for each of these entities. However, there are

many entities that have multiple categories (eg, ADE and Reason en-

tities), which are additionally utilized during training of our wcsub

model. Furthermore, we incorporated subwords to enhance repre-

sentation of sparse entities that were missed by the baseline model.

When combining the predictions from all NN models, the number

of errors (ie, CEs and SEs) reduced, demonstrating the important

contribution of ensemble predictions.

Table 2. Performance of CRF and NN models on the development

set. For each model, the best lenient metrics of precision, recall,

and F-score are shown in bold

Model Precision Recall F-score

CRF

Baseline (Lexical and syntactic features) 0.9525 0.8825 0.9162

Baseline þ word shape (ws) 0.9527 0.8815 0.9157

Baseline þ dictionary features (df) 0.9511 0.8829 0.9157

Baseline þ cluster features (cf)* 0.9504 0.8902 0.9193

Baseline þ ws þ df 0.9523 0.8821 0.9158

Baseline þ ws þ cf 0.9491 0.8898 0.9185

Baseline þ df þ cf 0.9494 0.8903 0.9189

Baseline þ ws þ df þ cf 0.9486 0.8900 0.9184

Neural Network

Baseline (word þ characters) 0.9476 0.8995 0.9230

Csub (characters þ subword) 0.9502 0.9042 0.9266

Wsub (word þ subword) 0.9496 0.9044 0.9264

Wcsub (word þ subword þ characters)* 0.9498 0.9066 0.9277

Ensemble

Inter-CRF 0.9466 0.8935 0.9193

Intra-csub 0.9656 0.8981 0.9306

Intra-wsub 0.9638 0.9013 0.9315

Intra-wcsub 0.9641 0.9010 0.9315

Inter-NN 0.9591 0.9084 0.9331

NN-CRF 0.9401 0.9209 0.9304

*represents significance value at P< .05 with approximate randomization

significance test.39

Abbreviations: CRF, conditional random fields; NN, neural network.

Table 3. Lenient performance on the test set with submission and

inter-NN settings

Entity type Precision Recall F-score

Submission Setting

Strength 0.9815 0.9804 0.9810

Frequency 0.9788 0.9666 0.9727

Route 0.9662 0.9445 0.9552

Drug 0.9567 0.9533 0.9550

Form 0.9653 0.9436 0.9543

Dosage 0.9356 0.9433 0.9395

Duration 0.8875 0.7513 0.8138

Reason 0.7254 0.5470 0.6237

ADE 0.4697 0.1984 0.2790

Overall (micro) 0.9444 0.9073 0.9255

Inter-NN Setting

Overall (micro) 0.9599 0.8979 0.9278

Abbreviation: ADE, adverse drug event.
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We further analyzed the distribution of CEs and SEs for each cat-

egory, as shown in Figure 5. All of the models yield the fewest SEs

for Duration entities and the most for Drug and Reason entities.

This is probably because Duration entities have common patterns

(eg, most of them include informative words such as “day(s),”

“for,” etc within their sentential context). In contrast, Drug and

Reason entities are more variable and require contextual informa-

tion from neighboring sentences. For example, consider the follow-

ing extract: “It was felt that an injection would not be helpful, given

the diffuse nature of his headaches. Fioricet was discontinued, as it

did not appear to be effective anymore.” Here, “headaches” is a

Reason entity and “Fioricet” is a Drug entity. Information from the

second sentence is needed to tag “headaches” in the first sentence

as Reason, whereas the reverse is true to facilitate the accurate

categorization of “Fioricet” in the second sentence. However,

such information is unavailable in our models as they only con-

sider sentence level information. Based on the annotation guide-

lines, a Reason entity is only annotated when it is attached to a

Drug name. Therefore, the misclassification and mis-extraction

of Drug names result in an increase in CEs and SEs for Reason

entities. Moreover, many Reason entities contain unknown or

rare words, which inevitably limits the ability of our models to

recognize them. Apart from Reason and Drug, Route also has a

high number of CEs since most Route entities are confused with

either Drug or Form entities (eg, “Inhalation” can be either Form

or Route). Such confusion further contributes to the high CEs in

Drug and Form categories.

Figure 6 shows the percentages of EUNKs (entities that contain

unknown words) (a) and ERAREs (entities that contain rare words)

(b) extracted for each category, respectively. As shown in Figure 6a,

our wcsub model is better able to extract EUNKs than the NN base-

line model. This result demonstrates that, for most categories, the in-

corporation of subword information helps the wcsub model to

recognize such entities more accurately. Among all categories, our

wcsub model achieved the highest improvement for Strength enti-

ties. Entities in this category commonly include words that exhibit a

specific pattern within them (ie, “digits symbol digits” eg, “150(2”);

the incorporation of subword features in the wcsub model means

that it can help to take such internal features of words into account.

For Frequency entities, the wcsub model misclassified three

instances as Duration, since they are coupled with time units: “pm,”

“am,” and “hs.” Both of our models exhibit comparable perfor-

mance for the Duration and Form categories, whose entities are of-

ten composed of informative words, such as “day,” “month,”

“tablet,” etc. In terms of Reason, the wcsub model extracted two

fewer entities than the baseline, which correspond to long phrases

such as “patchy infiltrates concerning for biliary sepsis.” However,

it was able to additionally extract a number of shorter entities (eg,

“maculopapular rash”), which were missed in predictions from the

NN baseline model. In contrast to Reason, the wcsub model

Figure 4. Statistics of CEs and SEs for our best individual and ensemble models on the development set.

Figure 5. Statistics of CEs and SEs for each category on the development set.
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increases the recall of Drug entities, which constitute the largest pro-

portion of all entities.

We additionally analyzed how using subword units can improve

the extraction of entities containing rare words; the results are

shown in Figure 6b. It can be seen that the wcsub model improves

the recall of sparse entities, especially for those belonging to

Strength, Dosage, and Route. This phenomenon indicates that enti-

ties with certain patterns (eg, real values followed by units) benefit

significantly from the use of subwords. In contrast, however, our

wcsub model fails to capture sparse entities belonging to the catego-

ries of Reason, Form, and Frequency. This is likely to be because

they require contextual information beyond the sentence level.

Table 4 lists the fine-grained matching statistics of our models

for lenient evaluation. On the development set, all models are able

to accurately label exact text spans with correct categories (see Strict

results). The second most frequent type of match is “Includes” (ie,

predictions have wider spans than their corresponding gold standard

annotations). Among those predictions, the Frequency and ADE cat-

egories have the highest and lowest occurrences, respectively. In con-

trast to Frequency, the scarce occurrences of ADEs accounts for

their lowest number among all categories. In the case of “Is

included” (ie, predictions have narrower spans than their corre-

sponding gold standard annotations), Drug entities account for the

largest portion, whereas Route and ADE entities have the lowest

numbers. Problems with Drug entities mainly concern the inconsis-

tent inclusion of symbols in the annotated span (eg, “]” is excluded

in the span “fluticasone [flonase]”) which confused our models in

terms of determining the correct span. For the Route category, there

is only one incorrect span prediction, in which “IV” was extracted

as the entity span, although it should also have included its

neighboring words. Similarly, there is only one ADE annotation

that exhibits the same phenomenon (ie, “somnolent” was predicted

instead of “completely somnolent.” All models predict only a very

small number of spans that partially overlap with the gold standard

annotations.

CONCLUSION

We have described an ensemble of neural models that enable auto-

matic extraction of medications and their attributes from EHRs.

The neural model is capable of recognizing nested entities where the

nesting may consist of either additional embedded entities or polyse-

mous entities in the same text span with an alternative semantic

type, by passing the representation encoding inner entities to subse-

quent layers to improve outer entity recognition. Furthermore, we

utilized subwords to improve the representation of rare and

unknown words contained within entities. We additionally imple-

mented a CRF model that uses various features including token-

based features, dictionary features, and cluster features to extract

flat entities. Compared to the CRF model, our neural model

Figure 6. Percentage of category-wise extracted EUNKs (a) and ERAREs (b).

Table 4. Fine-grained lenient matching statistics of individual and

ensemble models on the development set

Matching type CRF (%) Wcsub (%) Inter-NN (%) NN-CRF (%)

Strict 95.73 95.02 95.62 95.51

Includes 2.71 3.17 2.83 2.75

Is included 1.53 1.76 1.50 1.69

Partial overlap 0.03 0.05 0.06 0.06
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automatically learns high and abstract level features from the data,

thus removing the dependence on any external knowledge resources

or hand-crafted linguistic features. Combining predictions from dif-

ferent settings of the neural model boosts the performance. How-

ever, combining predictions from NN and CRF models

demonstrates few advantages since the NN models have superior

performance.

In addition to extracting drug-related information, our models

could be readily extended to extract other types of medical entities,

such as disease and risk factors, without requiring extra human ef-

fort. Our results indicate that our NN models are able to detect

sparse nested entities to a high degree of accuracy. This paves the

way for the automated extraction of fine-grained entity information

to enhance understanding of EHRs (eg, drug history for individual

patients and disease-specific adverse drug effects). Furthermore, the

detection of most entity categories, especially those containing

sparse entities, benefits from the use of subword information. The

recognition of these sparse entities is of great importance to the de-

velopment of the clinical domain to aid tasks such as drug discovery

and disease recognition.

In future work, we will extend our method to improve the recog-

nition of ADEs by integrating advanced neural network models and

additional corpus resources. We will also apply our method to ex-

tract different types of medical entities including both flat and

nested entities. This will reinforce the importance of our method in

helping to detect fine-grained information, thus providing a feasible

and effective approach toward medical information extraction.
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