Table 2.
Model | Precision | Recall | F-score |
---|---|---|---|
CRF | |||
Baseline (Lexical and syntactic features) | 0.9525 | 0.8825 | 0.9162 |
Baseline + word shape (ws) | 0.9527 | 0.8815 | 0.9157 |
Baseline + dictionary features (df) | 0.9511 | 0.8829 | 0.9157 |
Baseline + cluster features (cf)* | 0.9504 | 0.8902 | 0.9193 |
Baseline + ws + df | 0.9523 | 0.8821 | 0.9158 |
Baseline + ws + cf | 0.9491 | 0.8898 | 0.9185 |
Baseline + df + cf | 0.9494 | 0.8903 | 0.9189 |
Baseline + ws + df + cf | 0.9486 | 0.8900 | 0.9184 |
Neural Network | |||
Baseline (word + characters) | 0.9476 | 0.8995 | 0.9230 |
Csub (characters + subword) | 0.9502 | 0.9042 | 0.9266 |
Wsub (word + subword) | 0.9496 | 0.9044 | 0.9264 |
Wcsub (word + subword + characters)* | 0.9498 | 0.9066 | 0.9277 |
Ensemble | |||
Inter-CRF | 0.9466 | 0.8935 | 0.9193 |
Intra-csub | 0.9656 | 0.8981 | 0.9306 |
Intra-wsub | 0.9638 | 0.9013 | 0.9315 |
Intra-wcsub | 0.9641 | 0.9010 | 0.9315 |
Inter-NN | 0.9591 | 0.9084 | 0.9331 |
NN-CRF | 0.9401 | 0.9209 | 0.9304 |
represents significance value at P < .05 with approximate randomization significance test.39
Abbreviations: CRF, conditional random fields; NN, neural network.