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ABSTRACT

Objective: This article presents our approaches to extraction of medications and associated adverse drug

events (ADEs) from clinical documents, which is the second track of the 2018 National NLP Clinical Challenges

(n2c2) shared task.

Materials and Methods: The clinical corpus used in this study was from the MIMIC-III database and the organiz-

ers annotated 303 documents for training and 202 for testing. Our system consists of 2 components: a named

entity recognition (NER) and a relation classification (RC) component. For each component, we implemented

deep learning-based approaches (eg, BI-LSTM-CRF) and compared them with traditional machine learning

approaches, namely, conditional random fields for NER and support vector machines for RC, respectively. In ad-

dition, we developed a deep learning-based joint model that recognizes ADEs and their relations to medications

in 1 step using a sequence labeling approach. To further improve the performance, we also investigated differ-

ent ensemble approaches to generating optimal performance by combining outputs from multiple approaches.

Results: Our best-performing systems achieved F1 scores of 93.45% for NER, 96.30% for RC, and 89.05% for

end-to-end evaluation, which ranked #2, #1, and #1 among all participants, respectively. Additional evaluations

show that the deep learning-based approaches did outperform traditional machine learning algorithms in both

NER and RC. The joint model that simultaneously recognizes ADEs and their relations to medications also

achieved the best performance on RC, indicating its promise for relation extraction.

Conclusion: In this study, we developed deep learning approaches for extracting medications and their attrib-

utes such as ADEs, and demonstrated its superior performance compared with traditional machine learning

algorithms, indicating its uses in broader NER and RC tasks in the medical domain.
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INTRODUCTION

Electronic health record (EHR) systems have been widely used in

clinical practice and have generated a mass of clinical data which

has become an enabling resource for clinical research including

pharmacovigilance. The goal of pharmacovigilance is to detect,

monitor, characterize, and prevent adverse drug events (ADEs) asso-

ciated with pharmaceutical products.1 Traditionally, spontaneous

reporting systems were developed to collect safety information, but

they were passive and reactive. The imperative to shift the paradigm

towards a more proactive approach has resulted in an exploration of

accessible data resources including EHRs, biomedical literature,

product labels, and content from social media.2,3 Some previous
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studies have attempted to detect ADEs using EHRs in pharmacovigi-

lance.4,5 For example, ICD-9 encoded data can be used for ADE

identification; however, it has low sensitivity.6 But the rich informa-

tion in clinical narratives can help to improve ADE detection, since

more details of the diseases (such as signs and symptoms, disease sta-

tus, and severity) are all typically recorded in clinical text.1 Although

manual chart-review is an effective tool for ADE detection, it is also

very expensive7 and time-consuming. To address this problem, natu-

ral language processing (NLP) serves as a potential solution to detect

ADEs accurately and automatically from free text, which makes it

possible to build a real-time sustainable and large-scale pharmacovi-

gilance system in clinical practice.

Many studies have attempted to extract medication, ADEs, and

their relations using NLP. Some representative systems and studies

extracting medication and ADEs from EHRs include MedEx,8

USyd’s system,9 and MedXN.10 Moreover, the clinical NLP commu-

nity has launched a series of challenges during past years to promote

the system development for recognizing medication and ADEs.11

Some community challenges that focused on identifying medications

and ADEs from EHRs and drug labels included 1) the 2009 Infor-

matics for Integrating Biology and the Bedside,12 2) the 2017 Text

Analysis Conference,13 3) the Medication, Indication, and Adverse

Drug Events from Electronic Health Record Notes,14 and 4) The

2018 National NLP Clinical Challenges (n2c2).15

Early systems mainly used regular expressions and rule-based

methods to extract medications.8,10 With the increasing availability

of annotated data sets from community challenges, machine learn-

ing (ML)-based approaches have become predominant. Usually, the

clinical NLP pipeline for this task consists of 2 steps: 1) concepts of

medications and attributes are recognized first and 2) their relations

are identified. Concept extraction is a typical sequence labeling

problem in ML, and conditional random field (CRF) was the most

commonly used method in previous studies.9,16,17 On the other

hand, relation recognition can be represented as a classification

problem, and support vector machine (SVM) was commonly used in

some previous studies.9,17 With the rapid development of deep

learning methods in recent years, some studies used deep learning

models to extract medication, ADEs, and their relations. Typically,

recurrent neural networks (RNN) and their variants such as bi-di-

rectional LSTM CRF (BI-LSTM-CRF)18,19 were used for clinical

named entity recognition (NER) tasks.20–22 For example, Dandalal

et al.23 developed a system to recognize medications, ADEs, and

indications for the Medication, Indication, and Adverse Drug Events

challenge, etc. In their system, a sequence labeling model was used

to recognize all medications and symptoms first, and then a classifier

was used to classify whether a pair of medication and symptom has

a relation of ADE or indication.

However, there is an inevitable error propagation issue with the

pipeline-based method: 1) the inaccurately identified concepts will

directly affect the end-to-end performance of relation recognition.

Therefore, some studies in the open domain have investigated joint-

learning methods which can recognize concepts and relations simul-

taneously, so that the information from recognition of concepts and

relations can benefit each other.24,25 However, very few studies in

the clinical domain have worked on this problem. 2) In addition to

the issue of error propagation, the traditional 2-step pipeline method

faces another major problem, namely, omitted annotations of attrib-

ute entities. In the challenge of 2018 n2c2 Track 2, entities of ADE

and reason were not to be annotated in a gold-standard corpus if

they are not associated with any drug. This makes the corpus unable

to train an effective NER model and misses a majority of negative

attribute–concept candidate pairs that are required to train an effec-

tive relation classifier.

To address the above challenges, we proposed a joint learning

model for our participation in the 2018 n2c2 Track 2 in which the

entities of ADE, the reason, and their relations with medications are

recognized simultaneously in a single-sequence labeling model.

There are 3 subtasks in this challenge: 1) NER: identifying drugs

and their attributes; 2) relations classification: identifying relations

between drugs and their attributes given gold-standard concepts;

and 3) end-to-end: between drugs and their attributes given gold-

standard concepts. More details of the challenge, such as annotation

guidelines and data set information, can be found in Ozlem et al.15

Here we describe our entry to the challenge, which is mainly based

on new deep learning approaches and was top-ranked among all

participating teams.

MATERIALS AND METHODS

Data set
The n2c2 corpus included 505 discharge summaries, which came

from the MIMIC-III (Medical Information Mart for Intensive Care

III) clinical care database.26 The corpus contained 9 types of clinical

concepts including drug and its 8 attributes (reason, ADE, fre-

quency, strength, duration, route, form, and dosage). The relations

between drug and the 8 attributes were also annotated. The training

data set included 303 discharge summaries and the test set included

202 discharge summaries.

Study overview
Figure 1 shows an overview of our study design. Our system consists

of 4 components: pre-processing, NER, RC, and post-processing.

The subtask 1 is a NER task, for which 3 ML-based methods were

investigated, including CRF, BI-LSTM-CRF, and a joint-learning

method. Ensemble methods were also employed to combine the out-

puts from the 3 single models to obtain a better performance. Fur-

thermore, the subtask 2 is a RC task, for which we examined SVM,

a deep learning method with a parallel neural network of Convolu-

tion Neural Network and Recurrent Neural Network (CNN-RNN),

and the joint–learning-based method as in subtask 1. In addition,

rule-based postprocessing was applied to the outputs of the RC com-

ponent. The details of the system components are described below.

Preprocessing
The preprocessing module includes basic steps such as sentence

boundary detection, tokenization, and POS tagging, which were

done using the Clinical Language Annotation, Modeling, and Proc-

essing toolkit.27

Named entity recognition
Annotated data were transformed into the BIO format, where “B”

represents the beginning of an entity, “I” represents other words

inside an entity, and “O” represents all other nonentity words.

Figure 2 showed a sample sentence using the BIO format to repre-

sent the label of each word. The NER models will predict the BIO

labels for the input sentences, which will be transformed back to

named entities. The 3 NER algorithms, CRF, BI-LSTM_CRF, and a

new approach that jointly recognizes attribute entities and their rela-

tions to drugs (JOINT), were individually built to recognize medica-

tion and attribute entities and then combined using different

ensemble strategies.
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CRF

CRF is known for good performance in NER, including in medica-

tion information extraction.9,16,17 Therefore, we chose it as a strong

baseline for comparison with deep learning approaches. We used the

CRF implementation in the Clinical Language Annotation, Model-

ing, and Processing toolkit27 to recognize all the entities, including

drugs and their attributes, simultaneously (with features of word

shape, n-gram, prefix-suffix, orthographic, and discretized word

embeddings, etc). The Supplementary Material Table 1 shows the

descriptions of the features and their values for the word

“trazadone” (in Figure 2) as an example.

BI-LSTM-CRF

Among different deep learning approaches, BI-LSTM-CRF is

widely used and shows good performances in different NER

tasks.20–22,28 BI-LSTM-CRF uses a BI-LSTM to give scores of all

possible labels for each token in a sequence, and predicts a token’s

label using its neighbor’s information using a CRF layer.18,19 Here

we followed the architecture of the BI-LSTM-CRF in the work of

Lample et al.18 The input embedding included word embedding

and character embedding, where the word embedding was trained

on the MIMIC-III corpus word2vec package with a dimension size

of 50.29 The method in Lample et al.’s work was used to generate

character embeddings by employing a BI-LSTM neural network, in

which the input were all characters of a word represented by ran-

dom initialized vectors (with a dimension size of 35), and the out-

put were the character embeddings for the word (with a dimension

size of 200).

JOINT

As previously mentioned, the 2-step pipeline method of NER and

relation classification suffers from the error propagation issue. The

omitted annotations of attribute entities (eg, ADE and reason)

make it more challenging to train both the attribute NER and rela-

tion classification models effectively. To address the previously

outlined issues, we proposed a joint method for attribute detec-

tion, which identifies their mentions and classifies their relations

with medications in 1 step. For NER, the JOINT method still con-

sists of 2 steps: 1) we first recognized drugs using a BI-LSTM-CRF

model, and 2) each identified drug was then used as a feature for

another BI-LSTM-CRF model to recognize attribute entities such

as ADEs. All attribute entities identified in this way were consid-

ered to have relations with the target drug. More details of relation

recognition are described in the Relation Classification section

later.

Ensemble strategies. For this work, 3 ensemble methods were pro-

posed: 1) Committee: the final label for a token is the majority of

output labels of the single models, 2) Stacking30: a meta-model was

trained to combine output from single models in which its input was

labels from single models and output was combined labels. Here, a

CRF model was trained as a meta-model whose features were the

output “BIO” from 3 single models. 3) Category-level best: The pre-

dictions of the single model that outperformed its peers on each cat-

egory were chosen.

Relation classification
Once entities were recognized, we fed them into 1 of the following 3

relation classification methods.

SVM

Given drugs and other entities, the recognition of relations can be

transformed into classification problems. A classifier identifies true

relation pairs (d, e) from all possible candidate pairs of a drug d and

a nondrug entity e within a sentence. SVM has been used in previous

relation classification tasks on clinical text and achieved a good per-

formance.9,17,31 We used SVM as a baseline method to compare it

with other deep learning methods in the end-to-end and relation

classification tasks. The features used here are described in the Sup-

plementary Material Table 2. For example, there are 2 drugs and 5

attributes in the sentence example in Figure 2, and totally 10 candi-

date relation pairs were generated for classification. In “trazadone

100 mg QHS and mirtazapine 30 mg PO QHS”, there is a candidate

relation pair between “trazadone” and “100 mg”, and its features

(see details in Supplementary Material Table 2) are extracted as the

input for the SVM method.

Figure 1. Overview of our system for the n2c2 challenge.

Figure 2. An example of BIO tags for named entity representation in the sequence labeling task.
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CNN-RNN

CNN and RNN are the 2 major deep learning based architectures

which can be used in relation classification tasks.32,33 In order to

achieve a better performance, we used a parallel combination of

CNN and RNN. Figure 3 shows the architecture of the CNN-RNN

model. We generated all possible candidate relation pairs in the

same way as we did in the SVM method, and the input features for

each relation pair included word embeddings (“w”), POS embed-

dings (“z”) and position embeddings (“d” and “a”). Specifically,

word embeddings and position embeddings were sent to CNN,

whereas word embeddings, position embeddings, and POS embed-

dings were sent to RNN. The output vectors (“hc” and “hr”) of

CNN and RNN were passed to the linear layers, respectively. The

outputs (“lc” and “lr”) from the linear layers were then concatenated

(“o”) and a final linear layer was used to generate predictions. The

vector names are marked in Figure 3, and their dimension sizes are

provided in Supplementary Material Table 4. We used the position

embedding method proposed by Zeng et al.33 to represent positions

of an entity e in a sentence s. More details of the position embed-

dings are shown in Equation (1), where L is a hyper-parameter, m

and n are the beginning and ending indices of e in s, SL is the length

of a sentence s, and N is a predefined value. L denotes the maximum

number of words in a sentence to be considered, which is 250 in the

task. N is the number for marking entities in a sentence. The

following example which illustrates the position of embeddings has

been included in Supplementary Material Table 3.

pe ¼ p1; . . . ; pi; . . . ; pminðL;SLÞ
� �

; where pi

¼

i�mþN; if i < m

N; if m � i � n

i� nþN; if i > n

8>><
>>:

(1)

JOINT

The JOINT approach relies on a novel transformation, which

takes annotated sentences and produces drug-focused sequences.

That is, given a sentence with identified drug entities, we generated

a sequence which labels attributes for each drug in the sentence. If

there were multiple drugs, we generated multiple attribute-labeled

sequence samples. For instance, in Figure 4, the sentence has 2

drugs, “trazadone” and “mirtazapine”. Thus, we generated 2 la-

beled sequences: 1 with “trazadone” as the target concept, and the

other with “mirtazapine” as the target. In each sequence, we la-

beled the attribute entities that are associated with the target drug

using a BIO scheme. For example, in the sample generated for

“trazadone”, only “100 mg” and “QHS” were labeled as “B-

Strength I-Strength” and “B-Frequency”, respectively. Other

attributes entities like “30 mg”, “PO” and the second “QHS” that

are not associated with “trazadone,” were labeled as “O” in this

sample. Notably, we provided the information of the target drug

to the model during the training and prediction stages as the form

of features.

However, there are no sequence labeling methods that can di-

rectly take the generated sequence along with the target drug infor-

mation as input. In this study, we propose a neural architecture

(Figure 5) that models the target drug information alongside its cor-

responding sequence with labeled attributes. The proposed neural

architecture is an extension of the BI-LSTM-CRF model proposed

by Lample et al.,18 with the important distinction that the input

layer contains not only the vector representations of individual

words, but also the vector representation of the target concept. We

generated a sequence of semantic tags to represent the target concept

information using a BIO scheme. As shown in Figure 5, we also use

“B-T-Drug” and “B-O-Drug” to distinguish the target drug from

other nontarget drugs. A semantic tag lookup table initialized at ran-

dom contains an embedding for every tag. The semantic tag embed-

dings were then learned directly from the data during the training of

the model. The word embeddings were trained on the MIMIC-III

corpus using the word2vec package.29 The character embeddings

were generated using the same method as that in the BI-LSTM-CRF

model for NER. Their dimension sizes together with other model

parameters are provided in Supplementary Material Table 5. The

character, word, and semantic tag representations were then

concatenated into ci. This helps the network to keep track of both

sentential and positional context information of the target concept.

The BI-LSTM layer was used for encoding long input sequences ðc1;

c2; . . . ; cnÞ to ðh1; h2; . . . ;hnÞ, which performs conditioning of the

concatenated representations on the left and right contexts. Finally,

the CRF layer provided output tag predictions yi, which are the pre-

dicted attribute labels of the target concept.

In the NER and end-to-end tasks, the drugs predicted from the

committee method were used as features for the JOINT approach,

while gold-standard drugs were used for the single relation classifi-

cation task.

Postprocessing
We conducted error analysis on the training data and summarized

obvious errors and proposed some rules to fix them and further en-

hance the recognition performance. The 2 major rules are:

1) Recover the relations for isolated nondrug entities. According

to the annotation guideline, any attribute should have at least 1 rela-

tion with a drug, so we linked the isolated nondrug entities with

their nearest drugs. Figure 6 shows an example in which the isolated

reason entity, “Ventilator associated pneumonia”, was linked to its

neighbor vanc. Because the 3 drugs vanc, cefepime, and cipro were

in parallel, so it was also linked to cefepime and cipro.

2) Remove relations that spanned across sections. In some rela-

tions predicted by the ML model, the 2 entities were located in dif-

ferent sections. Such relations were removed from the final output.

Evaluation
In the NER subtask, CRF was used as the baseline method and was

compared with both the BI-LSTM-CRF and the JOINT methods. In

the relation classification and end-to-end subtasks, SVM was used

as the baseline method and compared with the CNN-RNN and the

JOINT methods.

The primary evaluation metric is the lenient micro F1 score in

the challenge (equation 4). We used a 5-fold cross-validation on the

training data set (303 documents) to optimize parameters for the

models. However, we noticed that parameters and performance for

each of the 5 models were quite different, which makes it difficult to

decide on optimal parameters for a single model that uses all train-

ing data. Therefore, we kept all 5 models and used them to predict

the test data set, and then combined outputs from the 5 models to

make the final decision using the committee method.

precision ¼ true positive

true positive þ false positive
(2)

recall ¼ true positive

true positive þ false negative
(3)
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F1 ¼ 2 � precision � recall

precision þ recall
(4)

RESULTS

Named entity recognition
Table 1 displays the F1-score of NER using the single models and the

ensemble methods. In single models, the BI-LSTM-CRF outperformed

the CRF and the JOINT method on all categories except the ADE,

whereas the JOINT method performed best on the ADE. The commit-

tee method was the optimal ensemble method. It outperformed single

models on 7 of the 9 categories and improved the overall performance

by 0.15%. In contrast, the stacking and category-levels’ best methods

failed to improve the performance over single models.

Relation classification
Table 2 shows the lenient F1-score of ML models and performance

after their integration with rule-based postprocessing for the relation

classification task, respectively. Both of the CNN-RNN and JOINT

methods outperformed the baseline SVM method. The JOINT

method beat the CNN-RNN method on all categories. F1-scores of

the JOINT method were 0.0418 and 0.0115 higher than the CNN-

RNN on the recognition of ADE and reason, and 0.0095 higher

than the CNN-RNN on the whole. Notably, rule-based postprocess-

ing could improve the performances of all 3 ML-based relation clas-

sification methods. For example, the F1-score of the CNN-RNN

was enhanced 0.0463 for duration, 0.0909 for reason, and 0.0556

for ADE, respectively.

End-to-end task
Table 3 illustrates the micro lenient F1-score of the JOINT method

and 2 pipeline methods that used the committee method to recognize

named entities, and the SVM and the CNN-RNN to recognize rela-

tions, respectively. In the pipeline methods, the CNN-RNN outper-

formed the SVM method. Unlike the results in the relation

classification task, the JOINT method performed worse than the

CNN-RNN method on the whole, which was slightly better on 3 of

Figure 3. Architecture of the CNN-RNN model. “w” and “z” represent word embedding and POS embedding, respectively. “d” and “a” represent position

embeddings. “hc,” “hr,” “lc,” “lr,” and “o” are outputs of layers in the architecture.

Figure 4. An illustration of the drug-focused sequence transformation, where each separate sequence encodes all attributes for each concept (drug).
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the 9 types of relations (relations between drug and strength, dosage

and frequency). The JOINT method was 0.0928 lower than the

CNN-RNN on the relation between drug and the ADE. The reason

for this result could most likely be due to the fact that in the end-to-

end task, the JOINT method used predicted drugs instead of gold-

standard drugs in the relation classification task. The postprocessing

showed an improved performance over the CNN-RNN method

(0.8792 vs 0.8905). However, it did not improve the performance of

the JOINT method.

DISCUSSION

In this study, we investigated deep learning methods to recognize

drug names, attribute entities, and their relations from clinical

Figure 5. The architecture of BI-LSTM-CRF neural network for attribute detection of a given drug. We concatenated word, character, and target concept (semantic

tag) embeddings as input.

Figure 6. Rule-based postprocessing for the relation classification and end-to-end tasks.
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narratives. By combining ML models with rule-based postprocess-

ing, our system achieved the second-best performance among 28

participating teams and 60 submitted runs on the NER task, and the

best performance on the relation classification and end-to-end tasks

among 48 and 50 runs, respectively in the challenge of the 2018

n2c2 Track 2. Our results demonstrated the feasibility of the JOINT

method for relation extraction, with the goal to alleviate the issue of

rare attributes such as ADEs and reasons in the data set. Based on

the experiences acquired during this study, future research directions

to improve the performance may be derived.

Variability of deep learning models across folds. In the 5-fold

cross validation during the training, the optimal parameters and per-

formance of the trained model in each fold varied a lot, which made

it difficult to pick 1 as the optimal model. Supplementary Material

Table 6 shows the performance of the BI-LSTM-CRF model on each

fold. The overall performance ranged from 0.9252 to 0.9299, and

the performance on ADE recognition ranged from 0.3358 to

0.4946. It indicates that the sample selection bias of the training

data set had an influence on the performance of the ML method.

Moreover, the hyper-parameters (eg, best epoch in deep learning) of

each model were also different, making it difficult to choose 1 opti-

mal set for training a model on the entire training data set. To re-

solve this problem, the committee method was employed to

combine models from all the 5 folds. The overall performance of the

combined prediction was 0.0015 higher than the best performance

on an individual fold (fold 5), which achieved the optimal perfor-

mance on 5 of the 9 categories (Supplementary Material Table 6).

Therefore, the ensemble method could be a solution to address the

issue of the sampling bias due to the random partitioning of the

training data set. Another potential solution is to calculate the aver-

age performance of models from 5 folds on each epoch and pick the

best one.

The JOINT method. The JOINT method outperformed the

CNN-RNN in the RC subtask (0.9399 vs. 0.9304, and 0.9630 vs.

0.9574 after postprocessing, respectively), demonstrating that it’s a

promising architecture for problem representation. However, it

Table 1. The lenient F1-score of single machine learning models

and ensemble methods for the named entity recognition task. The

boldface represents the best performance on each type of entities

among different single methods and different ensemble methods,

respectively

Single model Ensemble method

CRF BI-LSTM-

CRF

JOINT Committee Stacking Category

Drug 0.9495 0.9545 0.9556 0.9556 0.9514 0.9545

Strength 0.9783 0.9822 0.9737 0.9832 0.9818 0.9805

Duration 0.7865 0.8559 0.8193 0.8624 0.862 0.8604

Route 0.9474 0.9556 0.94 0.9562 0.9559 0.9551

Form 0.9551 0.9583 0.9442 0.9575 0.9585 0.9538

ADE 0.2453 0.4224 0.4306 0.5295 0.3876 0.4306

Dosage 0.9328 0.9427 0.9325 0.9482 0.9477 0.9444

Reason 0.5743 0.6796 0.6638 0.6749 0.6724 0.6812

Frequency 0.9693 0.9743 0.9522 0.9748 0.974 0.9746

Overall 0.9194 0.933 0.9237 0.9345 0.9323 0.9326

Abbreviations: ADE, adverse drug event; BI-LSTM-CRF, bi-directional

LSTM CRF;

CRF, conditional random field.

Table 2. The lenient F1-score of machine learning models and rule-based post-processing for relation classification task. All entities used by

these methods are gold-standard entities. The boldface represents the best performance for each type of relation

SVM SVM þ postprocessing CNN-RNN CNN-RNN þ postprocessing JOINT JOINT þ postprocessing

Strength! Drug 0.9704 0.9792 0.9760 0.9853 0.9865 0.9916

Dosage! Drug 0.9637 0.9798 0.9642 0.9818 0.9720 0.9860

Duration! Drug 0.84 0.8947 0.8519 0.9125 0.8829 0.9292

Frequency! Drug 0.9525 0.9735 0.9592 0.9810 0.9692 0.9873

Form! Drug 0.9728 0.9867 0.9713 0.9864 0.9765 0.9890

Route! Drug 0.9581 0.9742 0.9668 0.9805 0.9736 0.9858

Reason! Drug 0.7328 0.8364 0.7464 0.8466 0.7579 0.8488

ADE! Drug 0.7604 0.8221 0.7528 0.8112 0.7946 0.8502

Overall 0.9256 0.9521 0.9304 0.9574 0.9399 0.9630

Abbreviations: ADE, adverse drug event; CNN, convolution neural network; RNN, recurrent neural network; SVM, support vector machine.

Table 3. The lenient F1-score of different machine learning models and rule-based postprocessing for the end-to-end task. The boldface rep-

resents the best performance on each type of relation

SVM SVM þ postprocessing CNN-RNN CNN-RNN þ postprocessing JOINT JOINT þ postprocessing

Strength! Drug 0.9574 0.9646 0.9637 0.9720 0.9644 0.9644

Dosage! Drug 0.9218 0.9337 0.9231 0.9353 0.9245 0.9245

Duration! Drug 0.7395 0.7735 0.7400 0.7861 0.7366 0.7366

Frequency! Drug 0.9361 0.9522 0.9405 0.9582 0.9425 0.9425

Form! Drug 0.941 0.9510 0.9404 0.9516 0.9363 0.9363

Route! Drug 0.9228 0.9350 0.9299 0.9415 0.9287 0.9287

Reason! Drug 0.5626 0.5756 0.5722 0.5792 0.5637 0.5630

ADE! Drug 0.4734 0.4718 0.4749 0.4755 0.3821 0.3790

Overall 0.8750 0.8853 0.8792 0.8905 0.8775 0.8774

Abbreviations: ADE, adverse drug event; CNN, convolution neural network; RNN, recurrent neural network; SVM, support vector machine.
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obtained lower performance in the end-to-end subtask (0.8775 vs.

0.8792, and 0.8774 vs. 0.8905 after postprocessing, respectively).

One potential reason is that the JOINT method is highly dependent

on the target drugs and was more sensitive to the accuracy of drug

recognition, in comparison with the CNN-RNN. Drug predictions

with a high recall will be examined in the JOINT model in our fu-

ture work. Further, the postprocessing step had little influence on

the performance of the JOINT method in the end-to-end task, be-

cause the post-processing aimed to recover relations between iso-

lated attributes and their target drugs (ie, the nearest drugs as used

in the rule). However, there’s no isolated nondrug entities in the pre-

dictions of the JOINT method for further improvement. In contrast,

in the relation classification task, some gold-standard nondrug enti-

ties were not recognized by the JOINT method. Such entities were

linked with their target drugs by the postprocessing, leading to an

improved performance. Besides, the current architecture of the

JOINT model also needs to be expanded in the future to represent

inter-sentence relations, which accounts for �30% of reasons and

ADEs in the whole data set.

Integration of external data sets. In order to improve the perfor-

mance of drug recognition, we also conducted an experiment by

adding an external corpus with drug annotation, the MTsamples

corpus,34 into the training set. However, the BI-LSTM-CRF model

achieved an F1 score of 0.9200, which was lower than the original

model trained without the external data set. It may be because the

annotation guidelines were slightly different between these 2 data

sets. Instead of adding samples into the training set directly, a better

way may be to learn transferable representation from external data

sets. Additionally, the performance may be improved by reweighting

samples from different data sets. In some studies, a base model is

first trained on external data sets, and then fine-tuned using the des-

tination data set.35–37

Error analysis. As shown in Table 1, although our system

achieved a higher performance on most attributes, recognition of

ADE and reason are still challenging (with F1-score 0.5295 and

0.6749, respectively). One potential reason is that the majority of

medical problems present in the clinical text are negative samples

that are not labeled as ADE or reason. By estimation, only a small

proportion (2% and 8%, respectively) of medical problems in the

training set were ADEs and reasons. Such a data distribution and an-

notation scheme make it difficult for ML methods to learn general

patterns. For example, there are 202 “rash” in the whole training

set, but only 43 of them are labeled as ADE and 18 of them are la-

beled as reason. Table 4 presents an illustration of this problem: In

Example 1, “rash” is the reason for drugs “Sarna” and “Benadryl”,

but it is neither a reason or an ADE in Example 2. Another chal-

lenge is that some reasons/ADEs and their related drugs are not lo-

cated in the same sentence. In the training set, as mentioned before

�30% reasons and ADEs and their related drugs are not located in

the same sentences. In the NER task, our ML models were only

trained on single sentences, missing the information from the whole

context (eg, drug “Sarna” and “Benadryl”) in Example 1 on their

neighbor sentences. Similarly, relation classification models trained

with single sentences cannot predict relations across multiple senten-

ces. Furthermore, some medical problems are labeled both as ADE

and reason. In Example 3, “extremity erythema and itching” is the

reason for “Benadryl”, while it is also the ADE of “vancomycin”.

Our methods can only output 1 label for each word, hence some

ADEs or reasons were missed.

Limitations and future work. Our study has limitations which

we outline here. First, although we tried to use the external corpus

to improve the performance on the NER task, exactly how to inte-

grate existing medical data sets/knowledge into the deep learning

framework has not been fully explored yet. For example, knowledge

bases with existing drug indications, such as the MEDication Indica-

tion resource,38 has the potential to further improve the perfor-

mance. In the future, we will use existing domain knowledge of drug

indications and ADEs to reduce recognition errors by using them as

features in ML models and as rules in postprocessing. Second, as dis-

cussed previously, methods to leverage existing corpora from other

similar tasks are still challenging and need further investigation. In

addition, the deep learning field is evolving quickly. Recently, novel

deep learning architectures based on improved language models like

ELMo,39 BERT,37 etc. generated better performances in the open

domain on some classical NLP tasks including NER and relation

classification.36,37,39 In the future, we plan to evaluate and adapt

these methods to the biomedical domain.

CONCLUSION

In this study, we developed deep learning approaches for extracting

medications and their attributes from clinical text and demonstrated

its superior performance compared with traditional ML algorithms.

Our approach may inform development of novel clinical NLP meth-

ods on biomedical information extraction and benefit applications

of EHRs in clinical practice such as pharmacovigilance.
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Table 4. Examples of sentences for error analysis. The bold repre-

sents entities

Examples of sentences

Example 1. “After discharge her fever resolved, but the rash did not. She

used Sarna lotion and Benadryl at home. . .”

Example 2. “The rash might worsen before. . .”

Example 3. “. . . received Benadryl for extremity erythema and itching

during peri-administration with vancomycin. . .”

20 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz063#supplementary-data


REFERENCES

1. Luo Y, Thompson WK, Herr TM, et al. Natural language processing for

EHR-based pharmacovigilance: a structured review. Drug Saf 2017; 40

(11): 1075–89.

2. Coloma PM, Trifir�o G, Patadia V, et al. Postmarketing safety surveillance.

Drug Saf 2013; 36 (3): 183–97.

3. Harpaz R, Callahan A, Tamang S, et al. Text mining for adverse drug

events: the promise, challenges, and state of the art. Drug Saf 2014; 37

(10): 777–90.

4. Wang X, Hripcsak G, Markatou M, et al. Active computerized pharmaco-

vigilance using natural language processing, statistics, and electronic

health records: a feasibility study. J Am Med Inform Assoc 2009; 16 (3):

328–37.

5. Haerian K, Varn D, Vaidya S, et al. Detection of pharmacovigilance-

related adverse events using electronic health records and automated

methods. Clin Pharmacol Ther 2012; 92 (2): 228–34.

6. Nadkarni PM. Drug safety surveillance using de-identified EMR and

claims data: issues and challenges. J Am Med Inform Assoc 2010; 17 (6):

671–4.

7. Phansalkar S, Hoffman JM, Hurdle JF, et al. Understanding pharmacist

decision making for adverse drug event (ADE) detection. J Eval Clin Pract

2009; 15 (2): 266–75.

8. Xu H, Stenner SP, Doan S, et al. MedEx: a medication information extrac-

tion system for clinical narratives. J Am Med Inform Assoc 2010; 17 (1):

19–24.

9. Patrick J, Li M. High accuracy information extraction of medication in-

formation from clinical notes: 2009 i2b2 medication extraction challenge.

J Am Med Inform Assoc 2010; 17 (5): 524–7.

10. Sohn S, Clark C, Halgrim SR, et al. MedXN: an open source medication

extraction and normalization tool for clinical text. J Am Med Inform

Assoc 2014; 21 (5): 858–65.

11. Huang C-C, Lu Z. Community challenges in biomedical text mining over

10 years: success, failure, and the future. Brief Bioinform 2016; 17 (1):

132–44.

12. Uzuner O, Solti I, Cadag E. Extracting medication information from clini-

cal text. J Am Med Inform Assoc 2010; 17 (5): 514–8.

13. Roberts K, Demner-Fushman D, Tonning JM. Overview of the TAC 2017

adverse reaction extraction from drug labels track. In: Proceedings of the

Tenth Text Analysis Conference. Gaithersburg, MD, USA; 2017. https://

tac.nist.gov/publications/2017/additional.papers/TAC2017.ADR_over-

view.proceedings.pdf (accessed 6 Jan 2019).

14. Jagannatha A, Liu F, Liu W, et al. Overview of the first natural language

processing challenge for extracting medication, indication, and adverse

drug events from electronic health record notes (MADE 1.0). Drug Saf

2019; 42 (1): 99–111.

15. Uzuner O. National NLP Clinical Challenges (n2c2). https://portal.dbmi.

hms.harvard.edu/projects/n2c2-t2/ (accessed 3 May 2019).

16. Chapman AB, Peterson KS, Alba PR, et al. Detecting adverse drug events

with rapidly trained classification models. Drug Saf 2019: 42 (1): 147–56.

17. Aramaki E, Miura Y, Tonoike M, et al. Extraction of adverse drug effects

from clinical records. Stud Health Technol Inform 2010; 160 (Pt 1):

739–43.

18. Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for

named entity recognition. In: Proceedings of NAACL-HLT. San Diego,

CA; 2016: 260–70.

19. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence

tagging. CoRR abs/1508.01991; 2015.

20. Jagannatha AN, Yu H. Structured prediction models for RNN based se-

quence labeling in clinical text. Proc Conf Empir Methods Nat Lang

Process 2016; 2016: 856–65.

21. Liu Z, Yang M, Wang X, et al. Entity recognition from clinical texts via

recurrent neural network. BMC Med Inform Decis Mak 2017; 17 (Suppl

2): 67.

22. Dandala B, Joopudi V, Devarakonda M, et al. IBM Research System

at MADE 2018: Detecting Adverse Drug Events from Electronic

Health Records. In: Proceedings of Machine Learning Research;

2018: 39–47.

23. Dandala B, Joopudi V, Devarakonda M. Adverse drug events detection in

clinical notes by jointly modeling entities and relations using neural net-

works. Drug Saf 2019; 42 (1): 135–46.

24. Li Q, Ji H. Incremental Joint Extraction of Entity Mentions and Relations.

In: Proceedings of the 52nd Annual Meeting of the Association for Com-

putational Linguistics. Baltimore, MD: Association for Computational

Linguistics; 2014: 402–12.

25. Miwa M, Bansal M. End-to-end relation extraction using LSTMs on

sequences and tree structures. In: Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics. Berlin, Germany; 2016:

1105–16.

26. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible

critical care database. Sci Data 2016; 3: 160035.

27. Soysal E, Wang J, Jiang M, et al. CLAMP – a toolkit for efficiently build-

ing customized clinical natural language processing pipelines. J Am Med

Informatics Assoc 2017; 25(3):331–36.

28. Liu Z, Tang B, Wang X, et al. De-identification of clinical notes via recur-

rent neural network and conditional random field. J Biomed Inform 2017;

75: S34–42.

29. Mikolov T, Chen K, Corrado G, et al. Distributed representations of

words and phrases and their compositionality. In: NIPS 2013 Proceedings

of the 26th International Conference on Neural Information Processing

Systems. Lake Tahoe, Nevada; 2013: 3111–9.

30. Zhi-Hua Z. Ensemble Methods: Foundations and Algorithms. Boca Ra-

ton, FL: Chapman & Hall/CRC; 2012.

31. Lee H-J, Zhang Y, Xu J, et al. UTHealth at SemEval-2016 task 12: an end-

to-end system for temporal information extraction from clinical notes. In:

Proceedings of SemEval-2016. San Diego, California; 2016: 1292–7.

32. Zhang D, Wang D. Relation classification via recurrent neural network.

CoRR arXiv:1508.01006; 2015.

33. Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep

neural network. In: Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics. Dublin, Ireland: 2014. 2335–

44.

34. Transcribed Medical Transcription Sample Reports and Examples –

MTSamples. https://www.mtsamples.com/ (accessed 25 Jan 2019).

35. Lin BY, Lu W. Neural adaptation layers for cross-domain named entity

recognition. In: Proceedings of the 2018 Conference on Empirical Meth-

ods in Natural Language Processing. Brussels, Belgium: Association for

Computational Linguistics; 2018: 2012–22.

36. Openai AR, Openai KN, Openai TS, et al. Improving Language Under-

standing by Generative Pre-Training. openai Prepr; 2018. https://s3-us-

west-2.amazonaws.com/openai-assets/research-covers/language-unsuper-

vised/language_understanding_paper.pdf (accessed 25 Jan 2019).

37. Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding. CoRR

arXiv1810.04805; 2018. https://arxiv.org/abs/1810.04805 (accessed 12

Oct 2018).

38. Wei W-Q, Cronin RM, Xu H, et al. Development and evaluation of an en-

semble resource linking medications to their indications. J Am Med In-

form Assoc 2013; 20 (5): 954–61.

39. Peters ME, Ammar W, Bhagavatula C, et al. Semi-supervised sequence

tagging with bidirectional language models. CoRR arXiv:1705.00108;

2017.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1 21

https://tac.nist.gov/publications/2017/additional.papers/TAC2017.ADR_overview.proceedings.pdf
https://tac.nist.gov/publications/2017/additional.papers/TAC2017.ADR_overview.proceedings.pdf
https://tac.nist.gov/publications/2017/additional.papers/TAC2017.ADR_overview.proceedings.pdf
https://portal.dbmi.hms.harvard.edu/projects/n2c2-t2/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-t2/
https://www.mtsamples.com/
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805

	ocz063-TF1
	ocz063-TF2
	ocz063-TF3
	ocz063-TF4

