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ABSTRACT

Objective: Phenotyping patients using electronic health record (EHR) data conventionally requires labeled cases

and controls. Assigning labels requires manual medical chart review and therefore is labor intensive. For some

phenotypes, identifying gold-standard controls is prohibitive. We developed an accurate EHR phenotyping ap-

proach that does not require labeled controls.

Materials and Methods: Our framework relies on a random subset of cases, which can be specified using an an-

chor variable that has excellent positive predictive value and sensitivity independent of predictors. We proposed a

maximum likelihood approach that efficiently leverages data from the specified cases and unlabeled patients to

develop logistic regression phenotyping models, and compare model performance with existing algorithms.

Results: Our method outperformed the existing algorithms on predictive accuracy in Monte Carlo simulation

studies, application to identify hypertension patients with hypokalemia requiring oral supplementation using a

simulated anchor, and application to identify primary aldosteronism patients using real-world cases and anchor

variables. Our method additionally generated consistent estimates of 2 important parameters, phenotype prev-

alence and the proportion of true cases that are labeled.

Discussion: Upon identification of an anchor variable that is scalable and transferable to different practices, our

approach should facilitate development of scalable, transferable, and practice-specific phenotyping models.

Conclusions: Our proposed approach enables accurate semiautomated EHR phenotyping with minimal manual

labeling and therefore should greatly facilitate EHR clinical decision support and research.
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INTRODUCTION

The adoption of electronic health records (EHRs) by healthcare sys-

tems has the potential to enable implementation of comprehensive,

computational clinical decision support and clinical research.1–4

However, EHRs have been designed primarily to support

documentation for medical billing rather than being intricately em-

bedded in clinical diagnostic processes,5–7 so that patients’ complex,

clinical phenotypes are not natively represented in an accurate, pre-

cise format.8–11 To overcome this limitation, a variety of heuristic

rules and statistical methods have been developed for phenotyping
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patients using EHR data.12–15 The vast majority of these existing

methods require a large, curated dataset of patients who are

completely and accurately labeled with regard to the presence or ab-

sence of a phenotype. Such methods require experts to retrospec-

tively review EHR charts or prospectively evaluate patients. For

many phenotypes, the labor and cost of these processes limit the

achievable sample size, compromising the accuracy of potential phe-

notyping models.

Such approaches can be improved on by appreciating that clini-

cal practice workflows are often not symmetric with regard to cases

and controls. In practice, for most diseases, only specific patients are

actively evaluated based on clinical suspicion. There are very few

phenotypes for which everyone is actively screened, so clinical prac-

tice data is frequently insufficient to identify a large set of gold-

standard controls. As a result, for many phenotypes, the most read-

ily accessible annotations are an incomplete set of gold-standard

cases and few or no gold-standard controls. It is highly desirable to

develop new phenotyping methods that efficiently and accurately le-

verage such incomplete phenotyping, or “positive-only” data.

One application for which a phenotyping method that learns

from positive-only design is advantageous is identifying patients

with and estimating the prevalence of primary aldosteronism (PA).

PA is the most common cause of secondary hypertension, thought to

affect �5% of hypertensive patients and up to 20% in specific sub-

groups of hypertension patients, including hypertension with hypo-

kalemia and resistant hypertension.16–18 PA can be treated

effectively by unilateral adrenalectomy or targeted medications. Pre-

vious methodological work has tried to improve the diagnostic eval-

uation for PA.19–21 Unfortunately, PA is not recognized or not

treated optimally in many affected patients,22 so methods for EHR

phenotyping have the potential to dramatically improve care for

these patients.

Over the past decade, several methods have been proposed in the

machine learning and biostatistics literature for analyzing data aris-

ing from such “positive-only” design.23–28 Under this design, one

special case with extremely desirable consequences is when the la-

beled cases are a random subset of the full set of cases. This set of

cases could be identified through an active labeling process as part

of existing clinical care or research. However, a more generalizable

strategy that has the potential to decrease the requirement for man-

ual chart review is the use of binary “anchor variables”29 that sum-

marize clinical domain expertise for classifying patients’ phenotype.

By definition, an anchor variable has perfect positive predictive

value (PPV) but is not required to have high sensitivity. That is, an-

chor positivity indicates presence of the phenotype, but anchor nega-

tivity is nondeterministic of the true phenotype status. The second

requirement for an anchor variable is that its sensitivity is indepen-

dent of all phenotype model predictors. An ideal anchor variable is a

structured data element in the EHR that is only present in cases,

such as the result of a diagnostic confirmatory test or an order that

only follows a definitive diagnosis. For example, a pathologic diag-

nosis of cancer will in most scenarios have a very high PPV, but per-

haps an imperfect sensitivity because of variability in practice or

documentation, variability in diagnostic categories, or data incom-

pleteness. For many phenotypes, such definitive diagnostic informa-

tion may not be available, so surrogates such as diagnosis codes,

medications, or note concepts must be considered. Expert knowl-

edge is necessary to select a variable or a composite variable that

meets the high PPV and predictor independence requirements.29

The algorithm for learning with positive anchors proposed by

Halpern et al29 was initially introduced by Elkan and Noto.23

Their method predicted the probability of phenotype presence

through estimating the probability that a subject is anchor positive,

motivated by a lemma that the 2 probabilities differ by a constant

factor, anchor sensitivity. This method trains a classifier for the an-

chor variable in a random subset of patients, then applies the classi-

fier on the rest of patients to estimate the anchor sensitivity.

Unfortunately, it yields a consistent estimate of phenotype preva-

lence only when the predictor distributions for cases and controls

are completely separable,30 and the estimated phenotype probability

may fall outside of the [0, 1] range otherwise.

To enable more efficient and accurate EHR phenotyping and es-

timation of phenotype prevalence in the setting of incomplete clini-

cal training phenotypes, we hereby propose a maximum likelihood

(ML) method to develop a logistic regression prediction model using

positive-only EHR data using cases identified by chart review or an-

chor variables. We have demonstrated, via extensive simulation

studies, development of phenotyping models for hypokalemia re-

quiring oral supplementation among primary care patients with hy-

pertension using a simulated anchor variable, and development of a

PA phenotyping model for patients screened for PA using 2 different

real-world sets of cases, that this method develops models that accu-

rately identify unlabeled cases and yields consistent estimate of phe-

notype prevalence.

MATERIALS AND METHODS

Positive-only data
Let Y denote the latent binary label for the phenotype (1: case; 0:

control), X denote the predictor variables of Y, and S denote the bi-

nary anchor variable (1: positive; 0: negative). Here ðX;Y; SÞ are

considered as random variables from which EHR patients, including

both anchor-positive cases and unlabeled patients, are randomly

drawn, with only ðX ; SÞ observed. For a well-chosen anchor vari-

able, Y takes value 1 whenever S ¼ 1, that is, p Y ¼ 1jS ¼ 1ð Þ ¼ 1.

But Y can take either value 1 or 0 when S ¼ 0. The anchor sensitivity

being independent of X can be formalized as24

p S ¼ 1jY ¼ 1;Xð Þ ¼ pðS ¼ 1jY ¼ 1Þ � c; (1)

where c is a constant between 0 and 1. We use a logistic working

model to relate Y and X which is commonly implemented in the

EHR setting, although our method is applicable for any parametric

model that is reasonable for modeling binary outcome variables:

logit p Y ¼ 1jX; bÞ ¼ XTb:
�

(2)

Here, we allow X to include a vector of 1 so that the intercept pa-

rameter is implicitly included in the logit function XTb. For nota-

tional simplicity, we use PðX ; bÞ to denote p Y ¼ 1jX; bÞð . Let FðXÞ
denote the cumulative distribution function of X, f Xð Þ the corre-

sponding probability density function, and q the phenotype preva-

lence, q ¼ p Y ¼ 1ð Þ ¼
Ð

PðX; bÞdFðXÞ. Let h be the probability of

anchor being positive, h ¼ pðS ¼ 1Þ. It is easy to show that anchor

sensitivity c ¼ h=q by applying (1).

Algorithms for learning with positive-only data
In this section we describe 2 methods for fitting model (2) and esti-

mating parameters c and q from positive-only data, an algorithm de-

veloped by Elkan and Noto,23,29 which to our best knowledge is the

only available method to date (EN algorithm), and an ML method

that we here propose (ML method). We also describe a “naive” lo-

gistic modeling referred to as naive logit, which simply treats the
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unlabeled patients as controls and has largely been the standard

method for analyzing positive-only data.

EN algorithm

The EN algorithm23,29 learns from positive-only data by building on

a lemma relating the models for predicting outcome status Y and an-

chor status S, p Y ¼ 1jXð Þ ¼ p S ¼ 1jXð Þ=c. This method requires the

positive-only data to be randomly separated into 2 parts, the train-

ing set and validation set. It can be summarized into 3 steps. First, a

logistic regression model is developed for predicting anchor status S,

g Xð Þ ¼ p S ¼ 1jXð Þ, by fitting the model directly to the training set

with S being the outcome variable. Second, the anchor sensitivity c

is estimated using the validation set. They proposed that c be esti-

mated as ĉ ¼
Pnv

i¼1 g Xið ÞIðSi ¼ 1Þ=
Pnv

i¼1 IðSi ¼ 1Þ with nv being

the size of the validation set. Third, the probability of the

outcome status is estimated for an unlabeled patient as

p Y ¼ 1jXð Þ ¼ p S ¼ 1jXð Þ=ĉ. The algorithm is intuitive and easy to

implement. But the proposed estimator of c is often biased unless the

predictor distributions for cases and controls are completely separa-

ble,30 thereby leading to biased estimation of p Y ¼ 1jXð Þ and preva-

lence q. When the estimated c is biased toward 0, the estimated

p Y ¼ 1jXð Þ could exceed 1.

ML method

We hereby propose to use the ML method for fitting model p

Y ¼ 1jX ; bÞð and estimating anchor sensitivity c simultaneously. The

likelihood function for the observed data for all N patients is as fol-

lows,

Lðb; cÞ ¼
YN

i¼1

p X i; Si ¼ 1ð ÞSi p X i; Si ¼ 0ð Þ1�Si

/
YN

i¼1

fcpðX i; bÞgSif1� cpðX i; bÞg1�Si

As shown in Supplementary Appendix A, b; cÞð are identifiable

with positive-only data. Thus we can obtain the ML method esti-

mates ðb̂; ĉÞ by maximizing the log likelihood function logL b; cÞð .

The large sample variance-covariance matrix of these estimates can

be established from the inverse of the information matrix. We pro-

pose 2 methods for estimating phenotype prevalence q. Because q

can be expressed as h=c, it can be estimated as q̂ ¼ ĥ=ĉ, where ĥ is

the ML estimate of pðS ¼ 1Þ and equal to the sample fraction of

those with S ¼ 1. Alternatively, it can be estimated as the average of

the estimated phenotype probabilities, N�1
PN

i¼1 PðX i; b̂Þ. In Supple-

mentary Appendix B, we described an extension of this method by

allowing c to vary with respect to a small number of prespecified

strata.

Naive logit

This method simply fits a logistic regression model to the positive-

only data, treating the unlabeled patients as controls. That is, the an-

chor status S was used as if it were the truth label Y.

Simulation studies
We carried out extensive simulation studies to evaluate the perfor-

mance of the ML method relative to the EN algorithm and naive

logit for phenotyping using positive-only data. We also included

results from the ideal learning in which fully labeled data is used to

fit standard logistic regression models with the true labels Y as the

outcome variable. The ideal learning, feasible only for simulation

studies, was used as the comparison benchmark. Given that anchor-

positive patients are classified as cases by definition, we assess classi-

fication accuracy only among the unlabeled patients, using measures

true positive rate ðTPRvÞ, false positive rate ðFPRvÞ, positive predic-

tive value ðPPVvÞ, and negative predictive value NPVvð Þ at a deci-

sion threshold v and area under the ROC curve AUCð Þ. We also

demonstrated statistical consistency for the ML estimators b̂, ĉ, and

q̂ across a range of prevalence and anchor sensitivities in Supple-

mentary Appendix C & D.

Simulation settings

To mimic the complex data structure in EHR, we generated the bi-

nary outcome variable Y from a logistic regression model with 9 pre-

dictors:

logit pðY ¼ 1jX; bÞ ¼ b0 þ
X9

k¼1

bkXk; (3)

with (X1;X2;X3), (X4;X5;X6), (X7;X8;X9) representing weak,

moderate and strong predictors, respectively, by setting the corre-

sponding parameter coefficients at ðb1; b2;b3Þ ¼ ð0:2; 0:4; 0:6Þ,
ðb4;b5; b6Þ ¼ ð�1:0;�1:4; 1:8Þ, and ðb7; b8; b9Þ ¼ ð�2:0; 2:4;

2:8Þ. The 9 predictors were independently distributed, with X1, X4,

and X7 generated from normal distribution N(5, 10), X2, X5, and

X8 from Bernoulli distribution with success rate 0.5 and X3, X6,

and X9 from the logit transformed standard uniform distribution.

The value of b0 was varied accordingly to achieve the phenotype

prevalence at 5%, 10%, 15%, and 20%. The anchor sensitivity c

was fixed at 0.5. For each case (Y ¼ 1), the anchor variable S was

generated according to a Bernoulli distribution with success rate c.

For each control (Y ¼ 0), S was always set to 0. In each Monte

Carlo simulation, we drew a random sample of size 10 000 as the

training set, and a disjoint testing set of 5000. To implement the EN

algorithm, 20% of the training set was put aside as the validation

set to estimate c. For each parameter combination, we iterated the

simulation 1000 times. Below we focus our discussion on the results

when the phenotype prevalence was set as 10%. Results for the

other 3 prevalence values were similar and included in the Supple-

mentary Appendix C & D.

RESULTS

Simulation results
As shown in Table 1, our ML method yielded consistent estimates of

the anchor sensitivity c and the phenotype prevalence q that were

nearly identical to that of the ideal logistic regression using the truth

labels. EN algorithm underestimated anchor sensitivity c as 0.37

with empirical standard error (ESE) 0.04, with the bias potentially

caused by the overlapping of predictor distributions, leading to over-

estimation of prevalence q as 0.14 (ESE: 0.01). Among the unlabeled

patients, 4% (ESE: 0.5%) of the EN algorithm-predicted probabili-

ties p̂ Y ¼ 1jXð Þ were >1. The EN algorithm estimates remained

nearly identical when we increased the size of the validation set to

5000. As demonstrated in Table 2 and Figure 1, ML method

achieved comparable predictive accuracy to that of ideal learning

among the unlabeled patients, with similar AUC (0.994 and 0.994,

respectively) and precision-recall curve, which is a plot of PPV (y-

axis) and TPR (x-axis) for different risk thresholds. EN algorithm

and naive logit achieved identical AUC of 0.993. However, at their

respective threshold for 80% sensitivity (TPR), ML method

achieved higher specificity, with PPV and FPR estimated as 86%
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and 0.7%, compared with 84% and 0.9% for the EN algorithm and

83% and 0.9% for naive logit, respectively. Similarly, at thresholds

for 80% PPV, ML method yielded higher TPR than did the EN algo-

rithm and naive logit (Table 2, Figure 1).

As shown in Supplementary Table S1, the averaged ML parame-

ter estimates (b̂; ĉ; q̂) appeared very close to the true values. The

negligibly small biases (<4%) indicated statistical consistency of the

proposed ML estimators. The variances of the ML method estimates

can be well approximated by the asymptotic standard errors (ASEs),

as their average across simulated data and the ESE were very close,

with a difference <6%. The ML method therefore is superior to EN

algorithm also because the variance of the estimates (b̂; ĉ; q̂) can

be obtained conveniently.

Method validation using real-world EHR data and a

simulated anchor variable
Next we sought to validate the ML method using real-world EHR

data and a simulated, perfect anchor variable. We compared the per-

formance of the proposed ML method to that of the EN algorithm,

naive logit and ideal learning for identifying a patient population

that should be screened for PA, those with hypokalemia requiring

oral supplementation, from among 10 000 Penn Medicine primary

care patients with hypertension. Patients (�18 years of age) were

randomly selected from among those with �5 office visits over �3

distinct years, including �2 at 1 specific primary care practice, be-

tween 2007 and 2017. The population was restricted to patients

with hypertension by filtering for �2 outpatient encounters with a

hypertension diagnosis code (International Classification of

Diseases-Ninth Revision [ICD-9]: 401.*, 405.*; International Clas-

sification of Diseases-Tenth Revision: I10.*, I15.*). We defined the

phenotype status Y for each patient as whether the patient had �3

outpatient orders for oral potassium supplementation. The resulting

dataset contained 796 (8%) cases and 9204 controls. As our goal

was to demonstrate the performance of the positive-only phenotyp-

ing methods when a good anchor variable is available, we artificially

created an anchor variable S with sensitivity 0.2 by randomly setting

S to 1 for 20% of all cases (Y¼1), and to 0 for the remaining 80%

of cases and for all controls. The predictors of interest, X, were se-

lected by clinical experts from among diagnosis codes, medication

prescriptions, laboratory results, vital signs, encounter meta infor-

mation (Supplementary Table S4). We emphasize that the ML

method and the EN algorithm only need S and X for model training.

The true label Y was only used for ideal learning. For the EN algo-

rithm, we randomly set aside 20% of the dataset for estimating an-

chor sensitivity. We performed 10-fold cross-validation for

estimating all predictive accuracy metrics based on phenotype status

Y. The proposed ML method estimated anchor sensitivity c as 0.17

(ASE: 0.04), which was much closer to the true value 0.2 than the

EN algorithm estimate of 0.05. Consequently, the ML method esti-

mate of prevalence q, 0.09 (ASE: 0.02), was much closer to the true

value 0.08 than was the EN algorithm estimate, 0.32.

For phenotyping accuracy, ideal learning achieved the highest

AUC of 0.86, which is the best discrimination since it used the Y

truth labels. The ML method and naive logit both achieved AUC as

0.85, which was slightly higher than that of the EN algorithm, 0.83.

At their respective thresholds for reaching 70% TPR, the ML

method achieved a PPV of 23%, which was identical to that of ideal

learning (23%) and naive logit (23%), and slightly higher than that

of the EN algorithm (20%) (Figure 2). Furthermore, FPRs of the

ML method and ideal learning were also identical (16%), which

were lower than those of the EN algorithm (19%). The NPV was

comparable for all four methods. At their respective threshold for

achieving 50% PPV, the ML method achieved a TPR of 44%, which

was comparable to that of ideal learning (45%) and higher than that

Figure 1. Precision-recall curve of the 4 methods from simulation study with 10% prevalence. EN: Elkan and Noto; ML: maximum likelihood.

Table 1. Estimates of c and q

Anchor sensitivity c Phenotype prevalence q

True value 0.5 (—) 0.1 (—)

Ideal learning — 0.10 (0.0003)

Naive logit — 0.05 (0.002)

EN algorithm 0.37 (0.04) 0.14 (0.01)

ML method 0.50 (0.021) 0.10 (0.004)

Values are mean (empirical standard error) over 1000 iterations.

EN: Elkan and Noto.
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of naive logit (38%) and the EN algorithm (39%). In addition, 5%

of the EN algorithm–predicted probabilities p̂ Y ¼ 1jX; S ¼ 0ð Þ were

greater than 1.

A preliminary phenotyping model for PA using real-

world predictors and cases
We then applied the proposed ML method to develop a preliminary

model for identifying PA patients using a dataset derived from the

Penn Medicine EHR containing 6319 patients who had an order for

a PA screening laboratory test. Predictor variables, listed in

Supplementary Tables S5 and S6, were selected by clinical experts.

Because lab test ordering is nonrandom and potentially informative

of phenotype status, we created binary variables indicative of result

presence and included these binary indicators as well as the original

lab test variables, with missing values replaced by zero. Missing val-

ues in variables other than laboratory results were imputed with re-

spective mean values. In addition, variables with highly positively

skewed distributions were log-transformed, and all continuous vari-

ables were standardized. Since the focus of this work is on demon-

strating the performance of the ML method with a wisely chosen set

of cases, we leveraged an existing expert-curated PA research regis-

try31 in which every patient was a definitive PA case (case set A:

n¼149, 2.4%). The patients were identified for the registry because

they underwent a diagnostic procedure, adrenal vein sampling,

which in our practice is only performed on patients definitively diag-

nosed with primary aldosteronism. We later supplemented this set

using an anchor variable strategy to include patients with a labora-

tory test order for adrenal vein cortisol, which is only performed as

part of this the adrenal vein sampling procedure (set B). This anchor

variable labeled an additional 47 patients, increasing the set of cases

to a total of 196 (3.1%). The additional patients included many

who were tested after 2015 and some that were missing from the

registry for unknown reasons. We evaluated the predictive accuracy

of the models using TPR and PPV. TPR was estimated using the case

set via 10-fold cross-validation for models developed by each of the

3 methods. This was plausible because the independence property of

anchor variable implied that TPR among all PA cases can be esti-

mated by TPR among anchor-labeled cases, TPR ¼ pðp̂ >

vjY ¼ 1Þ¼ p p̂ > vjS ¼ 1ð Þ: To estimate PPV, charts for patients re-

ceiving longitudinal care and p̂ Y ¼ 1jXð Þ � 0:2 by each model were

reviewed by a clinician I.A. and ambiguous cases were further

reviewed by D.S.H. There were 185 charts reviewed and were adju-

dicated with respect to PA as 132 positive, 5 unknown, and 48 nega-

tive. The final models were included in Supplementary Table S7.

Using case set A, the ML method estimated the label sensitivity c

as 0.56, compared with 0.35 of EN algorithm. Consequently, it esti-

mated phenotype prevalence q as 4% (95% confidence interval [CI],

3%-5%), compared with 7% by the EN algorithm. For both case

sets, the ML method–fitted model appeared to have high discrimina-

tory power, indicated by the double-peaked histogram of

p̂ðY ¼ 1jXÞ, with anchor-positive cases mostly having high pre-

dicted probabilities (Figure 3). The ML method achieved consis-

tently higher TPR than did the other 2 methods. For example, at

threshold 0.5, TPR was estimated as 0.66, 0.59, and 0.28 for the

ML method, EN algorithm, and naive logit, respectively (Table 3).

In addition, 0.6% of the EN algorithm–predicted probabilities p̂

Y ¼ 1jX ; S ¼ 0ð Þ were greater than 1. Results using case set B were

similar, with c estimated as 0.62 and 0.41 by the ML method and

EN algorithm, respectively, and q estimated as 5% (95% CI, 4%-

6%) by the ML method and 8% by the EN algorithm. Again, TPR

of ML method was consistently higher than that of the other 2 meth-

ods (Table 3), and 0.7% of the EN algorithm–predicted probabili-

ties p̂ Y ¼ 1jX ; S ¼ 0ð Þ were >1.

According to the chart review results, the models based on case

set A and B achieved similar PPVs at threshold 0.2 (75% and 76%

respectively) and threshold 0.5 (78% and 77%, respectively). Nota-

bly, the ML method identified 7 unlabeled PA patients that do not

meet PA heuristic rules �2 PA diagnosis codes (ICD-9: 255.10,

255.11, 255.12; International Classification of Diseases-Tenth Revi-

sion: E26.01, E26.02, E26.09, E26.9) or PA laboratory testing

results that meet conservative diagnostic criteria (aldosterone �15

ng/dL, plasma renin activity < 0.5 ng/mL/h, aldosterone: plasma re-

nin activity �30).

To assess the sensitivity of our method with respect to the inde-

pendence requirement of anchor variables, we performed stratified

analyses as described in Supplementary Appendix B by allowing an-

Figure 2. Precision-recall curve of the 4 methods for identifying patients with

hypokalemia requiring potassium supplementation among Penn Medicine

primary care patients with hypertension. EN: Elkan and Noto; ML: maximum

likelihood.

Table 2. Phenotyping accuracy measures at thresholds selected to achieve TPR ¼ 0.8 or PPV ¼ 0.8

TPR ¼ 0.8 PPV ¼ 0.8

Threshold FPR PPV NPV Threshold TPR FPR NPV

Ideal learning 0.63 0.007 (0.001) 0.86 (0.02) 0.99 (0.002) 0.50 0.90 (0.02) 0.01 (0.002) 0.99 (0.001)

Naive logit 0.15 0.009 (0.002) 0.83 (0.03) 0.99 (0.002) 0.14 0.84 (0.03) 0.01 (0.002) 0.99 (0.002)

EN algorithm 0.42 0.009 (0.003) 0.84 (0.05) 0.99 (0.003) 0.38 0.84 (0.04) 0.01 (0.004) 0.99 (0.002)

ML method 0.63 0.007 (0.002) 0.86 (0.03) 0.99 (0.002) 0.50 0.89 (0.03) 0.01 (0.002) 0.99 (0.002)

Values are mean (empirical standard error) over 1000 iterations.

EN: Elkan and Noto; FPR: false positive rate; ML: maximum likelihood; NPV: negative predictive value; PPV: positive predictive value; TPR: true positive

rate.
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chor sensitivity to vary with the encounter variables. Specifically, for

each variable, we allowed anchor sensitivity to differ between the 2

strata, above or below the median. The phenotype prevalence esti-

mates were nearly identical to those presented earlier where the

independence assumption was imposed, and differences between the

2 stratum-specific anchor sensitivity estimates were minor (Supple-

mentary Table S8). The estimated regression coefficients were very

similar as well (Supplementary Tables S9).

DISCUSSION

A key step to comprehensive and accurate EHR phenotyping is the

development of accurate approaches that efficiently leverage clinical

expertise and available data. Currently, to train phenotyping algo-

rithms, most existing methods require a complete set of expert-

annotated cases and controls or naively treat unlabeled patients as

definitive controls. Our proposed ML method builds accurate model

classifiers based upon a random sample of positive cases and a large

number of unlabeled patients. To identify a random sample of cases,

the method can leverage domain expertise summarized in the form

of an anchor variable, with modest upfront effort from clinical

experts.29 Compared with standard strategies, this method dramati-

cally decreases the need for labor-intensive chart annotation and

prospective phenotyping.

Our ML method appeared to consistently outperform EN algo-

rithm and naive logit in all numerical studies according to predictive

accuracy metrics considered and estimates of anchor sensitivity and

phenotype prevalence. Another notable feature of our ML method is

Figure 3. Histogram of estimated probabilities of PA, p (Y¼1jX) based on (A) case set A and (B) case set B. The left panels display the probability histogram with

the range of y-axis being 0%-100%. The right panels display the zoomed-in probability histogram with y-axis limited to 0%-3%. Labeled cases (blue) and unla-

beled patients (red) are indicated.

Table 3. PA model TPR estimated using labeled patients

Threshold Case set A Case set B

ML method EN algorithm Naive logit ML method EN algorithm Naive logit

0.1 0.85 0.85 0.73 0.89 0.86 0.77

0.2 0.79 0.74 0.60 0.85 0.80 0.63

0.3 0.74 0.70 0.49 0.83 0.71 0.56

0.4 0.70 0.64 0.35 0.80 0.64 0.47

0.5 0.66 0.59 0.28 0.78 0.61 0.41

0.6 0.62 0.55 0.26 0.72 0.57 0.34

0.7 0.56 0.48 0.21 0.66 0.55 0.30

0.8 0.52 0.42 0.15 0.60 0.49 0.24

0.9 0.41 0.40 0.10 0.54 0.45 0.16

EN: Elkan and Noto; ML: maximum likelihood; PA: primary aldosteronism; TPR: true positive rate.
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transferability to other practices. The anchor concept may itself be

more easily transferred rather than the full model.32 Model valida-

tion with respect to calibration and predictive accuracy classically

requires annotated labels for a random set of patients. However the

anchor variable framework and ML method allow the development

of novel methods for internally assessing model calibration and pre-

dictive accuracy using positive-only data (which we are currently

working on), precluding the need for external model validation.

Thus to generalize our method to secondary sites, chart review need

only be performed to confirm that the anchor has very high PPV for

the phenotype of interest, which is considerably less burdensome

validation of a classically fit or transferred model. Recent work has

considered phenotyping methods that take advantage of both noisy

labels with random error and anchor variable framework.19 Our

method can similarly be extended in this regard.

The model performance relies on the independence of labeled

cases, or anchor sensitivity, and model predictors. This necessitates

meticulous selection of the anchor based on clinical expertise. If

unclear, the appropriateness of an anchor could be supported by ex-

plicitly validating the estimated phenotype prevalence, model sensi-

tivity, or the conditional independence assumption. We refer readers

to the work of Halpern et al32 for methods to support defining po-

tential anchors. The phenotyping models for PA based on the 2 case

sets were similar, which to a certain extent suggests the robustness

of the ML method with respect to anchor selection. We also ex-

tended the current implementation of anchor variables to allow an-

chor sensitivity to vary across a fixed number of discrete strata that

are predefined by patient EHR data (Supplementary Appendix B).

We then applied this approach in our PA modeling to exclude major

predictor-anchor dependence.

In this work, we applied our method to develop models to iden-

tify patients with PA. In selecting as cases PA patients who under-

went a subtyping diagnostic procedure, we targeted patients with

more severe and actionable disease rather than all PA patients.

Thus, based on the conditional independence assumption, our mod-

els suggest that among patients screened for PA, including primary

care and specialty referral populations, the prevalence of PA eligible

for adrenal vein sampling is approximately 5%. To validate the

prevalence estimation, it would be ideal to have expert annotation

for a random sample of patients. Because the prevalence of PA is

low, a large number of patients would need to be annotated. Unfor-

tunately, since the diagnosis of PA requires specific diagnosis testing

(measurement of blood aldosterone and plasma renin activity), chart

review is not sufficient to identify all PA patients in a cohort. There-

fore, it is implausible to obtain a sufficient annotated validation set.

That said, our prevalence estimates were reasonable based on the lit-

erature: �5% for the prevalence of all PA in primary care pop-

ulations33 and �10% for prevalence of PA in tertiary care

settings.34 One recent Dutch study35 that has a similar study design

demonstrated a 3% (95% CI, 1.4%-4.9%) prevalence of PA con-

firmed by provocative testing among patients newly diagnosed with

hypertension and screened for PA.

Our ML method demonstrated good sensitivity and PPV for

identifying PA patients. However, as this was merely a proof-of-

concept analysis, there is considerable room for improvement. We

focused on specific predictors selected by domain experts, and did

not exhaustively explore feature selection and engineering. Our cur-

rent method is suitable for developing phenotyping models when the

number of potential predictors is far less than the number of records.

It is of interest to explore additional predictors across high dimen-

sional EHR data, which we expect would lead to models with im-

proved accuracy and more precise estimates of anchor sensitivity.

We plan to extend our current method to facilitate variable selection

in building the prediction model. For example, Yu et al15 proposed a

surrogate-assisted feature extraction method for high-throughput

EHR phenotyping. It reduces the needed number of gold-standard

labels by selecting a candidate set of predictors that are correlated

with ICD-9 codes or natural language processing-extracted concept

counts. Potentially, a surrogate-assisted feature extraction–like ap-

proach could be applied to generate candidate predictors for use in

our ML method–based anchor learning method. The resultant re-

duction in the need for manual variable selection would yield im-

proved phenotyping efficiency and scalability. Similarly, we would

expect considerable further gains from more extensive modeling, in-

cluding exploration of alternative missing data approaches.

CONCLUSION

The incompleteness and asymmetry of EHR data limits its use for

clinical decision support and research. We have developed a novel

likelihood-based method that uses labeled cases and unlabeled

patients to simultaneously enable accurate model development and

identification of unlabeled cases. We expect this method will facili-

tate phenotype model development and transferability for a wide va-

riety of EHR clinical decision support and research applications.
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