Skip to main content
. 2019 Nov 13;27(1):119–126. doi: 10.1093/jamia/ocz170

Table 2.

Phenotyping accuracy measures at thresholds selected to achieve TPR = 0.8 or PPV = 0.8

TPR = 0.8
PPV = 0.8
Threshold FPR PPV NPV Threshold TPR FPR NPV
Ideal learning 0.63 0.007 (0.001) 0.86 (0.02) 0.99 (0.002) 0.50 0.90 (0.02) 0.01 (0.002) 0.99 (0.001)
Naive logit 0.15 0.009 (0.002) 0.83 (0.03) 0.99 (0.002) 0.14 0.84 (0.03) 0.01 (0.002) 0.99 (0.002)
EN algorithm 0.42 0.009 (0.003) 0.84 (0.05) 0.99 (0.003) 0.38 0.84 (0.04) 0.01 (0.004) 0.99 (0.002)
ML method 0.63 0.007 (0.002) 0.86 (0.03) 0.99 (0.002) 0.50 0.89 (0.03) 0.01 (0.002) 0.99 (0.002)

Values are mean (empirical standard error) over 1000 iterations.

EN: Elkan and Noto; FPR: false positive rate; ML: maximum likelihood; NPV: negative predictive value; PPV: positive predictive value; TPR: true positive rate.