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ABSTRACT

Objective: Electronic medical records (EMRs) can support medical research and discovery, but privacy risks

limit the sharing of such data on a wide scale. Various approaches have been developed to mitigate risk, includ-

ing record simulation via generative adversarial networks (GANs). While showing promise in certain application

domains, GANs lack a principled approach for EMR data that induces subpar simulation. In this article, we

improve EMR simulation through a novel pipeline that (1) enhances the learning model, (2) incorporates evalua-

tion criteria for data utility that informs learning, and (3) refines the training process.

Materials and Methods: We propose a new electronic health record generator using a GAN with a Wasserstein

divergence and layer normalization techniques. We designed 2 utility measures to characterize similarity in the

structural properties of real and simulated EMRs in the original and latent space, respectively. We applied a fil-

tering strategy to enhance GAN training for low-prevalence clinical concepts. We evaluated the new and exist-

ing GANs with utility and privacy measures (membership and disclosure attacks) using billing codes from over

1 million EMRs at Vanderbilt University Medical Center.

Results: The proposed model outperformed the state-of-the-art approaches with significant improvement in

retaining the nature of real records, including prediction performance and structural properties, without sacrific-

ing privacy. Additionally, the filtering strategy achieved higher utility when the EMR training dataset was small.

Conclusions: These findings illustrate that EMR simulation through GANs can be substantially improved

through more appropriate training, modeling, and evaluation criteria.

Key words: electronic medical records, EMRs, generative adversarial networks, GANs, Wasserstein divergence, privacy,

simulation

INTRODUCTION

Electronic medical record (EMR) systems provide opportunities for

healthcare organizations to enhance patient safety,1–3 improve the

efficiency of healthcare delivery4,5 and aid in clinical training.6,7

Originally designed to support the primary objectives of the clinical

domain, EMRs hold great promise for reuse in secondary endeav-

ors8,9 including policy evaluation,10,11 the development and

refinement of clinical decision support technologies,12–14 and large-

scale biomedical research investigations.15–17 As such, healthcare

organizations are incentivized, and sometimes required, to make

such data available beyond the initial point of collection, by, for ex-
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ample, the National Institutes of Health Final Data Sharing Policy.18

However, concerns over patient privacy19 often limit EMR data--

sharing activities.20

A wide array of computational approaches has been developed

to balance the utility achieved through sharing real EMR data

against various types of privacy intrusions.16,17 For instance, to pre-

vent identity disclosure attacks (ie, maintain patient anonymity),

one class of approaches focuses on manipulating the features of indi-

viduals that can allow a data recipient to link to a patient’s identity

(eg, residential zip code or date of birth).21–23 A second class of

approaches aims to prevent attribute disclosure attacks (ie, maintain

patient confidentiality) by perturbing the EMR data,24,25 as well as

the aggregate statistics based on such data. Typical approaches to re-

alizing these privacy principals are k-anonymity22,23,26 and differen-

tial privacy,27,28 respectively. While popular, these approaches

function directly on the data to be shared, which induce an inherent

tradeoff between utility and privacy.29–31

The research community has attempted to resolve this tension by

simulating synthetic EMR data through models based on clinical

knowledge published in the literature32,33 and the data documented

in real EMRs.34 Multiple contributions can be categorized into

knowledge-oriented EMR synthesis, in which knowledge is

extracted from either real EMR data or external data.35–38 For in-

stance, Buczak et al39 generated synthetic EMRs of tularemia

patients by mining real EMR records to obtain patients’ care pat-

terns, frequencies of billing codes, and syndromes. Dube and Gal-

lagher40 leveraged both public statistics (eg, disease prevalence) and

clinical practice guidelines to build synthetic EMRs. These

approaches are appropriately designed based on the extracted

knowledge and can account for static as well as temporal aspects of

a patient’s status and the evolution of disease. However, there are

several limitations common to these approaches: (1) the knowledge

merged into the generation process is often incomplete (or biased);

(2) the generation mechanisms are specific to a particular phenotype

or process, which lacks generalization ability; and (3) sharing

patient-level synthetic data may be vulnerable to another privacy in-

trusion, namely the membership attack. In this situation, the data re-

cipient is able to correctly predict if a real record is part of the

training dataset that led to synthetic records. This attack may leak

information about features (eg, diagnoses) of a real patient.

More recently, the machine learning community has focused on

the development of advanced generative models that automatically

extract the inherent knowledge within (or between) data in real

records. Among various techniques, generative adversarial networks

(GANs) have shown a remarkable ability to generate synthetic data

with a realistic feel,41–43 while simultaneously protecting privacy.

This is because the artificial nature of the data has the potential to

mitigate the concerns of reidentification. GANs are also empirically

resistant to the attribute disclosure and membership attack.44 In

general, GANs are notable in that they are designed to address an

adversarial environment in which a generator is forced to produce

increasingly realistic instances, such that an evolving discriminator

cannot distinguish them from real data. To date, the applications of

GANs have been successful in the domains of imaging, natural lan-

guage text, and audio generation.45–47

Over the past several years, GANs have been customized to gener-

ate structured and categorical EMR data (eg, sets of billing

codes).34,44,48,49 GANs in this domain adopt the following pipeline.

Initially, the system selects a training dataset of EMRs that satisfies the

definition of a target population (eg, type 2 diabetics). Next, the sys-

tem encodes and decodes the records via an autoencoder to learn their

latent representations. Then, the system optimizes for an objective

function based on the distance between the distributions of synthetic

and real data. Finally, the system evaluates the GAN with respect to

data utility and privacy risks. GAN learning is usually accomplished

by characterizing both the distributional similarity of features and pre-

dictive similarity on a simple task between the real and synthetic data.

However, this approach to EMR simulation has several draw-

backs. First, the autoencoder pretraining (which was designed to ad-

dress the challenge of discrete approximation for the output) may

introduce noise and, thus, induce a barrier in the learning task. Sec-

ond, current measures of data utility fail to characterize if the gener-

ated data retain key structural properties of real data in the original

and the latent space. Third, relying solely on the EMRs of a popula-

tion of interest as the training data may cause a loss of certain statis-

tical properties of the real data.

Given the limitations of the current simulation pipeline, we hy-

pothesized that the utility of the data could be enhanced, without scar-

ifying privacy, through a refinement of the learning process and

models. Specifically, we aimed to enhance the learning model of

GANs through removing the autoencoder, incorporating additional

utility measures of key structural properties, and refining the filtering

strategy for selecting training data. We demonstrate the plausibility of

this hypothesis by applying the new GAN pipeline with approximately

1 million real EMRs from Vanderbilt University Medical Center.

MATERIALS AND METHODS

The data in this study is derived from the Vanderbilt University Med-

ical Center Synthetic Derivative (SD), a de-identified warehouse of

over 2.2 million EMRs. We extracted all International Classification

of Diseases-Ninth Revision diagnosis codes for each patient, which

were rolled up to their subcategories by removing the portion of the

codes to the right of the “.” and retained the distinct set codes. This

process led to 944 codes. We refer to this dataset as the SD dataset.

Summary statistics for this dataset, including age and sex, are

provided in Table 1. Note that we discretized age into 4 groups (0-

17, 18-44, 45-64, and >64 years of age) based on U.S. Census 2010

criteria50 for presentation purposes (more fine-grained age groups

could be applied). In doing so, we treat the dataset categorically, fa-

cilitating the evaluation of training strategies.

It was observed that a portion of the records, as well as a subset

of the billing codes, were not suitable for EMR synthesis. For exam-

ple, EMRs with too few codes may not be informative during learn-

ing and, instead, may lead to biased (or even incorrect) models. The

same is true for International Classification of Diseases-Ninth Revi-

sion codes with very low prevalence. As such, we refined the data

(details in Supplementary Appendix A) to compose a cleaner data-

set, which we refer to as the CSD dataset. This dataset is composed

of 854 billing codes. It has approximately half the patients in the SD

dataset, but maintains roughly the same distribution of age and sex.

The number of distinct codes per patient and the number of patients

per code is approximately 15 and 18 000, respectively, compared

with 8 and 19 300 for the SD dataset.

Each patient’s record is represented as a binary vector over the

codes, in which a cell value is 1 if the corresponding code is in an

EMR and 0 otherwise.

GANs in the Medical Domain
To contextualize this research, we provide a brief tutorial on the

foundations of GANs in Supplementary Appendix B. We specifically
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review the general framework of GANs and 2 frequently adopted

distance functions: Jensen-Shannon (JS) divergence and Wasserstein

divergence.

In the medical domain, several variations of GANs have been de-

veloped to generate realistic EMRs of diagnosis and procedure

codes. These include medGAN,44 medBGAN, and medWGAN.48

These GANs have several commonalities and their architecture is

shown in Figure 1a. First, they are all based on a framework that

combines the GAN architecture with an autoencoder (which proj-

ects the original data into a low-dimension space and then recon-

structs them), as shown in Figure 1a. The autoencoder is

incorporated to address the limitation that the original GAN cannot

generate discrete outputs. This is achieved by concatenating the gen-

erator with the pretrained decoder, which is fine-tuned during the

training process. Another common characteristic is that they all ap-

ply batch normalization51 and a shortcut technique52 to the genera-

tor to accelerate learning. Yet, these GANs differ in their distance

measures between the distributions of real and synthetic data.

medGAN applies JS divergence, which makes it susceptible to

mode collapse, in which the generator learns to map different inputs

to the same output, and mode drop, in which the generator only

captures certain regions of the underlying distribution of the real

data.3 To stabilize GAN training and solve the mode challenges,

medBGAN and medWGAN adopt the distance measures introduced

in boundary-seeking GAN54 and Wasserstein GAN,55,56 respec-

tively. The objective function of medBGAN pushes the generator to

match the distribution of the real data by continuing to generate

samples near the boundary of the discriminator in each optimization

iteration. By contrast, medWGAN applies Wasserstein divergence to

formulate the objective function in a manner that the divergence be-

tween the distributions can be more accurately measured. However,

as these GANs rely on an autoencoder, they may be led to a biased

model because noise is introduced into the learning process.

EMR Wasserstein GAN
EMR Wasserstein GAN (EMR-WGAN), whose architecture is

shown in Figure 1b, refines the learning model. It uses the basic

structure of the original GAN model introduced in Goodfellow

et al41 but removes the autoencoder. Owing to the drawbacks of JS

divergence, EMR-WGAN, similar to medWGAN, adopts the Was-

serstein divergence. To mitigate the effect of an exploding gradient,

a phenomenon in which gradients accumulate large amounts of er-

ror (resulting in unstable training), and a vanishing gradient, a phe-

nomenon in which the gradient of the loss function becomes zero

(resulting in an inability to appropriately update the network), we

apply 2 normalization techniques, both of which ensure values are

in a common range. To formally explain the normalization, in each

layer, let xi
j denote the input value of neuron i with respect to data

instance j, xj denote the input vector of in this layer with respect to

instance j, and xi denote the input batch vector on neuron i. Note

that the set of data instances is often randomly partitioned into

batches for convenience in training. Additionally, let l() and rðÞ de-

note the mean and standard deviation, respectively. In the generator,

we apply batch normalization,51 which revises the input of each neu-

ron, according to the batch of data that passes through it, by

yi
j ¼ ðxi

j � lðxiÞÞ=rðxiÞ. For the discriminator, we apply layer nor-

malization,57 which revises the input of each neuron, according to

the data that pass through the layer in which the neuron is situated,

by yi
j ¼ ðxi

j � lðxjÞÞ=rðxjÞ. Batch normalization is not applied to

the discriminator because it would change the training objective

from penalizing the norm of the discriminator’s gradient with re-

spect to each input independently to penalizing the gradient’s norm

of the entire batch. By contrast, layer normalization maintains its

computation within each single input, which is suitable for the dis-

criminator to mitigate the training obstacles incurred by unexpected

gradient updates.

Evaluation Measures
In this section, we describe the utility and privacy measures of

GANs for generating categorical EMR data.

Standard utility measures include dimension-wise statistics

(DWS) and dimension-wise prediction (DWP).44 DWS investigates

the degree to which the distribution of each code among the gener-

ated records is similar to real data, whereas DWP evaluates the de-

gree to which a generative model captures the interdimensional

relationships of real data. The details of their implementation in our

setting are in Supplementary Appendix C. These methods provide

some insights into GAN utility; however, it is difficult to reach a

solid conclusion on the performance of GANs by these measures

alone because neither assesses if the structural properties of real data

have been maintained. To address this issue, we introduce 2 new

utility measures to characterize the statistical similarity between real

and synthetic data.

Novel utility measures

Latent space representation. This measure evaluates the ability of a

generative model to capture the latent factorized representations of

real data. It is natural to assume that each real record is generated

from a distribution pðxjwÞ, where w represents data generative fac-

tors in the latent space R
d with m independent and d-m dependent

dimensions. We utilize the b variational autoencoder (b-VAE)58 to

discover, among R
d, the efficient representation w

0 2 R
kðd > k > m

Þ of real data. b-VAE rewrites the objective function of VAE59 by

inserting a weight b to the Kullback-Leibler divergence regulariza-

tion:

L h; /; x; z; bð Þ ¼ Equ z;xð Þ logph xjzð Þ½ � � bDKLðqu zjxð ÞjjpðzÞÞ;

where z 2 R
d satisfies the standard Gaussian distribution. A larger b

value encourages more dimensions in qu zjxð Þ to approach their cor-

responding dimensions in pðzÞ. In other words, the mean of the vari-

ance distribution in each of these dimensions is forced to approach

1. At the same time, the remaining dimensions (ie, w
0
) can be

thought of as efficient latent dimensions to characterize, and then re-

construct, the input data. We interpret each of these dimensions as a

Table 1. Summary statistics of the EMR datasets

SD Dataset CSD Dataset

Patients 2 246 444 1 045 634

Number of ICD-9 codes 944 854

Age distribution, %

0-17 y 21 17

18-44 y 32 29

45-64 y 24 26

>64 y 23 28

Male/female, % 47/53 47/53

Codes per patient 8.11 14.76

Patients per code 19 298 18 080

CSD: clean Synthetic Derivative; EMR: electronic medical record; ICD-9: In-

ternational Classification of Diseases-Ninth Revision; SD: Synthetic Derivative.
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latent mode. A useful generative model is expected to yield synthetic

data with a variance distribution for each latent mode that is similar

to real data.

We train a b-VAE model over the CSD dataset and retain the set

of latent modes with a threshold for the mean of the variance distri-

bution <0.5. We provide a synthetic dataset of the same size as the

CSD dataset into this b-VAE model. In doing so, we record the vari-

ance distributions of the latent modes. We measure the distance be-

tween the mean of each mode’s variance distribution and the mean

of its counterpart in real data. A smaller distance indicates a greater

similarity in synthetic and real data.

First-order proximity. This measure investigates whether synthetic

data retains the local structure of real data. To do so, we build an

undirected code graph FOPð�Þ from a population (with a format of

adjacency matrix), where the weight of an edge between codes cor-

Figure 1. Architecture of (a) current and (b, c) new generative adversarial network (GAN) models. BGAN: boundary-seeking generative adversarial network;

EMRs: electronic medical records; JS: Jensen-Shannon; WGAN: Wasserstein generative adversarial network.
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responds to their co-occurrence frequency in the population. First-

order proximity (FOP), denoted by edge weights, is widely adopted

to characterize adjacent structures of networks.60 We measure the

difference in FOP between the synthetic data s and real data r. For-

mally, this is calculated as

X
h

FOP sð Þ � FOP rð Þj j
FOPðsÞ þ FOPðrÞ

� �

Here, the denominator serves as a normalization term and function

hð�Þ computes an element-wise transformation. The CSD dataset

and the synthetic dataset of the same size are used to make the as-

sessment. As a baseline, we measure the distance between an equal-

sized random partition of the CSD dataset.

Privacy measures

Membership inference. An attacker committing a membership at-

tack could be motivated in numerous ways. Here, provide several as

an illustration of the potential problems. First, the attacker may exe-

cute the attack to gain new knowledge about a known person. It is

often the case that a training dataset is composed of a cohort based

on some rigorously defined criteria (eg, all patients have HIV or

share a certain sexual orientation). In this case, if this knowledge is

not known to the attacker a priori, then proving a targeted individu-

al’s membership would lead to a clear disclosure about the individ-

ual. Even if the attacker had some prior belief about the status of the

targeted individual, proving their membership would provide abso-

lute certainty, which would be a boost in their knowledge. Second,

the attacker might not be interested in targeting the individuals in

the dataset, but rather, discrediting the organization that shared the

simulated data. Consider, it is likely that healthcare organizations

will claim that such simulated data is de-identified. At the same

time, they may promise the individuals to whom the real data corre-

sponds that their inclusion in such a dataset will not be made evi-

dent. However, if the attacker can prove the presence of 1 or more

targeted individuals, then they may claim that the organization is

failing to adhere to its promises and might be in violation of federal

regulation (particularly if they did not obtain consent from the

patients before creating the synthesizer).

We assume that an attacker is in possession of the complete set

of diagnosis of a set of real patients. The attacker will attempt to in-

fer which patients are in the training dataset. We calculate the Ham-

ming distance between each known and synthetic record. Given a

distance threshold, the attacker claims that all records less distant to

any real one than the threshold are the targeted real patient. We as-

sess the precision and recall of this claim.

Attribute inference. This attack is accomplished by inferring an un-

known attribute value of a set of compromised patients via the gen-

erated data. Attribute inference may infringe upon a patient’s

privacy when an attacker gains knowledge that is only accessible in

the training dataset. We assume that the attacker possesses a subset

of attributes of some real records and attempts to infer the value of

the missing attribute. This is accomplished by applying a k-nearest

neighbors algorithm, in which for each real record, the k nearest

neighbors in synthetic data help decide the feature value of interest.

We measure the F1 score of attribute inference as a function of k.

Reproduction rate. The portion of reproduced records among syn-

thetic records helps evaluate the risk of identity disclosure, as well as

the ability of a generative model to create new instances rather than

memorizing the training data.

Training Strategy
For the purposes of generating EMR data with a specific concept, it

is straightforward to train a GAN model on real records with the

same concept. We refer to such a filtering strategy as simple training.

However, simple training may cause a loss of certain statistical

properties when the size of available real data is small.

We introduce a conditional training strategy, in which we use a

conditional version of GANs over the EMR data with various con-

cepts to generate synthetic records of a single concept. For example,

when the target concept is “Male, age 18–44,” and the CSD dataset

is the real dataset, then conditional training will use the real records

of all 8 concepts (according to Table 1) as the training data.

Conditional training needs to explicitly figure out the concept la-

bel of each record, and thus we build the conditional version of

EMR-WGAN, EMR-CWGAN, whose architecture is shown in

Figure 1c. We incorporate the concept labels of records as part of

the generator and the discriminator. Specifically, we apply condi-

tional batch normalization and conditional layer normalization61 to

the generator and discriminator, respectively. In particular, each la-

bel is denoted by a set of embeddings, each of which corresponds to

a normalization layer in the generator and discriminator. After

training EMR-CWGAN with different populations and their labels,

one can apply the set of embeddings associated with the label of the

desired population along with random noise to obtain the synthetic

records.

To investigate the performance of these 2 training strategies, we

train EMR-WGAN and EMR-CWGAN by varying the size of the

available training set and then compute the utility measures as dis-

cussed earlier.

RESULTS

Experimental setup
To compare the GANs, we learn the hyperparameters of the

medGAN, medWGAN, and medBGAN and then set EMR-WGAN

and EMR-CWGAN accordingly. All generators and discriminators

use a network structure of (128, 128, 128, 854) and (854, 256, 128,

1), respectively. All generative models were trained with 500 epochs.

The autoencoder module of medGAN used a network structure of

(854, 128, 854) and was trained with 200 epochs. We applied the

Adam optimizer with a learning rate of 10�4 and a weight

decay 10�4.

Evaluating EMR-WGAN
Dimension-wise statistics

The results of DWS are shown in Figure 2. The original system is

shown in Figure 2a. In all other subfigures, the x-axis corresponds

to the original system, while the y-axis corresponds to the synthetic

system. There are several notable findings. First, as expected, the

results of DWS in the real vs real setting (Figure 2a) are the most sta-

ble. Second, as shown in Figure 2b, medGAN poorly represents the

probabilities of codes with frequency smaller than 0.01. Third, as

shown in Figures 2c and 2d, medBGAN outperforms

medWGAN. This is evident as a large portion of the codes, with

probabilities smaller than 0.01, in synthetic data generated by

medWGAN demonstrate a more unstable pattern. Fourth, there is

an obvious bias in EMR-WGAN in comparison with medBGAN, as
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shown in Figure 2e. However, this is a superficial result and, as will

be shown in the following set of experiments, EMR-WGAN

achieves superiority in utility with respect to more structural aspects

of the data in the latent space.

Dimension-wise prediction

The results for DWP are shown in Figure 3. There are several find-

ings worth highlighting. In Figures 3a and 3b, it can be seen that the

F1 scores for billing codes in the real vs real setting are close to the

diagonal without obvious bias. Additionally, the distribution of dot-

to-diagonal distances is roughly symmetric, which indicates the sta-

bility of the interdimensional relationship in the original system. As

depicted in Figures 3c and 3d, the distribution of dot-to-diagonal

distances are heavily biased toward real data, which suggests that

medGAN fails to capture the interdimensional relationship of real

data. Third, Figures 3f and 3h show that medWGAN and medB-

GAN achieve similar performance, but are still biased in a manner

similar to medGAN. Fourth, EMR-WGAN outperforms all alterna-

tives demonstrate similar patterns as the real vs real setting, as pre-

sented in Figures 3i and 3j. As such, it appears that EMR-WGAN is

more apt at simulating the interdimensional relationships in real

data.

Latent space representation

Figure 4 shows the latent space representation (LSR) results in all 3

latent modes. The generative models are sorted according to the

mean of the variance distributions. EMR-WGAN achieves the small-

est distance to real data. By contrast, there are relatively large gaps

between the medBGAN and medGAN distributions and real data.

To assess the reproducibility of this finding, we generated data 10

times for each generative model and confirmed that EMR-WGAN

had a smaller mean than each of the alternative methods at a .01 sig-

nificance level (via t test). This result suggests that EMR-WGAN

can better capture the latent structural properties of the data. It is

notable that such a result contradicts the one of the DWS results

(medBGAN is better than EMR-WGAN).

First-order proximity

Figure 5 shows the FOP graph distances between synthetic and real

data. EMR-WGAN clearly achieves the smallest distance and out-

performs all other approaches. medWGAN and medBGAN are less

likely to capture the patterns of local structures in real data. Similar

to LSR, the result of FOP graph distance conflicts with the DWS re-

sult as well. The new measures illustrate that the standard utility

measure—DWS—appears to be less capable of sufficiently charac-

terizing the utility of a GAN.

Figure 2. Dimension-wise statistics. Bernoulli success probabilities for 854 International Classification of Diseases-Ninth Revision codes. BGAN: boundary-seek-

ing generative adversarial network; EMR: electronic medical record; GAN: generative adversarial network; WGAN: Wasserstein generative adversarial network.

Figure 3. Dimension-wise prediction. (a) F1 scores of logistic regression classifiers in real vs real setting. (c, e, g, i) Results of real vs synthetic setting of 4 genera-

tive adversarial networks (GANs). (b, d, f, h, j) Distributions of perpendicular distances from dots to the diagonal line for panels a, c, e, g, and i, respectively.

BGAN: boundary-seeking generative adversarial network; EMR: electronic medical record; WGAN: Wasserstein generative adversarial network.
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Privacy risk measurement

We evaluated the 8 populations in the CSD dataset (formed by age

group and sex defined in Table 1). The results of membership infer-

ence, attribute inference and reproduction rate for the 8 CSD subpo-

pulations are shown in Supplementary Appendix D. The main

finding is that EMR-WGAN achieves similar privacy risk level with

the state-of-the-art approaches, which are limited.

According to the evaluation results, the new learning model,

EMR-WGAN, outperforms medWGAN and medBGAN by

generating synthetic EMR records with higher data utility but

assumes no greater privacy risks. The new utility measures provide

more evidence than DWS on the degree that a GAN captures the

structural properties of real data. Thus, applying EMR-WGAN, as

well as the utility measures including DWP, LSR and FOP, can im-

prove the EMR generation tasks.

Evaluating the training strategy
We compare the simple training (based on EMR-WGAN) and con-

ditional training strategy (based on EMR-CWGAN) by assessing

utility (including DWP, LSR, and FOP). We varied the training set

to determine how it influenced the utility. The results are in Figure 6,

where we present the average and standard deviation of each utility

measure across each subpopulation.

In Figure 6a, we report the difference in the mean of the dot-to-

diagonal distribution between the simulated and real data in DWP.

For LSR, as shown in Figure 6b, we report the difference in the

mean of variance distribution between the simulated and real data.

In Figure 6c, we show the FOP distance between simulated and real

data.

As can be seen, when the training dataset is small (toward the

left of the figures), conditional training outperforms traditional

training. Specifically, when the size of available data for training is

<35% of the original, conditional training can achieve higher data

utility with respect to DWP and FOP. With respect to LSR, condi-

tional training leads to a better utility than simple training.

We believe that this is because the complex associations be-

tween diseases may cross the boundary of populations with dif-

ferent concept labels. In other words, when the available

training dataset size is small, real EMR records with their con-

cept labels different from the simulation task can help strengthen

the signals characterizing the statistical properties between code

features.

Figure 4. Latent space representation. Each subfigure illustrates the distribution of the variances in one latent dimension (with mean <0.5). The first row corre-

sponds to real data. Each subsequent row corresponds to synthetic data generated by a particular type of generative adversarial network (GAN). BGAN: bound-

ary-seeking generative adversarial network; EMR: electronic medical record; WGAN: Wasserstein generative adversarial network.

Figure 5. First-order proximity. The normalized graph distances between the

billing code networks learned from real and synthetic data with respect to

first-order proximity (FOP). We compute the graph distances in 4 settings:

real vs real, medGAN vs real, medWGAN vs real, medBGAN vs real and

EMR-WGAN vs real. We sort the generative models according to the normal-

ized distance values. BGAN: boundary-seeking generative adversarial net-

work; EMR: electronic medical record; GAN: generative adversarial network;

WGAN: Wasserstein generative adversarial network.
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DISCUSSION

This study has several notable implications for the design and de-

ployment of GAN pipelines.

First, applying Wasserstein divergence as well as the affiliated

optimization techniques provides a medical GAN model with the

ability to solve the problem of generating categorical data. As a re-

sult, adding an autoencoder into a GAN using such a distance func-

tion only introduces noise and degrades performance.

Second, this work illustrates the importance of utility measures

that capture structural aspects of the data. Utility measures that char-

acterize basic distributions can lead to biased or incorrect conclusions.

Third, conditional training is more useful in generating EMR

data than simple training strategy, especially when real data for

training are small. Such finding makes a clear suggestion for the

EMR generation tasks in the application domain, in which the

volume of real data is often a bottleneck for learning.

Despite the merits of this work, there are several limitations that

should be acknowledged. First, we focused on only binary features

(eg, positive assertion or lack of a diagnosis). Further investigation is

needed into EMR simulation when continuous features are taken into

account. Second, we modeled the EMR in a static manner, yet the tra-

jectory of a disease evolves, often punctuated by various interventions.

For example, in the event lab test results should be generated, then

time should be considered and modeled accordingly. Finally, we note

that this analysis considered only the statistical validity of the syn-

thetic records. It is possible that the synthetic records conflict with

known phenomena that a clinical specialist might recognize in the

data. It is critical for the data from such synthesis methods to be adju-

dicated by clinically knowledgeable individuals to aid in their uptake

in practice, though it should be recognized that EMR data is inher-

ently noisy, such that generating records that are not in alignment

with clinical expectations would not necessarily imply that the pro-

posed methodology has failed to accomplish its goal of creating EMR

data.

CONCLUSION

Here, we improved the pipeline of EMR data simulation through

GANs through 3 aspects: (1) the learning model, (2) the training

strategy, and (3) the utility measures. In doing so, we engineered a

new generative model, defined a conditional training strategy, and

evaluated new utility measures that account for the latent basis of

medical data. Our experimental results with over 1 million EMRs il-

lustrate that the updated pipeline outperforms state-of-the-art

GANs without sacrificing the privacy provided by such models.
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