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Purpose. To classify radiation necrosis versus recurrence in glioma patients using a radiomics model based on combinational
features and multimodality MRI images. Methods. Fifty-one glioma patients who underwent radiation treatments after surgery
were enrolled in this study. Sixteen patients revealed radiation necrosis while 35 patients showed tumor recurrence during the
follow-up period. After treatment, all patients underwent T1-weighted, T1-weighted postcontrast, T2-weighted, and fluid-at-
tenuated inversion recovery scans. A total of 41,284 handcrafted and 24,576 deep features were extracted for each patient. 0e
0.623 + bootstrapmethod and the area under the curve (denoted as 0.632 + bootstrap AUC)metric were used to select the features.
0e stepwise forward method was applied to construct 10 logistic regression models based on different combinations of image
features. Results. For handcrafted features on multimodality MRI, model 7 with seven features yielded the highest AUC of 0.9624,
sensitivity of 0.8497, and specificity of 0.9083 in the validation set.0ese values were higher than the accuracy of using handcrafted
features on single-modality MRI (paired t-test, p< 0.05, except sensitivity). For combined handcrafted and AlexNet features on
multimodality MRI, model 6 with six features achieved the highest AUC of 0.9982, sensitivity of 0.9941, and specificity of 0.9755 in
the validation set. 0ese values were higher than the accuracy of using handcrafted features on multimodality MRI (paired t-test,
p< 0.05). Conclusions. Handcrafted and deep features extracted from multimodality MRI images reflecting the heterogeneity of
gliomas can provide useful information for glioma necrosis/recurrence classification.

1. Introduction

Gliomas are themost common and aggressive brain tumors in
adults and have an approximate 5-year survival rate of 10% in
their highest grade (e.g., glioblastoma multiforme) [1]. 0e
conventional therapy for gliomas is surgery followed by
conventional radiotherapy/chemotherapy [1, 2]. However,
this combinatory therapy usually leads to radiation necrosis,
which is the most common side effect in gliomas within 2
years after treatment [3, 4]. Unfortunately, the period of
occurrence of radiation necrosis is also the peak period of
glioma recurrence [4]. Clinically, the methods used to dis-
tinguish between glioma recurrence and necrosis are follow-

up, biopsy, and surgical resection [5]. Given that the treat-
ment protocols of glioma necrosis and recurrence are quite
different [6, 7], finding a fast and noninvasive way to dif-
ferentiate glioma necrosis from recurrence is important.

Radiomics [8] is widely used as a noninvasive method
to classify lesions into recurrence or necrosis [9, 10]. In the
current radiomics models, good classification results are
achieved by using handcrafted features (e.g., intensity and
texture features). However, handcrafted features are
shallow and low-ordered; as such, they may not fully
characterize tumor heterogeneity and, in fact, could limit
the potential of the radiomics model applied [11]. To solve
this problem, a number of studies have proposed the use of
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deep features [12–15]. In these studies, improvements in
performance were observed by incorporating deep features
into the radiomics model of interest. 0us, exploiting
potential tumor heterogeneity by using deep features is
expected to provide a new and effective point of view from
which to improve glioma necrosis and recurrence
classification.

Frequent monitoring is required for cancer patients;
among the imaging methods available, MRI is consistently
the preferred technique [16]. Different MRI modalities,
such as magnetic resonance spectroscopy [17, 18], T1-
weighted postcontrast (T1C) imaging [19], and diffusion-
weighted imaging [20], are used to differentiate glioma
necrosis from recurrence. However, most previous studies
employ image information from single-modality MRI.
Moreover, during follow-up, the most commonly used
scans for glioma patients are T1-weighted (T1), T1C, T2-
weighted (T2), and fluid-attenuated inversion recovery
(FLAIR) images. Single-modality MRI provides partial
information, whereas multimodality MRI comprehensively
characterizes tissues [21, 22]. 0erefore, combining dif-
ferent MRI modalities can enhance the tumor discrimi-
natory power of the technology and reveal the degree of
tumor infiltration [21, 23, 24]. Figure 1 shows that the
heterogeneities of glioma recurrence and necrosis in dif-
ferent MRI modalities are different.

In this study, we proposed a novel radiomics model for
distinguishing necrosis versus glioma recurrence. 0e contri-
butions of our study were as follows. First, multimodality MRI
images were used in this research. Different MRI modalities
could reveal different parts of the tumor area [22].0erefore, the
accuracy of glioma identification could be improved by using
multimodality MRI images [25]. Second, deep features were
combined with handcrafted features in this study to classify
glioma necrosis versus recurrence. 0e powerful ability of deep
features has been verified in previous studies [13–15].Moreover,
to the best of our knowledge, previous studies have not
combined multimodality MRI images and deep features for
classifying glioma necrosis versus recurrence. 0erefore, the
proposed method might be a valuable tool for distinguishing
glioma necrosis from recurrence.

2. Materials and Methods

2.1. Study Population and MRI Images. 0is retrospective
study was supported by the ethics committee of hospital and
written informed consent was waived.

In this study, the diagnosis of glioma recurrence and
necrosis was confirmed by two neuroradiologists with work
experiences of over 9 and 20 years. Patients were included on
the basis of the following criteria: (1) pathologically con-
firmed that glioma recurrence or necrosis occurred after
radiotherapy; (2) all glioma patients’ recurrence or necrosis
after radiotherapy was confirmed by imaging and clinical
follow-up (follow-up time> 6 months); (3) all MRI images
(T1, T1C, T2, and FLAIR images) of glioma necrosis and
recurrence used must be confirmed at a follow-up of no less
than 6 months after radiotherapy; and (4) glioma patients
without pathologic diagnosis excluded the possibility of

pseudoprogression based on follow-up. If the follow-up time
was not enough, it was difficult for the neuroradiologist to
judge whether the patient has recurrence or pseudoprog-
ression. Such glioma patients were not accepted. 0e ex-
clusion criteria were as follows: (1) patients with recurrent
glioma without radiotherapy; (2) follow-up time of less than
6 months for glioma patients; and (3) glioma patients
without four modalities of MRI images. A total of 51 patients
(16 necrosis and 35 recurrences) were enrolled in this study.
0e clinical characteristics of all patients are summarized in
Table 1.

MRI images were obtained by using 3.0 T MRI machines
(Philips, Achieva).0eMRI protocols for the fourmodalities
are listed in Table 2. All MRI scans were obtained in the axial
plane. Figure 1 illustrates an example of the four modalities
of MRI images of glioma recurrence and necrosis.

2.2. Overview of the Proposed Method. 0e overall frame-
work of the proposed method is shown in Figure 2. 0e
method consists of three fundamental steps: (1) an image
preprocessing step that obtains tumor regions, (2)
a feature extraction step that extracts handcrafted and
deep features, and (3) an analysis step that combines
univariate and multivariate analyses. 0is combination
allows the selection of features and construction of
a prediction model for glioma necrosis and recurrence
classification.

2.2.1. Image Preprocessing. We used the linear registration
function in FSL5.0.9 (http://fsl.fmrib.ox.ac.uk) to register T1,
T2, and FLAIR images to T1C images and then applied ITK-
SNAP software (http://www.itk-snap.org) to manually
segment the tumor region for each patient. All manual
segmentations of the tumor region were drawn slice-by-slice
by a neuroradiologist with over 9 years of experience in
neuroradiology. To avoid mistakes, another senior neuro-
radiologist with 20 years of experience in brain tumor di-
agnosis confirmed the final tumor region. All segmentations
were drawn on T1C images, covered the entire tumor (avoid
cystic changes, edema, and blood vessels), and used to ex-
tract handcrafted and deep features.

2.2.2. Feature Extraction. 0e methodology used to extract
handcrafted features from the tumor region and texture
extraction parameters is described in the Supplementary
Information. A total of 4 nontexture and 41,280 texture
parameter features (10,320 features from each image of each
MRI modality) were extracted for each patient.

We selected AlexNet [26] and Inception v3 [27], which
were pretrained on approximately 1.2 million images from
the ImageNet Dataset. Features were obtained by forward
propagating an MRI slice through the network and
extracting the deep features. 0e architectures of both
networks are illustrated in the Supplementary Information.
In our glioma dataset, the number of glioma lesion slices
and the size of the glioma lesion area in each slice were
different for different patients. If we used all slices of
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Figure 1: MRI diagnostic images of two patients with glioma. (a–d) Recurrent image of a 52-year-old patient with astrocytoma 1 year after
radiotherapy. (e–h) Necrotic image of a 54-year-old patient with oligodendroglioma 6 months after radiotherapy. (a), (b), (c), and (d) and
(e), (f ), (g), and (h), respectively, show T1C, T1, T2, and FLAIR images. 0e inside of the red line shows the edge of the lesion.

Table 1: Clinical characteristics of glioma patients.

Characteristic Type Value

Sex Male 24 (47%)
Female 29 (53%)

Age Mean 47.6 (10–74)

Histology

Glioblastoma 12 (23.5%)
Astrocytoma 14 (27.5%)
Ependymoma 3 (5.9%)
Mixed glioma 22 (43.1%)

Grade High (III-IV) 32 (62.7%)
Low (I-II) 19 (37.3)

Recurrence or necrosis Recurrence 35 (68.6%)
Necrosis 16 (31.4%)

Time interval Mean 1.8 years

Tumor location

Frontal lobe 21 (41.2%)
Temporal lobe 22 (43.1%)
Cerebellum 2 (3.9%)

Occipital lobe 3 (5.9%)
Parietal lobe 3 (5.9%)

Time interval refers to the time point from first radiotherapy to diagnosis of necrosis or recurrence. 0e grade corresponds to the pathological outcome of
patients’ first surgery.
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a glioma lesion for each patient, the feature dimension
would be varied across different patients. 0erefore, a 3D
bounding box was used to extract the tumor region and
then to extract the axial slice with the largest tumor area
from this box. We also extracted the front and back slices of
the extracted slice. Finally, the three axial slices were
combined as an RGB volume. AlexNet and Inception v3
network were a continuous convolution and pooling op-
eration on the input images. Compared with the shallower
layer of the two networks, more heterogeneous information
of tumors can be extracted in the deeper layer. Moreover,
the penultimate layer of the deep network had been used to
extract deep features in some recent studies [15, 28, 29], and
good performance could be achieved, which indicated the
effectiveness of the deep features extracted from the deeper
layers. 0erefore, for AlexNet, the RGB volume was con-
verted into a size of 227 × 227 × 3 as the input, and the
penultimate layer (FC7) was used as the output. A total of
16,384 AlexNet features (4,096 features from each image of
each MRI modality) were found. For Inception v3, the RGB
volume was adjusted to a size of 299 × 299 × 3 as the final
input, and the average pooling layer was used as the output.
0erefore, a total of 8,192 Inception v3 features (2048
features from each image of each MRI modality) were
drawn.

2.2.3. Univariate and Multivariable Analyses. Univariate
associations between feature sets (4 nontexture features,
41,280 texture features, 16,384 AlexNet features, and 8,192
Inception v3 features) and glioma necrosis or recurrence
were assessed using Spearman’s rank correlation (rs). Given
the existence of multiple comparisons, Bonferroni correc-
tion was also applied. 0e significance level was set to
p � α/K, where K is the number of comparisons and α is the
significance level set to 0.05.

In multivariate analysis, our goal is to find a linear
combination of interesting features so that whether the
output is necrosis or recurrence for the new input data could
be properly judged. 0erefore, the prediction model was
constructed by using a logistic regression model:

y xi( 􏼁 � 􏽘

p

j�1
ajxij + a0, for i � 1, 2, . . . N, (1)

where xij is the j th input variable (image features) of i th
patient xi and a � aj ∈ R : j � 1, 2, . . . , p􏽮 􏽯 is the regression
coefficient of the model for a total of N patients.

We employed the 0.623 + bootstrap method and the
area under the curve (denoted as 0.632 + bootstrap AUC)
metric to estimate which model learned from our dataset

could best classify glioma recurrence and necrosis on a new
sample. Before presenting the estimation method, we
provide a brief symbol introduction. Let our image dataset
be denoted as x � xi, i � 1, 2, . . . , N􏼈 􏼉. We construct
a bootstrap sample x∗ � x∗i : i � 1, 2, . . . , N􏼈 􏼉 with N pa-
tients randomly drawn with replacement from x. An
original sample that does not appear in the bootstrap
sample was defined as x∗(0). 0e generation of a large
number B (B � 1000) of randomly drawn bootstrap samples
x∗b (b � 1, 2, . . ., B) is used to estimate a statistical quantity
of interest on the unknown true population distribution.
Note that the probability of selecting a positive (necrosis
group class) is made equal to the probability of selecting
a negative (recurrence group class) each time by drawing
x∗b from x; this approach is called “imbalance-adjusted
bootstrap resampling.”

Prediction models were constructed for three dif-
ferent types of initial feature sets: (1) four sets of single-
modality handcrafted features (T1, T1C, T2, and FLAIR),
including 10,320 texture and 4 nontexture features for
each modality; (2) multimodality handcrafted features,
including 41,280 texture and 4 nontexture features; and
(3) two sets of multimodality deep features, including
16,384 AlexNet features and 8,192 Inception v3 features.
However, the number of feature sets being too large,
many redundant and irrelevant features would cause
overfitting. 0erefore, feature reduction was applied to
reduce feature dimensionality. We then used the
0.632 + bootstrap method AUC metric to select features
to construct different orders of regression models. Fi-
nally, we selected the optimal model from the constructed
models for classification. We provide details of each step
in the following sections.

(1) Feature Reduction. 0e feature set reduction was per-
formed by a stepwise forward feature selection scheme in
order to create reduced feature sets containing 25 different
features from larger initial sets, a procedure carried out using
the gain equation:

Gainj � c · 􏽢rs xj, y􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + δa 􏽘

d

c�1

2(d − c + 1)

d(d + 1)
􏼠 􏼡⎡⎣

· 1 − MIC xc, xj􏼐􏼐 􏼑􏼕 + δb ·
1
D

􏽘

D

k�1
1 − MIC xk, xj􏼐􏼐 􏼑⎡⎣ ⎤⎦,

(2)

where 􏽢rs(xj, y) � (1/B)􏽐
B
b�1rs(x∗bj y, ) and

(1 − MIC(xc, xj) � (1/B)􏽐
B
b�1(1 − MIC(x∗bc , x∗bj )).

In equation (2), rs(xj, y) is Spearman’s rank correla-
tion coefficient between each feature j and the output

Table 2: MRI protocols for four MRI modalities.

Image Slice thickness (mm) TR (ms) TE (ms) FA Matrix Acquisition time (s)
T2 6 3000 80 90° 376× 269 72
T1 6 2000 20 90° 284×184 102
T1C 6 250 4.6 80° 332× 246 79.5
FLAIR 6 11000 125 90° 288×149 88
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Figure 2: Overall framework of the proposed method.
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vector y � yi ∈ 0 : recurrence, and 1 : necrosis{ } : i � 1,􏼈

2, . . . , N}, MIC(xc, xj) is the maximal information co-
efficient between features c and j [30], d is the selected
feature for the reduced feature set, and D is the feature that
has not been removed from the initial feature set. Pa-
rameters c, δa, and δb are set to 0.5, 0.5, and 0, respectively.
During each iteration, a new feature with the largest gain
value is selected for the reduced feature set, after which
a new gain can be calculated based on the features reserved
from the initial feature set using imbalance-adjusted
bootstrap resampling (B � 1,000). 0e final selected 25
features are arranged in descending order according to
their gain value because the gain equation uses rs varying
over the whole feature set.

(2) Feature Selection. After feature reduction, we obtained 25
features for each of the three initial feature sets. We then
combined the deep features obtained from AlexNet and
Inception v3 features with the handcrafted features from
multimodality MRI images to obtain 50 fusion features
(denoted as fusion AlexNet and fusion Inception v3 fea-
tures). Using the reduced feature sets, stepwise forward
feature selection was performed by maximizing the
0.632 + bootstrap AUC. 0e order of the regression model
was set from 1 to 10, where the order value is the number of
features to be selected. For a given model order, 25 in-
dependent experiments were conducted for each of the three
initial feature sets and 50 independent experiments were
performed for each of the two fusion feature sets. In each
independent experiment, different features from the reduced
set were assigned as a different “starter.” For each given
starter, 1,000 logistic regression models were first created for
the remaining features by using imbalance-adjusted boot-
strap resampling. 0en, the single feature maximizing the
0.632 + bootstrap AUC, defined in equation (3), was se-
lected. 0is process was repeated up to order 10, after which
the combination of features yielding the highest
0.632 + bootstrap AUC for each model was identified. To
clarify, we used 1-order regression model as an example. For
the 25 selected features, each of them could be utilized to
construct a 1-order regression model, and thus, there were
25 1-order regression models. For a given 1-order regression
model, we first resampled the sample 1000 times to get 1000
pairs of training sets and validation sets. 0en, 1000 ex-
periments were carried out and the average of AUC of 1000
experiments was obtained for the model. 0erefore, for a 1-
order regression model, we got 25 averaged AUC values. For
the 2–10 order features, the same process was performed as
above. Finally, we selected the order corresponding to the
maximum averaged AUC value as the final feature com-
bination for the classification of glioma necrosis versus
recurrence.

[AUC]0.632+ �
1
B

􏽘

B

b�1
(1 − α(b)) · AUC(x, x) + α(b)􏼔

·AUC′ x
∗b

, x
∗b

(0)􏼐 􏼑􏽩,

(3)

where

AUC′ x
∗b

, x
∗b

(0)􏼐 􏼑 � max 0.5,AUC x
∗b

, x
∗b

(0)􏼐 􏼑􏽮 􏽯,

α(b) �
0.632

1 − 0.368 · R(b)
,

R(b) �

1, if AUC x∗b, x∗b(0)( 􏼁< 0.5,

AUC(x, x) − AUC x∗b, x∗b(0)( 􏼁

AUC(x, x) − 0.5
,

if 2 >
AUC(x, x)

AUC x∗b, x∗b(0)( 􏼁
> 1,

0, otherwise 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

(3) Classification Model Construction. After feature selection,
the optimal combination of features was obtained for models of
different orders. Imbalance-adjusted bootstrap resampling was
performed for all models once more, and the 0.632+bootstrap
AUCof thesemodels was calculated to select the optimalmodel.

To construct the final prediction model, the coefficients
of the optimal combination of features were calculated as
follows:

􏽢aj �
1
B

􏽘

B

b�1
aj x
∗b

, y􏼐 􏼑, for j � 0, 1, . . . , p, (5)

where aj(x∗b, y) is the coefficient of feature j and can be
calculated by solving the logistic regression model in
equation (1), p is themodel order, and j� 0 refers to the offset
of model y(xi).

Using the calculated 􏽢aj, the output of the optimal model
y(xi) could be obtained by using equation (1), and the final
prediction score could be defined as

p yi � 1 xi

􏼌􏼌􏼌􏼌􏼐 􏼑 �
exp y xi( 􏼁􏼂 􏼃

1 + exp y xi( 􏼁􏼂 􏼃
, for i � 1, 2, . . . , N.

(6)

We employed equation (6) to convert the response of the
model into a probabilistic form of output.

2.3. Implementation. In this study, all experiments were
implemented on a standard personal computer with a single-
thread Intel (R) Xeon (R) E5-2667 v4 3.2GHz processor.0e
MATLAB 2017b packages used to analyze the radiomics data
were available at https://cn.mathworks.com/matlabcentral/
fileexchange/51948-radiomics. AlexNet and Inception v3
were pretrained and included in MATLAB 2017b.

Since our dataset was relatively small, the
0.632 + bootstrap resampling method has been used. 0e
principle of this method was to resample all data. For
a sample, the selected probability was assumed to be n, and
the not being selected probability was 1− n. For the whole
data, if we resampled n times, the not being selected
probability of a sample was (1 − (1/n))n. When n was large
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enough, limn⟶∞(1 − (1/n))n ≈ 1/e � 0.368 could be ob-
tained, and thus, the selected probability of a sample was
1− 0.368� 0.632. In our experiments, we resampled the
original dataset 1000 times and obtained 1000 training sets,
so some samples of the original dataset might have appeared
multiple times in a training set, and those did not appear
eventually formed a validation set. 0erefore, after resam-
pling, 1000 pairs of training sets and validation sets could be
generated. 0e number of samples in a training set was
51 × 0.632 ≈ 32, and the number of samples in a validation
set was 51 × 0.368 ≈ 19. Classification performance was first
evaluated in the training set and then confirmed in the
validation set.

3. Univariate and Multivariable Results

0e rs values between the features and glioma recurrence
versus necrosis, along with the corresponding p values, are
listed in Table 3. In the table, only nontexture features and
a portion of the texture and deep features are listed. Other
detailed rs results of handcrafted features are provided in the
Supplementary Information. In Table 3, for handcrafted
features, such as gray-level run-length matrix (GLRLM)-
HGRE and gray-level size zone matrix (GLSZM)-(HGZE,
SZLGE, and SZHGE), extracted from the T1C, T2, and
FLAIR images, have a slightly higher correlation with glioma
recurrence versus necrosis. For deep features, a certain
Spearman’s rank correlation with glioma necrosis versus
recurrence is observed.

Figure 3 shows the prediction performance of the
proposed method for the estimation of multivariable models
with optimal feature combinations, which were obtained for
each model order of the three original feature sets (including
T1, T1C, T2, FLAIR, multimodality, AlexNet, and Inception
v3 feature sets) and the two fusion feature sets (including
fusion AlexNet and fusion Inception v3 feature sets). In
Figure 3, the multimodality handcrafted features yielded the
highest AUC of 0.9624, sensitivity of 0.8497, and specificity
of 0.9083 in model 7 of validation set compared to the single-
modality handcrafted features (paired t-test, p< 0.05, except
sensitivity). Model 6 with six features (four handcrafted and
two AlexNet features) yielded the highest AUC of 0.9982 in
the validation set. Details of the classification accuracy of the
optimal model on the training and validation sets are shown
in Table 4. 0e selected features and response map of the
optimal model for each feature set are given in the Sup-
plemental Information.

4. Discussion

In this study, we proposed a novel radiomics model that is
expected to support the classification of glioma recurrence
versus necrosis. In the proposedmethod,MRI images of four
modalities (i.e., T1, T2, T1C, and FLAIR images) are used to
extract handcrafted and deep features. Fifty-one cases of
glioma necrosis and recurrence were applied to validate the
proposed method. More importantly, we have obtained the
highest classification accuracy on the validation set by using
fusion AlexNet features from the perspective of classification

accuracy and interpretability of features. 0erefore, the
proposed method might be a valuable tool for distinguishing
glioma necrosis from recurrence.

We employed radiomics to distinguish glioma necrosis
from recurrence. We first evaluated the performance of
handcrafted features extracted from multimodality and
single-modality MRI images. Table 4 shows that the clas-
sification accuracy of multimodality MRI is higher than that
of single-modality MRI (paired t-test p< 0.05, except for
AUC and sensitivity in T1 modality), which reveals the
usefulness of employing different MRI modalities for the

Table 3: rs between features (portion of the handcrafted and deep
features) and glioma recurrence versus necrosis (p � α/K, α� 0.05,
and K� 176, 4,096, and 2,048 for handcrafted, AlexNet, and In-
ception v3 features, respectively).

Type Feature Modality rs p value

Nontexture

Volume

T1

0.0373 0.7949T2
FLAIR
T1C

Size

T1

0.0172 0.9045T2
FLAIR
T1C

Solidity

T1

0.0115 0.9363T2
FLAIR
T1C

Eccentricity

T1

− 0.0172 0.9045T2
FLAIR
T1C

GLRLM HGRE

T1 0.3273 0.0190
T2 − 0.3331 0.0169

FLAIR − 0.3187 0.0226
T1C 0.4594 0.0007

GLSZM

HGZE

T1 0.3790 0.0061
T2 − 0.4508 0.0009

FLAIR − 0.4852 0.0003
T1C 0.4738 0.0004

SZLGE

T1 0.3876 0.0049
T2 − 0.3790 0.0061

FLAIR − 0.4652 0.0006
T1C − 0.3962 0.0040

SZHGE

T1 0.4163 0.0024
T2 − 0.3446 0.0133

FLAIR − 0.4738 0.0004
T1C 0.3618 0.0091

AlexNet

F7_618 T1C 0.5656 0.00001
F7_1394 T1 0.5168 0.0001
F7_2793 FLAIR 0.4823 0.0003
F7_3501 T2 0.4421 0.0012

Inception v3

avg_pool_663 T1 0.5770 0.0000093
avg_pool__469 T1C 0.5483 0.000031
avg_pool_827 FLAIR 0.3876 0.005
avg_pool_774 T2 0.4651 0.000584

For deep feature names, the first character indicates the layer of the CNN
and the second character represents the neuron. For example, F7_618 was
extracted from a T1C image and taken from the 618th neuron of fully
connected layer 7.
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current task. However, the extraction methods for hand-
crafted features are similar for different types of lesions
[31–36] and, thus, may limit the potential of radiomics [11].
In order to better reflect the heterogeneity of tumors and
improve the performance of radiomics, some scholars have
proposed the use of deep features. Antropova et al. [13]
used the VGG19model trained on natural images to extract
the deep features of breast cancer and combined it with
handcrafted features for the classification of breast cancer,
and the results were greatly improved compared with
handcrafted features; Decuyper et al. [12] used the trained
VGG11 network to extract deep features for different in-
puts (ROI or the whole image) and classify the grade of
glioma into two categories. In addition, Oikonomou et al.
[8] show that the combination of handcrafted and deep
features leads to the highest performance in lung cancer
survival prediction using Random Forest and Naive Bayes
classifiers. 0is successful application of deep features
[12–14] confirms the validity of using deep features in our
study.

We employed two CNNs (AlexNet and Inception v3) to
extract deep features from multimodality MRI images to
evaluate the effectiveness of these images for the classifi-
cation work. In this study, we only extracted features from
a given layer of a CNN rather than fine-tuning or training
from scratch. Doing so can save computational time [13]

and avoid the difficulty in designing CNN. Table 4 reveals
that the classification accuracy of using AlexNet and In-
ception v3 features is higher than that of employing
handcrafted features (paired t-test p< 0.0001). 0is finding
further illustrates the usefulness of deep features in the
classification of glioma necrosis versus recurrence. Table 4
also demonstrates that the classification accuracy of using
AlexNet features is higher than that of using Inception v3
features (paired t-test p< 0.0001). 0e high performance of
AlexNet may be due to its simple structure. Complex
networks are designed for a specific task; thus, the gen-
eralized performance of a complex network is poorer than
that of a simple network [13, 37]. Regardless of the per-
formance of deep features, they are less interpretable than
handcrafted features, which include tumor shape, volume,
texture, and other descriptive features. 0erefore, com-
bining deep and handcrafted features provides more in-
formation on the object of interest. Finally, we built a six-
order model based on the combination of AlexNet and
multimodality handcrafted features, ultimately obtaining
an AUC of 0.9982, a sensitivity of 0.9941, and a specificity
of 0.9755.

Table 5 shows that the classification results of the pro-
posed method outperform the results of recently published
papers. Here, only the results of different methods in the
literature are listed. Direct comparison of the performances
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Figure 3: Estimation of the classification performance of multivariable models constructed from T1C, T2, T1, FLAIR, multimodality,
AlexNet, Inception v3, fusion AlexNet, and fusion Inception v3 images using optimal features in the training set (a) and validation set (b) for
the model orders 1–10. 0e optimal degrees of freedom were separately found in terms of the maximum 0.632 + bootstrap AUC for each
model order. Error bars represent the standard error of the mean at the 95% confidence interval.
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of different methods is unreasonable because various
datasets and methods for extracting features and building
classifiers are used among studies. Nonetheless, the pro-
posed method shows the highest AUC, specificity, and ac-
curacy among the methods surveyed for the classification
problem, thereby implying its advantage for classifying
glioma recurrence and necrosis.

0e proposed method presents certain limitations. First,
the correlations among features were ignored. Despite finding
that these correlations could contribute to the model, high-
dimensional features were, in general, difficult to handle.
Second, there were tens of thousands of features. However,
these high-dimensional features were reduced by a stepwise
forward feature selection scheme that reduces each of the initial
feature sets to only 25 different features through the gain
equation (2).0ird, the dataset used in this study was relatively
small, which was also the problem identified in previous studies
[1, 38–42]. 0erefore, a large patient cohort was necessary to
create a more robust model. In this study, the bootstrap
resampling method was used due to the small size of the
dataset. We first resampled the whole sample 1000 times and
then got 1000 training and validation sets, respectively. For
each run of the 1000 experiments, we measured the AUC,
sensitivity, and specificity for the training and the validation
sets, respectively. Results show that all measurements of the
training and the validation sets for each experiment were above
0.8 after combining the deep and the handcrafted features. In
order to intuitively show the classification results of glioma
necrosis versus recurrence, we used six-order AlexNet deep
features and handcrafted features to conduct 1000 experiments
as an example. Figure 4 shows the AUC values of the classi-
fication of glioma necrosis versus recurrence. 0e x-axis
represented the number of the experiments, and the y-axis was
the AUC values of the training and validation sets, respectively,
measured by each experiment. It can be seen from Figure 4 that
the variation tendency of the AUCof the validation sets was the
same as that of the training sets, and the difference between the
AUC values of the training and validation sets was very small,
which indicated that overfitting on the proposed method was
alleviated in this study.

In conclusion, finding a noninvasive and accurate
method to classify glioma recurrence versus necrosis is
clinically significant. In this study, we explored a novel
method by combining deep and handcrafted features
extracted from multimodality MRI images to improve the

classification accuracy of glioma recurrence versus necrosis.
Classification models based on objective and quantitative
handcrafted and deep features can be useful for precision
medicine and improve the treatment strategies used for
glioma necrosis and recurrence.

Abbreviations

T1C: T1-weighted postcontrast
T1: T1-weighted
T2: T2-weighted
FLAIR: Fluid-attenuated inversion recovery
GLRLM: Gray-level run-length matrix
GLSZM: Gray-level size zone matrix
GLCM: Gray-level co-occurrence matrix
NGTDM: Neighbourhood gray-tone difference matrix

0.623 + bootstrap method and the area under the
curve metric: 0.632 + bootstrap AUC

Table 5: Comparison of the classifying results of glioma necrosis versus recurrence.

Year Type Recurrence/
necrosis AUC Se Sp Acc

Tsuyuguchi et al. [38] 2004 PET 6/5 — 1.00 0.6 0.82
Ozsunar et al. [39] 2010 PET/MRI (DSCE-CBV, and ASL) 28/7 — 0.94 — —
Rani et al. [1] 2018 SPECT/MRI (T1, T2, FLAIR, and DWI) 18/10 — 0.92 0.92 —
Takenaka et al. [40] 2014 PET 34/16 0.925 0.912 0.875 —
Jena et al. [41] 2016 PET/MRI (FLAIR, T2, DWI, MRS, and EPI) 19/7 — — — 0.97

Jena et al. [42] 2017 PET/MRI (T1, T2, FLAIR, DWI, PWI/EPI, and
MRS) 25/10 0.935 — — —

Fusion AlexNet MRI (T1, T2, T1C, and FLAIR) 35/16 0.9982 0.9941 0.9755 0.9786
Se: sensitivity; Sp: specificity; Acc: accuracy; DSCE-CBV: dynamic susceptibility contrast-enhanced cerebral blood volume; ASL: arterial spin-labeled; DWI:
diffusion-weighted imaging; EPI: perfusion EPI; PWI: perfusion-weighted imaging; MRS: magnetic resonance spectroscopy.
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Figure 4: 0e AUC values of 1000 pairs of the training and val-
idation sets in the classification of glioma necrosis versus re-
currence. 0e x-axis represented the number of the experiments
and the y-axis was the AUC values of the training and validation
sets, respectively, measured by each experiment.
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