Table 4.
Training set | Validation set | |||||||
---|---|---|---|---|---|---|---|---|
Type | AUC | Se | Sp | Acc | AUC | Se | Sp | Acc |
FLAIR | 0.9429 ± 0.0037 | 0.7936 ± 0.0129 | 0.8738 ± 0.0044 | 0.8598 ± 0.0036 | 0.9271 ± 0.0047 | 0.7826 ± 0.0157 | 0.8421 ± 0.0062 | 0.8304 ± 0.0052 |
T1C | 0.8980 ± 0.0053 | 0.6912 ± 0.0117 | 0.8455 ± 0.0053 | 0.8094 ± 0.0043 | 0.8771 ± 0.0065 | 0.7153 ± 0.0157 | 0.8032 ± 0.0072 | 0.7854 ± 0.006 |
T1 | 0.9783 ± 0.0017 | 0.8687 ± 0.0103 | 0.9284 ± 0.0034 | 0.9179 ± 0.0029 | 0.9696 ± 0.0024 | 0.8529 ± 0.0108 | 0.9077 ± 0.005 | 0.8960 ± 0.0043 |
T2 | 0.9182 ± 0.0038 | 0.8109 ± 0.0115 | 0.8290 ± 0.0044 | 0.8264 ± 0.0037 | 0.8994 ± 0.0049 | 0.8019 ± 0.0144 | 0.7905 ± 0.0061 | 0.7909 ± 0.0051 |
Multimodality | 0.9722 ± 0.0029 | 0.8849 ± 0.0109 | 0.9190 ± 0.0035 | 0.9172 ± 0.0033 | 0.9624 ± 0.0038 | 0.8497 ± 0.0133 | 0.9083 ± 0.0052 | .8960 ± 0.0047 |
AlexNet | 0.9995 ± 0.0002 | 0.9996 ± 0.0004 | 0.9870 ± 0.0015 | 0.9892 ± 0.0012 | 0.9993 ± 0.0003 | 0.9994 ± 0.0006 | 0.9801 ± 0.0022 | 0.9833 ± 0.0018 |
Inception v3 | 0.9941 ± 0.0012 | 0.9913 ± 0.0034 | 0.9615 ± 0.0039 | 0.9669 ± 0.0033 | 0.9914 ± 0.0017 | 0.9884 ± 0.0042 | 0.9436 ± 0.0054 | 0.9509 ± 0.0047 |
Fusion AlexNet | 0.9988 ± 0.0005 | 0.9957 ± 0.0021 | 0.9838 ± 0.002 | 0.9860 ± 0.0017 | 0.9982 ± 0.0007 | 0.9941 ± 0.0028 | 0.9755 ± 0.0029 | 0.9786 ± 0.0025 |
Fusion Inception v3 | 0.9992 ± 0.0004 | 0.9933 ± 0.0025 | 0.9863 ± 0.0019 | 0.9874 ± 0.0017 | 0.9988 ± 0.0006 | 0.9907 ± 0.0034 | 0.9793 ± 0.0028 | 0.9809 ± 0.0025 |
Single-modality handcrafted features compared to multimodality handcrafted features (p values) | ||||||||
T1 | — | — | — | — | 5.35 × 10−39 | 1.71 × 10−27 | 1.56 × 10−28 | 6.93 × 10−59 |
T2 | — | — | — | — | 3.57 × 10−16 | 0.1832 | 6.0 × 10−26 | 1.22 × 10−22 |
T1C | — | — | — | — | 3.10 × 10−23 | 0.02 | 9.71 × 10−17 | 1.68 × 10−22 |
FLAIR | — | — | — | — | 0.03 | 0.4863 | 0.02 | 0.0099 |
Deep features compared to multimodality handcrafted features (p values) | ||||||||
AlexNet | — | — | — | — | 3.88 × 10−138 | 6.40 × 10−117 | 8.37 × 10−208 | 7.99 × 10−301 |
Inception v3 | — | — | — | — | 3.60 × 10−99 | 1.72 × 10−103 | 3.97 × 10−98 | 1.32 × 10−162 |
Fusion AlexNet | — | — | — | — | 1.56 × 10−134 | 5.76 × 10−109 | 1.47 × 10−193 | 5.44 × 10−277 |
Fusion Inception v3 | — | — | — | — | 2.81 × 10−135 | 1.02 × 10−102 | 2.94 × 10−190 | 1.49 × 10−269 |
AlexNet features compared to Inception v3 and fusion AlexNet features, respectively (p values) | ||||||||
Inception v3 | — | — | — | — | 1.35 × 10−18 | 8.17 × 10−8 | 8.21 × 10−31 | 2.41 × 10−33 |
Fusion AlexNet | — | — | — | — | 0.01 | 1.11 × 10−4 | 0.08 | 0.02 |
Fusion Inception v3 features compared to Inception v3 and fusion AlexNet features (p values) | ||||||||
Inception v3 | — | — | — | — | 2.18 × 10−14 | 0.88 | 1.81 × 10−25 | 2.09 × 10−23 |
Fusion AlexNet | — | — | — | — | 0.8913 | 0.03 | 0.42 | 0.9663 |
Se: sensitivity; Sp: specificity; Acc: accuracy. “—” in the table indicates the item was not calculated to correspond to paired t-test value in the training set.