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Introduction
Lung cancer is the most commonly diagnosed malig-
nancy and the biggest cause of cancer mortality worldwide, 
accounting for 1.6 million deaths per year.1 Non-small cell 
lung cancer (NSCLC) makes up the majority of lung cancer 
cases. Treatment for NSCLC depends mostly on the stage of 
disease and patient fitness. Radiotherapy (RT) is used in all 
stages of lung cancer treatment and is required at least once 
in over half of patients for either cure or palliation.2

Historically, RT for lung cancer was planned in a simulator 
using parallel opposed fields and anatomical landmarks 
to define the target.3 The introduction of three-dimen-
sional (3D) conformal RT using CT planning in the 1990s 
allowed improved tumour coverage and reduction in dose 
to organs at risk (OARs). Even more conformal treatment 
has become possible with the advent of intensity modulated 
radiotherapy (IMRT) in which the RT beam fluence, weight 
and shape are varied for multiple beams during treatment.4

Imaging capabilities have progressed alongside RT. 
Four-dimensional CT (4DCT), in which the respiratory 
motion of the tumour is visualized, has facilitated smaller 
margins individualized to a patient’s breathing cycle. This 
motion adaptation reduces the risk of a geographical miss 
in lung cancer RT.5 Cone beam CT (CBCT) has replaced 
two-dimensional megavoltage portal imaging to provide a 
more accurate set-up.6 These advances in imaging and RT 
technology allow individualized RT plans. Although the 
treatment dose, fractionation and dose limits for OARs do 
not change between patients, the dose distribution can be 
tailored to each individual’s anatomy.7 Whilst approaches 
to systemic therapy have become increasingly personal-
ized according to tumour histology and molecular status,8 
curative RT is still prescribed mainly according to the TNM 
stage, performance status and comorbidities, taking no 
account of the tumour biology. This narrative review will 
demonstrate how the evolution of RT for NSCLC has been 
underpinned by improvements in RT technology. This 
has facilitated geometric individualization, increasingly 
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Abstract

Lung cancer is the most commonly diagnosed cancer and biggest cause of cancer mortality worldwide with non-small 
cell lung cancer (NSCLC) accounting for most cases. Radiotherapy (RT) plays a key role in its management and is 
used at least once in over half of patients in both curative and palliative treatments. This narrative review will demon-
strate how the evolution of RT for NSCLC has been underpinned by improvements in RT technology. These improve-
ments have facilitated geometric individualization, increasingly accurate treatment and now offer the ability to deliver 
truly individualized RT. In this review, we summarize and discuss recent developments in the field of advanced RT in 
early stage, locally advanced and metastatic NSCLC. We highlight limitations in current approaches and discuss future 
potential treatment strategies for patients with NSCLC.
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accurate treatment and now offers the ability to deliver truly 
individualized RT. In this review, we summarize and discuss 
recent developments in the field of advanced RT in early stage, 
locally advanced (LA) and metastatic NSCLC.

Geometric individualiZation
There are a number of challenges involved in the delivery of 
safe and accurate RT to the thorax.9 The lung has a low electron 
density. This can result in altered lateral dose, thus reducing the 
steepness of the dose fall-off and the conformality of the dose 
distribution. Physiological motion, tumour heterogeneity and the 
proximity of radiation sensitive healthy tissues, such as the lung, 
oesophagus and heart, increase the complexity of RT delivery. 
Historically, the lack of image guidance may have increased the 
likelihood of a geographical tumour miss, while simple beam 
arrangements and the uniform dose of large fields might have 
limited the potential of delivering a curative dose.3 Significant 
developments in advanced RT technologies have helped address 
these challenges.10–13 Figure  1 charts the development of RT 
technologies over time and the corresponding improvement in 
median survival in trials of patients with Stage 3 NSCLC.

The first of these developments to improve RT conformality was 
the introduction of the multileaf collimator (MLC), which shapes 
the RT field to the target. In addition to beam shaping, IMRT uses 
multiple MLC arrangements in order to provide fluence modula-
tion. This enables sculpting of high doses around the target and 
away from OARs.14 Volumetric modulated arc therapy (VMAT), 
also called rotational IMRT, allows further modulation. This is 
achieved by varying the dose rate and enabling dynamic gantry 
rotation during beam delivery. In combination with a flatten-
ing-filter-free technique, VMAT can reduce treatment delivery 
time compared to fixed-beam IMRT.15 A shorter delivery time is 
particularly useful when delivering a high dose per fraction as in 
stereotactic ablative radiotherapy (SABR).16

As a result of the additional level of modulation compared to 
3D conformal RT, IMRT can enhance the therapeutic ratio by 
optimizing dose to the tumour whilst sparing normal tissues. 
Consequently, IMRT will reduce toxicity and permit the radical 
treatment of patients with large tumours, who in the past would 
have been treated palliatively.4 Although there has not been 
a randomized trial comparing IMRT and 3D conformal RT 

Figure 1. The improving (median) survival of patients with Stage 3 NSCLC (based on trial data). This is presented with a timeline 
showing the introduction of technologies that have been attributed to improving the accuracy of RT (note this does not neces-
sarily correlate with implementation into the clinical workflow). Yellow numbers: percentage of patients within each trial staged 
with PET-CT, this information was NS by the PACIFIC investigators. *PACIFIC survival data: This is from the control arm only. The 
median figure has not yet been reached in the durvalumab arm. Note randomization occurred post chemoradiation. Therefore, 
survival is measured from this point onwards. 4DCT,four-dimensional CT; CBCT, cone beam CT; IMRT, intensity modulated radi-
otherapy;MR-linac, magnetic resonance linear accelerator; NS, not supplied; NSCLC, non-smallcell lung cancer; PET-CT, positron 
emissiontomography-CT; RT, radiotherapy; SABR, stereotactic ablative radiotherapy.
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for the treatment of lung cancer, some evidence for the use of 
IMRT is provided from a planned secondary analysis of data 
from the multi-institutional Phase III RTOG 0617 trial. This trial 
compared dose escalated chemoradiotherapy (CRT) with stan-
dard CRT. 47% of patients in this trial were treated with IMRT. 
Significantly more patients in the IMRT group had Stage 3B 
NSCLC and these patients had larger planning target volumes 
(PTVs) than those treated with 3D conformal RT.12 Despite 
this imbalance, which did not favour the IMRT group, there 
was no difference in survival between patients treated with 3D 
conformal RT, or IMRT. Furthermore, despite the larger PTVs, 
patients treated with IMRT had significantly less G3-5 pneu-
monitis and lower heart doses. This provides some evidence to 
support the use of IMRT and demonstrates how geometric indi-
vidualization with IMRT can be used to treat patients with larger 
lung tumours.

4DCT constitutes another major technological development; 
it has helped to individualize RT planning by incorporating 
patient-specific information on respiratory motion.17 The 
patient’s respiratory cycle is recorded using a respiratory moni-
toring system, multiple axial CT images are then acquired 
throughout respiration and sorted into 8–10 phases ("bins").5 
Each bin is then reconstructed as a 3DCT image representing the 
thoracic anatomy during a specific phase of the respiratory cycle. 
This process allows for accurate characterization of the displace-
ment of the target volume (e.g. tumour and lymph nodes) and 
OARs due to breathing. 4DCT has improved treatment individ-
ualization by facilitating smaller margins and reducing the risk 
of a geographical tumour miss.5 The European Organization for 
Research and Treatment of Cancer and the European Society 
for Radiotherapy and Oncology Advisory Committee on Radi-
ation Oncology Practice planning guidelines strongly recom-
mend the use of a contrast-enhanced 4DCT for planning RT for 
lung cancer. These guidelines are summarized in Supplementary 
Material.7,18

On-treatment imaging [or image-guided radiotherapy (IGRT)] 
is important for correcting variations in patient set-up or 
anatomy between RT fractions, which can lead to a geographical 
tumour miss. The first forms of on-treatment imaging, i.e. kilo 
or megavoltage radiographs (portal imaging) could be used to 
match to anatomical surrogates (e.g. bone) but were often not 
sufficient to visualize the target. These approaches have largely 
been replaced by cone beam CT (CBCT) which provides better 
soft-tissue visualization, hence a more accurate set-up.6 If set-up 
errors are observed on the pre-treatment CBCT, the patient posi-
tion is adjusted by shifting the couch before delivery. The impor-
tance of correcting set-up errors is underlined by recent evidence 
that uncorrected shifts, moving the high dose region towards the 
heart, were associated with worse survival.19 However, shifting 
the patient position is unable to account for changes in tumour 
shape and volume. As a result, the European Organization for 
Research and Treatment of Cancer guidelines recommend daily 
CBCT with soft tissue set-up to assess the presence of intratho-
racic anatomical changes (ITACs) which may negatively impact 
upon the dose distribution.7 If these occur a new treatment plan, 
adapted to account for the impact of the ITAC should be created. 

This is known as reactive adaptation.7 Kwint et al have demon-
strated that ITACs can occur in around 70% of patients under-
going curative radiotherapy.20 This was assessed predominantly 
in patients with Stage 3 disease (76%) and patients treated with 
SABR were excluded. They developed a decision support system 
to guide therapy radiographers in assessing the potential impact 
of ITACs upon the treatment and when to request clinician or 
physics support. Recent work has demonstrated that ITACs 
can occur in up to 22% of patients being treated with SABR.21 
Most are minor but can be associated with unplanned clinician 
or physics review and significantly impact upon set-up time. A 
decision support may help identify SABR patients who may need 
replanning in order to avoid a geographical miss of the tumour 
and reduce the impact upon the workflow of clinically insignif-
icant ITACs.

There is emerging interest in using on-treatment imaging to 
undertake proactive adaption in which potential ITACs are antic-
ipated and the treatment plan adapted to account for changes in 
target geometry on a regular (even daily) basis (Figure 2). Such a 
strategy of frequent plan adaptation incorporated into fraction-
ated RT could maximize tumour coverage, whilst minimizing 
the dose to OARs.22 There are however, concerns that reducing 
the target volumes in response to tumour regression may leave 
microscopic disease undertreated and increase the risk of local 
failure.23 This was assessed in the Phase 2 LARTIA trial where 
217 patients with Stage 3 NSCLC were treated with CRT and 
underwent weekly chest CT. A new treatment plan was created 
if there was clinically significant tumour shrinkage and the treat-
ment fields were reduced accordingly.24 In total, new plans were 
created in 23% of patients. While this trial showed encourag-
ingly low rates of toxicitiy (2% acute and 4% late ≥Grade 3 lung 
toxicity) and acceptable numbers of marginal failures (6%), there 
was no consistent definition of what constituted clinically signif-
icant tumour shrinkage and therefore no objective criterion for 
the decision to create a new plan. Consequently, this approach 
should not be implemented in the routine setting until further 
validation is performed, ideally in the context of randomized 
studies. The MR-linac gives better target visualization compared 
to CBCT and provides the ideal platform to facilitate the investi-
gation of daily online plan adaptation.25

Early stage NSCLC
Conformal RT, 4DCT and IGRT have led to greater confidence 
in the accuracy of RT delivery and supported the develop-
ment of SABR. This is a technique in which an ablative dose 
of RT is delivered with high precision in a small number of 
fractions. SABR is accepted worldwide as a standard of care 
in early stage NSCLC patients not suitable for surgery.7,26,27 In 
the UK, 54–60 Gy is usually delivered over 3–8 alternate day 
fractions.28

The CHISEL trial comparing SABR with radical fractionated 
RT in medically inoperable patients with Stage I NSCLC found 
that SABR is associated with better local tumour control at 2 
years—89% compared to 65% [hazard ratio (HR) 0.32, 95% CI 
0.13–0.77, p = 0.008].29 Moreover, SABR was found to improve 
the median overall survival (OS, 5 years vs 3 years—HR 0·53; 

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20190524/suppl_file/Appendix A.doc
www.birpublications.org/doi/suppl/10.1259/bjr.20190524/suppl_file/Appendix A.doc


4 of 15 birpublications.org/bjr Br J Radiol;92:20190524

BJR  Brown et al

95% CI 0·30–0·94, p = 0·027) which is consistent with the results 
of retrospective series of SABR.30

SABR for peripherally located tumours is typically associated 
with low toxicity. This is, in part, due to the small volumes treated 
(maximum tumour size ≤5 cm) but also the highly conformal 
dose distribution and steep dose gradients that minimize irradia-
tion of healthy tissues. However, in early series of SABR, patients 
with tumours within 2 cm of the proximal bronchial tree (PBT) 
treated with a biologically equivalent dose ≥210 Gy had a higher 
incidence of treatment related mortality.31 As a result, the recom-
mendation is that these central lung tumours should be treated 
with more fractionated regimens such as 60 Gy in 8 fractions, 
provided the OAR tolerances are met.32 The rate of non-cancer 
death in patients who receive these risk-adapted schedules for 
SABR to tumours from 1 to 2 cm of the PBT has been found, in 
a large retrospective analysis, to be equivalent to that of patients 
who receive SABR to more peripheral tumours. Patients in this 
study with tumours within 1 cm of the PBT had a higher rate of 
non-cancer death, although the number of patients in this group 
was small.33 A recent Phase I study showed that the maximum 
tolerated dose in centrally located tumours treated with a five 
fraction regime is 12 Gy per fraction.34 The organs closest to the 

PTV, and therefore most at risk, were the main bronchus and 
the large vessels. There is a need for prospective clinical trials of 
SABR for central tumours in order to assess efficacy and define 
OAR constraints; Table 1 details ongoing SABR trials in centrally 
located early stage NSCLC. Unfortunately the LungTech trial, 
a multicentre Phase II trial in early stage NSCLC patients with 
central tumours, has closed early due to slow patient accrual. This 
was in part due to by two safety-related halts in recruitment.35,36

Clinical trials of SABR for ultracentral tumours, in which the 
PTV overlaps with central structures such as PBT, oesophagus 
or heart, are also required. In a Dutch retrospective study of 
47 patients with ultracentral early stage NSCLC treated with 
SABR (60 Gy in 12 fractions), treatment-related deaths were 
reported in 21% of patients including fatal pulmonary haemor-
rhage in 15%.37 There is therefore an unmet need to define OAR 
constraints in such a clinical scenario.

While SABR has been shown as the best treatment for early stage 
lung cancer in people for whom surgery is not an option due 
to medical comorbidities, the role of SABR in those who are fit 
for surgery is more controversial. Retrospective analyses have 
shown that surgery and SABR have equivalent cancer specific 

Figure 2. Treatment adaptation. (1) RTP CT demonstrates locally advanced lung cancer, tumour (T) and lymph node (L). (2) RTP 
CT with PTV covering T and L. (3) On-treatment image shows baseline shift causing tumour to move outside of PTV and high risk 
of geographical miss. (4) Treatment adapted to produce new PTV covering new position of L and T. PTV, planning target volume; 
RTP, radiotherapy treatment planning.
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survival.38–40 Patients who have surgery have improved OS, 
however, this is partly because these patients are younger and 
have fewer comorbidities. Clinical trials of SABR vs surgery 
for peripheral tumours are shown in Table  2. Some of these 
have closed early due to poor recruitment (highlighted pink) as 
patients and physicians often have a preference for one treatment 
modality. The UK SABR-TOOTH trial attempted to remove 
this lack of equipoise by having the diagnosing respiratory team 
discuss and consent patients with borderline operable early stage 
NSCLC to the trial.41 Following randomization, the patient was 
then reviewed by either the surgeon or the clinical oncologist. 
Despite this study design, the trial also failed to recruit patients 
within the predefined recruitment timelines. It is hoped that 
other ongoing randomized trials will provide clarity on the ques-
tion of surgery or SABR for early stage lung cancer.

Locally advanced NSCLC
The current standard of care for treating fit patients with inoper-
able LA NSCLC is concurrent CRT.42 While improved imaging 
and RT technology have allowed the development of abla-
tive doses for early stage NSCLC, the RT dose fractionation in 
LA-NSCLC has changed very little for over 30 years.43 Neverthe-
less, as shown in Figure 1, survival for patients with LA-NSCLC 
has improved over this time. One reason for the improved 
survival of these patients is better staging prior to treatment with 
positron emission tomography CT (PET-CT) and endobronchial 
ultrasound transbronchial needle aspiration.18 PET-CT has been 
demonstrated to upstage 24% of LA-NSCLC cases to Stage 4.44

Radiobiological evidence suggests that in NSCLC the delivery of 
higher radiation doses results in improved tumour control prob-
ability.45 Therefore, in the late 1990s and early 2000s, multiple 
Phase I/II RT dose escalation trials were performed in patients 
with surgically inoperable lung cancer in an attempt to improve 
patient survival.46–51 These led to a randomized Phase III trial 
(RTOG 0617) of CRT comparing 60 Gy and 74 Gy RT with or 

without cetuximab in patients with Stage 3A/B disease. This trial 
found that the median survival for patients in the dose esca-
lated arm was worse than for the 60 Gy arm (20.3 months vs 
28.7 months).52 Nevertheless, as shown in Figure 1, patients in 
the standard dose arm of RTOG 0617 had better survival than 
those in previous trials. This may partly be due to stage migra-
tion as 91% of patients in RTOG 0617 had a staging PET-CT. 
The reasons behind the poor survival of patients in the high 
dose arm have been extensively discussed and are summarized 
in box 1.53,54

Although RTOG 0617 failed to demonstrate the benefit of dose 
escalation with conventional fractionation, a more individu-
alized strategy deserves to be investigated. For example, func-
tional imaging information can be used to increase the RT dose 
to particular areas. This is being used in the PET-boost trial, 
detailed in Table  3. Early data from the study report higher 
acute and late toxicities compared to standard CRT.55 Five cases 
(4.7%) of Grade 5 pulmonary haemorrhage have been observed 
in patients with central tumours encasing the vasculature; 
suggesting caution may be required in this scenario.

Another example of individualized dose-escalation is the 
delivery of RT based on the maximum dose that can be tolerated 
by the OARs (so called "isotoxic RT"). Studies have investigated 
this approach both in the sequential and the concurrent CRT 
setting.56,57 This led to a feasibility study in the UK (Isotoxic 
IMRT) showing a median tumour dose of 77.4 Gy (61.2–
79.2 Gy; two fractions per day) can be delivered in LA-NSCLC 
treated with sequential CRT and IMRT.58,59 Isotoxic IMRT has 
been incorporated into the ongoing UK randomized Phase 2 
ADSCAN trial comparing standard of care sequential CRT with 
three other dose escalated regimes in patients not suitable for 
concurrent CRT.60 The most efficacious RT regimen will then 
be compared to the standard of care in a Phase 3 trial. Other 
studies have looked at individualizing treatment by using 

Table 1. Trials of SABR in central lung tumours

Trial Study population Study design Primary outcome Status
SUNSET
NCT03306680a

Stage 1 NSCLC, ultra-central 
tumours –i.e. where PTV touches 
the central bronchial tree, great 
vessels or oesophagus

Phase I dose escalation 
study using a time-
to-event continual 
re-assessment method 
Starting dose: 60 Gy in 
eight fractions
Will escalate to 60 in 
five fractions (or de-
escalate to 60 in 15 
fractions if needed)

MTD i.e. dose associated 
with a < 30% rate of 
Grade 3–5 toxicity 
occurring within 2 years 
of treatment

Recruiting

LUNGTECH
NCT01795521

Stage I-II NSCLC, centrally located 
in or abutting the 2 cm zone around 
the proximal bronchial tree and 
mediastinum),≤7 cm

Single arm Phase II 
study
60 Gy in eight fractions

Freedom from local 
progression

Closed early due to poor 
accrual

HILUS trial Stage I-II NSCLC or progressive 
metastasis from another solid 
tumour, centrally located (≤1 cm 
from the proximal bronchial 
tree),≤5 cm

Single arm Phase II
56 Gy in eight fractions

Assessment of toxicity Closed

NSCLC, non-small cell lung cancer; PTV, planning target volume; MTD, maximally tolerated dose
aClinicalTrials.gov identifier
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ablative doses to boost residual or recurrent disease in patients 
with LA-NSCLC. However, this approach requires caution; data 
from four studies evaluating this technique show 5/80 (6.3%) 
patients experienced fatal toxicities such as haemorrhage.61–64 
This was most notable when boosting centrally located disease 
and is similar to the outcomes observed when using primary 
SABR to treat central tumours.65 This and other ongoing trials 

examining ways to individualize dose escalated RT in NSCLC 
are shown in Table 3.

In many of these studies of isotoxic RT, the dose escalation is 
constrained by normal tissue tolerances of surrounding organs 
such as the oesophagus, lungs, airways and heart. These tissue 
tolerances are based on preclinical and clinical studies and 

Table 2. Trials of SABR vs surgery for early stage NSCLC

Trial Study population Study design Primary outcome Status
ROSEL NCT00687986a Stage 1A NSCLC,>2 cm from 

PBT, fit for surgery
Phase III
Arm A: SABR (60 Gy in three or 
five fractions)
Arm B: Primary surgical 
resection

Local and regional 
control

Closed early due to 
poor accrual

STARS NCT00840749 Stage 1A/B NSCLC, fit for 
surgery

Phase III
Arm A: SABR (60 Gy in four 
fractions if central or three 
fractions if peripheral using 
Cyberknife)
Arm B: Surgery

OS Closed early due to 
poor accrual

ASOSOG-RTOG 
NCT01336894

Stage 1 NSCLC, fit for surgery PhaseIII
Arm A: SABR (3 fractions)
Arm B: Sub-lobar resection+/- 
intra-operative brachytherapy

OS Closed early due to 
poor accrual

SABR-TOOTH
ISRCTN13029788b

Stage I NSCLC, peripheral 
tumours, patients at higher 
risk from surgery

Phase II feasibility study
Arm A: SABR
Arm B: Surgery

Recruitment rate Closed early due to 
poor accrual

STABLE-MATES
NCT02468024

Stage 1 NSCLC (≤4 cm), high 
risk operable patients

Phase III, patients are randomized 
before they consent to trial
Arm A: SABR (54 Gy in three 
fractions)
Arm B: Sub lobar resection

OS Recruiting

POSTILV
NCT01753414

Stage 1 NSCLC (≤3 cm), fit for 
surgery

Randomized Phase II
Arm A: SABR (55 gy in five 
fractions)
Arm B: Complete surgical 
resection

Local-regional control Recruiting

VALOR
NCT02984761

Stage 1 NSCLC (≤5 cm), 
includes central tumours 
(≥1 cm from trachea, 
oesophagus, brachial plexus, 
first bifurcation of the PBT, or 
spinal cord) fit for surgery

Phase III
Arm A: SABR (54 Gy in three 
fractions, 56 Gy in four fractions 
or 57.5 Gy in five fractions. 
Central tumours will receive 
50 Gy in five fractions)
Arm B: Anatomic pulmonary 
resection

OS Recruiting

NSCLC, non-small cell lung cancer; OS, overall survival; PBT, proximal bronchial tree; SABR, stereotactic ablative radiotherapy.
aClinicalTrials.gov identifier
bISRCTN.com identifier

Box 1. Summary of reasons for the poor survival of patients in the 74 Gy high dose arm of RTOG 061752
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Table 3. the inTrials of individualiszed RT

Trial Study population Study design Primary outcome Status
Adaption based on functional imaging

RTOG 1106
NCT01507428a

PET-CT avid (SUV ≥4) 
inoperable stage 3 NSCLC

Randomized Phase II
Arm A: SOC CRT (60 Gy in 
30 fractions)
Arm B: Daily CRT over 30 
fractions. Individualized 
adaptive RT; 2.4–3.5 Gy 
daily to MLD 20 Gy 
(≤86 Gy), based on PET-CT 
between fractions 18/19
Both arms will receive 3 
cycles of consolidation 
chemotherapy (carboplatin/
paclitaxel)

1.	 Local regional 
progression free rate

2.	 Relative change in SUV 
peak from the baseline 
to the during-treatment 
PET-CT to local 
regional progression 
free rate

Closed

PET boost
NCT01024829

Stage IB-III NSCLC,
SUVmax on pre-treatment 
PET-CT ≥5

Randomized Phase II
Stage IB-II patients receive 
RT alone, stage 3 patients 
receive sequential or 
concurrent CRT
Arm A: 66 Gy in 24 daily 
fractions with integrated 
boost (≤72 Gy) to primary 
tumour
Arm B: 66 Gy in 24 daily 
fractions with integrated 
boost (≤72 Gy) to the 
50% SUVmax area of the 
primary (of pre-treatment 
PET-CT)

 � Local PFS Closed

IFCT14-02/RTEP7 Inoperable locally advanced 
NSCLC

Randomized Phase II
Arm A: Individualized RT 
≤74 Gy in 33 fractions if a 
PET-CT at 42 Gy is positive
Initial dose of 50 Gy will 
be given in 5 weeks (2 Gy 
daily), then ≤24 Gy in 1.6 
weeks (bd fractions)
Arm B: 66 Gy in 33 
daily fractions with no 
adaptation
Both arms will undergo 
2 cycles of induction and 
subsequent concurrent 
platinum based 
chemotherapy

Local regional control rate Recruiting

High Intensity Functional 
Image Guided VMAT Lung 
Evasion (HI-FIVE)
NCT03569072

Stage 3 NSCLC Single arm interventional 
pilot study (20pts)
60 Gy in 30 fractions with 
simultaneous integrated 
boost to primary tumour 
to 69 Gy
RT adapted using 
ventilation/perfusion PET-
CT to avoid regions of 
functional lung and boost 
tumour

To assess the technical 
feasibility of the delivery 
of personalized functional 
lung radiotherapy
(Treatment will be 
considered feasible if all of 
the following criteria are 
met: Reduction in mean 
functional lung dose of ≥2%, 
functional lung volume 
receiving 20 Gy of ≥4%, 
Mean heart dose is ≤30 Gy 
and relative heart volume 
receiving 50 Gy is <25%)

Recruiting

FLARE RT
NCT02773238

Inoperable stage IIB-IIIB 
NSCLC, PS 0–1

Single arm Phase II
CRT with functional lung 
avoidance based on SPECT-
CT. RT dose escalation if no 
response on PET-CT after 
3 weeks

OS (in the functional lung 
avoidance and response-
adaptive dose escalation RT 
cohort will be compared to 
60 Gy cohort from RTOG 
0617)

Recruiting

(Continued)
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Trial Study population Study design Primary outcome Status
Individualized RT

N12HYB
NCT01933568

Inoperable stage II or III 
NSCLC
Peripheral tumour <5 cm

Phase I
Combined SABR to 
primary tumour and CRT 
to lymph nodes

Mean lung dose associated 
with a 15% probability of 
DLT;≥Grade three radiation 
pneumonitis and radiation 
induced dyspnoea

Closed

Hypofractionated IGRT
NCT01459497

Stage II-III NSCLC, PS 
≥ 2, PS0-1 and >10% wt 
loss or unfit for combined 
modality RT

Phase III
Arm A: 60 Gy in 15 daily 
fractions with daily IGRT
Arm B: 60–66 Gy in 30–33 
daily fractions

 � OS Recruiting

ADSCAN
ISRCTN47674500b

Stage 3 NSCLC patients to 
be treated with sequential 
CRT

Randomized Phase II
Arm A Standard RT arm 
55 Gy in 20 daily fractions 
(2.75 Gy per fraction)
Arm B CHART-ED, 54 Gy 
in 36 fractions (3 × 1.5 Gy 
fractions per day)+10.8 Gy 
in six fractions (days 
15–17)
Arm C IDEAL, 30 daily 
fractions of isotoxic RT, 
63–71 Gy
Arm D I-START, 20 daily 
fractions of isotoxic RT, 
55–65 Gy
Arm E Isotoxic IMRT, bi-
daily fractions of isotoxic 
RT over 4 weeks, max dose 
79.2 Gy

 � PFS Recruiting

CRT, chemoradiotherapy; DLT, dose-limiting toxicity; MLD, mean lung dose; NSCLC, non-small cell lung cancer;PET-CT, positron emission 
tomography-CT; PFS, progression-free survival; RT, radiotherapy; SABR, stereotactic ablative radiotherapy; SOC, standard of care; SPECT, single-
photon emission computed tomography; SUV, standard uptake volume; SUVmax, maximum standard uptake volume; VMAT, volumetric-modulated 
arc therapy.
aClinicalTrials.gov identifier
bISRCTN.com identifier

Table 3. (Continued)

have been synthesized in the Qualitative Analyses of Normal 
Tissue Effects in the Clinic.66 At present, the same dose volume 
constraints are used in all patients with little regard to patient 
factors, such as pre-existing comorbidities, smoking status, base-
line lung or cardiac function, which could affect tissue tolerances.

Between 66 and 76% of patients with LA-NSCLC have at least 
one concomitant medical condition.67,68 Patients with comorbid-
ities are often not included in clinical trials. Only 41% of patients 
on the Maastrict cancer registry would have met the inclusion 
criteria for RTOG 0617 due to comorbidities and no patient over 
the age of 75 would have been eligible.69 Trials which investigate 
RT in unfit or older patients (Table 3), are therefore important in 
attempting to answer questions about individualizing RT based 
on patient factors.

Despite the improvements in RT over the last 20 years, the 
largest improvement in survival of patients with inoperable 
LA-NSCLC has come, not through RT, but immunotherapy 
(IO). The addition of 1 year of durvalumab following CRT has 
been shown to improve 2 year OS (66.3% with durvalumab vs 
55.6 with placebo) and progression-free survival (PFS) (median, 
28.3 months vs 16.2 months).70 Such consolidation treatment is 

now considered standard of care in fit patients with LA-NSCLC 
who have responded to definitive concurrent CRT.27 In the UK, 
durvalumab is approved by the National Institute for Health and 
Care Excellence only in patients treated with concurrent CRT 
and with PDL1 >1%.71 Questions remain about the best way of 
integrating targeted therapies and RT in LA patients with driver 
mutations.

Metastatic NSCLC
Traditionally, patients with Stage 4 disease received chemo-
therapy with a platinum doublet. Over the last decade, the treat-
ment of this group of patients has become increasingly tailored to 
tumour histology, and outcomes have improved. Targeted agents 
are used in patients with tumours with molecular drivers such as 
EGFR, ALK and ROS-1 mutations. More recently, IO has trans-
formed the treatment of metastatic NSCLC.8 Palliative RT for 
Stage 4 disease is used to improve symptoms such as pain, cough 
or haemoptysis.72 In recent years the concept of oligometastatic 
disease (OMD) has emerged and there is evidence that RT can 
improve survival in these patients.73 OMD is defined differently 
depending on the point in the disease process the distant disease 
is diagnosed (Table 4). The first evidence for the benefit of RT in 
OMD came from a randomized trial of whole brain radiotherapy 
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Table 4. Trials in OMD

Type of OMD Trial Study population Study design
Primary 
outcome

SYNCHRONOUS
OMD is detected at diagnosis of 
the primary tumour

‍ ‍ 

SARON
NCT02417662a

NSCLC with ≤3 
synchronous oligo-
metastasesa

Phase III
Arm A: Standard treatment, 
chemotherapy alone
Arm B: Chemotherapy followed by 
radical RT (SABR or conventional 
RT) to the primary and SABR to 
metastases

OS

NRG-LU002
NCT03137771

NSCLC with ≤3 metastases 
with no progression after 
four cycles chemotherapy

Randomized Phase II/III
Arm A: Maintenance SACT only
ARM B: Local consolidative therapy 
(LCT- SABR, IMRT, 3DCRT or 
possibly surgery) followed by 
maintenance SACT

Phase II: PFS
Phase III: OS

LONESTAR
NCT 03391869

Metastatic NSCLC Phase III
Arm A: Nivolumab and ipilimumab 
alone
Arm B: Nivolumab 
+ipilimumab and LCT 
(radiotherapy ± surgical resection, 
radiofrequency ablation or 
cryoablation)

OS in overall 
population
OS in OMD 
(subgroup ≤3 
lesions)

METACHRONOUS
Oligo-recurrent OMD is 
detected after treatment of the 
primary tumour

‍ ‍ 

CORE
ISRCTN45961438˜

Patients with NSCLC, 
breast or prostate cancer 
(previously completed 
radical treatment) with ≤3 
extra cranial metastases 
suitable for SABR

Randomized Phase II/III
Arm A: SABR to metastases and 
standard of care treatment (e.g., 
SACT, palliative RT or observation)
Arm B: Standard of care

PFS

SABR-COMET 10
NCT03721341

Patients with 4–10 new 
metastases from any 
primary tumour (who 
completed radical treatment 
for any >3 months 
previously) and have stable 
disease at primary site

Phase III
Arm A: SABR plus standard of care 
treatment (SACT or observation)
Arm B: Standard of care

OS

(Continued)
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Type of OMD Trial Study population Study design
Primary 
outcome

OLIGO-PROGRESSIVE
OMD that occurs after response 
to systemic therapy. Progression 
of a limited number of areas of 
disease occurs while all other 
tumours remain controlled

‍ ‍ 

HALT
ISRCTN53398136

Metastatic NSCLC with 
actionable mutation 
receiving TKI therapy,
≤3 extracranial sites of 
progressive disease

Randomized Phase II
Arm A: SABR to progressive lesions 
and continuation of TKI
Arm B: Continuation on TKI

PFS

STOP-NSCLC
NCT02756793

Metastatic NSCLC with 
actionable mutation 
receiving TKI therapy,
≤5 extracranial sites of 
progressive disease

Randomized Phase II
Arm A: SABR to progressive lesions 
+ continuation of TKI
Arm B: Continuation on TKI

PFS

Table 4. (Continued)

(Continued)
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Type of OMD Trial Study population Study design
Primary 
outcome

OLIGO-PERSISTENT
This is a scenario where 
there are a limited number of 
controlled persistent lesions 
following a response to systemic 
therapy

‍ ‍ 

NORTHSTAR
NCT03410043

EGFR mutant metastatic 
NSCLC, treated with 6–12 
weeks of osimertinib, and 
oligo or poly persistent 
disease

Randomized Phase II
Arm A: LCT (RT or surgery ± RT) 
and continue osimertinib
Arm B: Osimertinib only

PFS

3DCRT, three-dimensional conformal radiation therapy; EGFR, epidermal growth factor receptor; IMRT, intensity modulated radiotherapy; NSCLC, 
non-small cell lung cancer;OMD, oligometastatic disease; OS, overall survival; PFS, progression-free survival; RT, radiotherapy; SABR, stereotactic 
ablative radiotherapy; SACT, systemic anticancer therapy; TKI, tyrosine kinase inhibitor.
aClinicalTrials.gov identifier, ˜ISRCTN.com identifier

Table 4. (Continued)

with or without stereotactic brain RT in patients with 1–3 brain 
metastases. Over half of the patients in this trial had brain 
metastases from NSCLC. OS was significantly improved with the 
addition of stereotactic brain RT in patients with a single brain 
metastasis (6.5 months vs 4.9 months).74

More recently, evidence is emerging for the use of SABR to 
treat extracranial metastatic disease in NSCLC from a number 
of randomized Phase II studies. Iyengar et al compared mainte-
nance chemotherapy alone to SABR and maintenance chemo-
therapy in 29 patients with OMD from NSCLC. This was stopped 
early due to a significant improvement in PFS in the SABR arm 
(9.7 months vs 3.5 months).75 Another similar study of local 
therapy (including SABR, intermediate hypofractionated-RT, 
CRT or surgery) versus standard of care following systemic 
anticancer therapy was also stopped early for the same reason.76 
Subsequently, an updated analysis of this trial reported an OS 
benefit with local therapy of 24 months.77 A larger randomized 
trial of 99 patients with any primary tumour (18% of whom 
had NSCLC) found improved OS with SABR to between 1 and 
5 metastases (28 vs 41 months).73 Although the results of these 
trials are encouraging, the numbers of patients with OMD from 
NSCLC included are small and there are important ongoing 

questions regarding patient selection. Consequently, randomized 
Phase III evidence is required. There are many ongoing studies 
examining radiotherapy including both metastatic NSCLC and 
other cancer sites, shown in Table 4.

Future developments
Over the past two decades radiotherapy has evolved into a highly 
precise treatment. This has led to an improvement in patient 
outcomes such as that seen with SABR for early stage disease, 
however in LA disease there is still an unmet need to improve 
results. Undoubtedly, future progress in lung cancer RT will come 
from the individualization of our advanced treatment strategies 
and the better integration with systemic therapies, including IO.

The MR-guided linear accelerator (MRL) and proton beam 
therapy both represent exciting developments in RT technology 
which may further advance targeting and individualization of 
treatment.

The MRL combines a linear accelerator with on-board diag-
nostic quality MRI. The superior soft tissue discrimination of 
MR gives better target visualization compared to CBCT. The 
improved target visualization may facilitate the investigation of 
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Conclusion
In this review, we have described the advances in imaging, 
tumour localization and RT technology that have facilitated the 
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Advances in RT technologies have improved the precision of RT 
but in order to make further progress, there is an unmet need to 
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