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InTroduCTIon
Tibialis posterior tendon (TPT) deficiency can lead to flat-
foot deformity and functional dysfunction in even low-inten-
sity daily activities such as walking.1–3 The TPT can be injured 
during athletic activity,4–6 but more commonly undergoes 
progressive degenerative changes without a specific initiating 
event,7 making the etiology unclear. There is an elevated risk 
of TPT deficiency in older women8 and individuals with 
obesity,9 diabetes,10 concomitant ligamentous foot and ankle 
pathologies, and/or inflammatory diseases such as rheuma-
toid arthritis.11 Early detection and appropriate intervention 
may prevent development of severe degeneration of the TPT 
and overload of other medial arch supporting structures7 and 
the need for operative treatment.12

Conventional MRI TPT dysfunction grading scores are 
correlated to functional deficiencies, but not to degenerative 

histological changes13 such as decreased collagen organiza-
tion and decreased Type I collagen, hyalinization, increased 
proteoglycan content, and neovascularization.13–15 Quantita-
tive MRI may be more sensitive to these early microstructural 
changes that occur prior to the compromise of function.

Quantitative T2 and T2-star (T2*) MRI mapping allow 
objective, non-invasive assessment of water content and 
collagen organization, with T2* being especially applicable 
in highly organized tissues such as tendon.16,17 T2* and 
T2 mapping values have been correlated to factors associ-
ated with tendinopathy in the Achilles16,18–20 and patellar21 
tendons, including increased collagen disorganization and 
free water content, as well as healing changes after treatment 
in a rabbit Achilles model.22 T2 mapping values have also 
been shown to be significantly increased with tendinosis 
and tears of the supraspinatus tendon.23 However, these 
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objective: Early detection of tibialis posterior tendon 
changes and appropriate intervention is necessary to 
prevent disease progression to flat-foot deformity and 
foot/ankle dysfunction, and the need for operative treat-
ment. Currently, differentiating between early-stage tibi-
alis posterior tendon deficiency patients who will benefit 
from conservative vs more aggressive treatment is chal-
lenging. The objective of this work was to establish a 
quantitative MRI T2* mapping method and subregion 
baseline values in the tibialis posterior tendon in asymp-
tomatic ankles for future clinical application in detecting 
tendon degeneration.
Methods: 26 asymptomatic volunteers underwent T2* 
mapping. The tendon was divided axially into seven subre-
gions. Summary statistics for T2* within each subregion 
were calculated and compared using Tukey post-hoc pair-
wise comparisons.

results: Results are reported for 24 subjects. The mean 
tibialis posterior tendon T2* was 7 ± 1 ms. Subregion values 
ranged from 6 ± 1 to 9 ± 2 ms with significant between-re-
gion differences in T2*. Inter- and intrarater absolute 
agreement intraclass correlation coefficient (ICC) values 
were all "excellent" (0.75 < ICC=1.00) except for regions 5 
through 7, which had "fair to good" interrater and/or and 
intrarater ICC values (0.4 < ICC=0.75).
Conclusion: A tibialis posterior tendon T2* mapping 
protocol, subregion division method, and baseline T2* 
values for clinically relevant regions were established. 
Significant differences in T2* were observed along the 
tendon length.
advances in knowledge: This work demonstrates that 
regional variation exists and should be considered for 
future T2*-based research on posterior tibias tendon 
degeneration and when using T2* mapping to evaluate 
for potential tibialis posterior tendon degeneration.
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techniques have not yet been applied to the TPT in vivo in human 
subjects.

Development of TPT-specific methodology for positioning and 
subregion analysis is needed to optimize for patient studies. Prior 
T2 and T2* mapping work in Achilles, peroneal, and rotator cuff 
tendons shows that tendon quantitative mapping values vary 
spatially within tendons even in asymptomatic subjects20,24,25 and 
that this spatial variation is tendon-specific. TPT-specific subre-
gions and baseline values need to be established to account for 
tendon specific spatial variation. TPT subregion-specific base-
line values are needed due to tendon curvature and the resulting 
magic angle effects26 and variation in histology along the length 
of the tendon,10,27 both of which may influence T2* values. The 
use of clinically relevant tendon subregions is also important for 
focused analysis of high-risk regions, such as the avascular, fibro-
cartilage-like retromalleolar zone,27 which is the most common site 
of degenerative tearing.10,11 The objective of this work was to estab-
lish a quantitative MRI T2* mapping method and tendon-specific 
subregion baseline values in the tibialis posterior tendon in asymp-
tomatic ankles for future clinical application in detecting tendon 
degeneration.

MeThodS and MaTerIalS
This prospective cohort study was approved by the Vail Health 
Hospital Institutional Review Board and all subjects provided 
informed consent. 26 subjects aged 18–62 years were recruited 
between January and April 2014 at The Steadman Clinic, Vail, CO, 
USA and screened using a self-evaluation questionnaire for ankle/
hindfoot symptoms and injury history, as well as a standard clin-
ical examination by an orthopaedic foot and ankle surgeon. Exclu-
sion criteria included previous ankle surgery or injury, history of 
systemic inflammatory or crystalline joint disease, osteoarthritis, 
calcific tendonitis, or tendon damage found on the subsequent MRI. 
2 subjects were excluded for abnormalities seen on the morpholog-
ical MR images resulting in a final subject group of 11 female and 
13 male subjects (9 males/0 females in the 18–32 years age group, 
3 males/5 females in the 33–47 group, and 1 male/6 females in the 
48–62 group; overall age range 23–62 years).

Unilateral ankle/hindfoot MRI was performed with a Siemens 
Magnetom Verio 3 T scanner (Siemens Medical Solutions, 
Erlangen, Germany) with a gradient strength of 40 mT/m. Volun-
teers were positioned prone with the imaged ankle in passive plan-
tarflexion stabilized with foam inserts in the centre of an 8-channel 
receive knee coil (Invivo, Gainesville, FL). The prone position was 
used to straighten the tendons parallel to the main magnetic field 
to reduce the magic angle effect. 12 left and 12 right ankles were 
scanned.

The scanning protocol included a clinical sequence and an axial-
plane multiecho gradient-echo T2* mapping sequence performed 
approximately 8 min after participants entered the scanner. 
Table 1 lists the parameters for the T2* mapping sequence. T2* 
values were calculated using a pixelwise, monoexponential, 
non-negative least square fit to the decay curve including all 
mapping echoes (Siemens MapIt, Siemens Medical Solutions, 
Erlangen, Germany).

The TPT was manually segmented using a stylus and touch-
screen (WACOM Cintiq, Wacom Technology Corporation, Port-
land, OR) in Mimics (Materialise, Plymouth, MI) on each slice of 
the T2* mapping sequence third echo (echo time = 15.33 ms) by 
two raters, a research engineer [Rater 1] and a third-year medical 
student [Rater 2] with approximately 2 and 1 year(s) of experi-
ence with musculoskeletal MRI segmentation, respectively. The 
segmentation accuracy was reviewed by a senior musculoskeletal 
radiologist with 28 years of experience (C.P.H.). The raters were 
instructed to stop segmentation where the tendon became diffi-
cult to visualize near the insertions.

Rater two performed a second segmentation round of all 
subjects to assess intrarater reliability. Repeat segmentation was 
performed following 4 weeks between rounds to avoid bias from 
prior rounds. Rater 1 identified the bony landmarks of the most 
distal point of the medial malleolus, most proximal slice in which 
the navicular bone was visible, and most distal slice in which the 
navicular bone was visible and recorded the appropriate land-
mark slice locations for each subject.

The segmentations were exported from Mimics as binary images 
and imported into a custom MATLAB program (MATLAB 
Release 2013a, The MathWorks, Inc., Natick, MA) along with 
corresponding T2* maps. The TPT segmentations were auto-
matically overlaid on the T2* map images, defining the region of 
interest pixels on the corresponding T2* map images.

Seven TPT subregions along the length of the tendon were 
defined automatically in MATLAB using the recorded landmark 
slice locations. The regions were defined as follows:

Region 1: most proximal slice to third slice proximal to medial 
malleolus (variable length, mean 26 mm, range 6–45 mm);

Region 2: medial malleolus landmark slice and the two slices 
proximal (9 mm long);

Region 3: one slice distal to medial malleolus landmark slice plus 
next two distal slices (9 mm long);

Table 1. Magnetic resonance imaging acquisition parameters 
for T2* mapping sequence

Plane Axial
Repetition time (milliseconds) 1121

Echo time (milliseconds) 3.25,9.00,15.33,21.66,28.00

Field of view (milliseconds) 140

Matrix 256 × 256

Voxel size (millimeters) 0.55 × 0.55 × 2.50

Slice thickness (millimeters) 2.50

Slice spacing (millimeters) 3.00

Number of slices 34

Examination time (minutes:seconds) 4:47
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Region 4: region between regions 3 and 5 (variable length, mean 
12 mm, range 3–21 mm)

Region 5: proximal navicular landmark slice and two proximal 
slices (9 mm long)

Region 6: one slice distal to proximal navicular landmark slice 
and two distal slices (9 mm long)

Region 7: fourth slice distal to proximal navicular landmark to 
distal navicular landmark slice (variable length, mean 9 mm, 
range 6–12 mm)

The TPT subregions are shown in Figure 1.

The subject median T2* values for the entire TPT and each 
subregion were calculated. The means and standard deviations of 
these median T2* values were calculated for all subjects. Statis-
tical analyses were performed using a statistical programming 

language (R v. 3.2.3, R Development Core Team, Vienna, Austria). 
A repeated measures analysis was conducted via random-inter-
cepts mixed-effects models (nlme: Linear and Nonlinear Mixed 
Effects Models, R Development Core Team). Exponential spatial 
correlation structure was assumed, while equal variance not 
assumed. Tukey post-hoc pairwise comparisons were performed 
to determine whether differences in mean T2* between subre-
gions were significant (p < 0.05).

A two-way random effects model was used to calculate the single 
measures, absolute agreement version of the intraclass correla-
tion coefficient (ICC) representing the intra- and inter-rater 
measurement reliability of median T2* values within each subre-
gion and for the entire TPT. The ICC values were interpreted as 
follows: ICC <0.40 = poor agreement; 0.40 ≤ ICC ≤ 0.75 = fair to 
good agreement; ICC >0.75 = excellent agreement.28

reSulTS
The mean TPT T2* was 7 ± 1 (mean ± between-subject standard 
deviation) ms. The mean T2* values ranged from 6 ± 1 ms for the 
lowest mean values (region 5) to 9 ± 2 ms for the highest means 
values (regions 3 and 7). The inter- and intrarater absolute agree-
ment ICC values were all in the "excellent" range (0.75 < ICC = 
1.00) except for the most distal two subregions, which had inter- 
and intrarater ICC values in the "fair to good" range (0.4 < ICC = 
0.75). The specific T2* values for each TPT subregion, as well as 
the inter- and intrarater absolute agreement ICC values are listed 
in Table 2 for Rater 1 and Rater 2.

Figure 2 shows the individual subject T2* value datapoints and 
the subregion medians, quartiles, and ranges over all subjects 
for the seven TPT subregions. Significant differences between 
subregions are indicated with square brackets, with asterisks 
indicating the specific p-value ranges (with *** indicating 0 < p < 
0.001, ** indicating 0.001 < p < 0.01, and * indicating 0.01 < p < 
0.05) listed out in Table 3.

dISCuSSIon
This study establishes TPT T2* mapping methodology and base-
line values in asymptomatic volunteers, which can be applied 

Figure 1. Medial view of 3D volume rendering of tibialis pos-
terior tendon overlaid on associated bones with labeled bony 
landmarks and tendon subregions 1 through 7. 3D, three-di-
mensional.

Table 2. Mean T2 ± standard deviation for each region (averaged over all raters/rounds) and subregion and inter- and intrarater 
absolute agreement intraclass coefficient values

Region
Mean of subject medians ± SD

(milliseconds)
Inter-rater ICC

(95% lower–upper bound)
Intra-rater ICC

(95% lower–upper bound)
Whole tendon 7 ± 1 0.68 (0.49–0.80) 0.74 (0.58–0.86)

1 7 ± 1 0.79 (0.53–0.91) 1.0 (1.0–1.0)

2 8 ± 1 0.87 (0.69–0.95) 0.99 (0.94–1.0)

3 9 ± 2 0.78 (0.56–0.90) 0.89 (0.77–0.95)

4 7 ± 1 0.79 (0.56–0.92) 0.96 (0.88–0.99)

5 6 ± 1 0.58 (0.27–0.79) 0.88 (0.75–0.96)

6 7 ± 1 0.75 (0.51–0.87) 0.54 (0.16–0.78)

7 9 ± 2 0.66 (0.37–0.81) 0.69 (0.47–0.82)

ICC, intraclass correlation coefficient; SD, standard deviation.
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to future evaluation of patients with early TPT dysfunction and 
for evaluation of post-treatment tendon response. The results of 
this study demonstrate that there are significant differences in 
baseline mean T2* mapping values among anatomically rele-
vant subregions of the TPT. These subregion differences may 
be explained by histological variation along the length of the 
tendon, such as variation in the TPT tissue fibrocartilage content 
due to varying stress loads placed upon the different anatomical 
regions. Fibrocartilage content in tendons is frequently increased 
in areas of compression, as well as at the tendon entheses29 and 
has been shown to have slightly higher T2* values than tendon 

tissue.26 The TPT has been reported to have elevated fibrocar-
tilage content as it courses around the fulcrum of the medial 
malleolus and as it passes the plantar calcaneonavicular liga-
ment.30 These anatomical regions correspond approximately to 
regions 2 and 3 (medial malleolus) and regions 6 and 7 (plantar 
calcaneonavicular ligament) as defined in this current study. 
This provides possible explanation for the slightly elevated T2* 
in these regions, although histological correlation is needed for 
more definitive explanation.

Prior work in the Achilles tendon has demonstrated regional 
variation in T2 and T2* in the anteroposterior direction and 
mediolateral directions,20 in addition to the longitudinal direc-
tion.19 Similarly, subregion analysis has been performed for 
the supraspinatus tendon of the rotator cuff for anterior and 
posterior portions of the medial, middle, and lateral regions 
of the tendon/musculotendinous junction.23 Use of such addi-
tional subdivisions parallel to the longitudinal axis of the tendon 
may allow detection of relatively small, localized alterations in 
the tendon T2* values. For example, in the rotator cuff, signif-
icant differences were found between the lateral subregion T2 
values of asymptomatic vs tendinosis subjects when the anterior 
portion was compared, while no significant differences were 
found between these two groups for the posterior portion of the 
lateral subregion.23 Similarly, in the Achilles tendon subregion 
differences were detected between the medial and lateral muscu-
lotendinous junction and mid-tendon subregions, as well as 
between the anterior and posterior mid-tendon and insertional 
subregions in healthy volunteers.20 We chose to focus on T2* 
value variation only in the longitudinal direction in the TPT due 
to the small diameter of this tendon, which limits the feasibility 
of creating additional subregion divisions in the anteroposterior 
and mediolateral directions.

Currently, there is a scarcity of in vivo TPT quantitative mapping 
data in the literature for direct comparison to the values obtained 
in this study. However, the T2* values measured in this study 
are similar to those seen in other asymptomatic-volunteer ankle 
tendons measured with single-component methods, including 
the peroneal tendons (subregion mean T2* reported to range 
from 7 ± 2 to 14 ± 5 ms)24 and the Achilles tendon (mean T2* 
reported to be approximately 3 ms)19.

Figure 2. Boxplots for TPT subregion T2* values, with plot-
ted points indicating the median T2* value for each individ-
ual subject and the horizontal lines in each box representing 
the median T2* value for all subjects. The upper and lower 
boundaries of the box show the upper and lower quartiles. 
The whiskers show the highest and lowest value excluding the 
outliers. Significant differences in mean T2* between regions 
are indicated with brackets and asterisks. TPT, tibialis poste-
rior tendon.

Table 3. Mean T2*± standard deviation for each region and results for significant differences between regions

Region

Mean of subject medians ± 
standard deviation
(milliseconds)

p-value range:
*** indicates 0 < p < 0.001, ** indicates 0.001 < p < 0.01, * indicates 
0.01 < p < 0.05

1 7 ± 1 Region one significantly different from regions 2(**),3,5,7 (***)

2 8 ± 1 Region two significantly different from regions 1(**),3(**),5(***)

3 9 ± 2 Region three significantly different from regions 1(***),2(**),4,5,6(***)

4 7 ± 1 Region four significantly different from regions 3,5,7(***)

5 6 ± 1 Region five significantly different from regions 1,2,3,4,6,7(***)

6 7 ± 1 Region six significantly different from regions 3,5,7(***)

7 9 ± 2 Region seven significantly different from regions 1,4,5,6(***)

http://birpublications.org/bjr


5 of 6 birpublications.org/bjr Br J Radiol;92:20190221

BJRT2* mapping and subregion analysis of the tibialis posterior tendon

This study has limitations. First, this study was limited to 
single-component T2* mapping using widely available clinical 
protocol echo times. T2* with bicomponent analysis or UTE 
T2* mapping may be more optimal for short T2 tissues.19–21,31 
In contrast to single-component T2* mapping, bi-component 
T2* mapping provides more information by measuring fast 
relaxing water bound to the highly organized collagen fibers 
(T2*=0.3–1.3 ms) and slow relaxing bulk water (T2*=8.2–20.4 
ms) separately.21 Ultrashort echo time T2* mapping may be 
more sensitive than T2* mapping using longer echo times, as 
shorter initial echo times allow for more measurements in high 
signal-to-noise portion of the tendon decay curve, but it is not 
yet widely available. Short-component and mean T2* have both 
been found to be significantly different between healthy volun-
teers and patients in the Achilles19 and patellar21 tendons, while 
long-component T2* values are more variable due to the rela-
tively low bulk-water component in tendons.21 We were limited 
by the available minimal echo time of 3.25 ms, which is in line 
with other currently available clinical sequences.31

Another limitation of this study is that some subject-specific 
characteristics were not controlled. Subject activity level prior 
to scanning was not controlled, which could lead to variation 
in tendon hydration levels between subjects.32 Future tendon 
T2* mapping studies may benefit from inclusion of a consistent 
activity restriction period prior to scanning, as well as recruit-
ment of sufficient numbers of subjects from both low and high 
loading activity participation levels to allow analysis of the influ-
ence of subject physical activity on baseline tendon T2* values. 
Subjects were not screened for contralateral ankle injury/symp-
toms, which could cause gait changes affecting both lower limbs. 
In addition, subjects were not screened for diabetes, which has 
been shown to have influence on tissue health and some quan-
titative MRI values such as high-field MRI sodium imaging 
values.33 Fourth, the subject group contained an uneven distri-
bution of male and female subjects in the youngest vs oldest age 
groups, making analysis of the influence of age and sex unfea-
sible. Because older females are at elevated risk of TPT defi-
ciency,8 future work focusing on establishing baseline values 
specific to this group would be beneficial. Lastly, more precise 
physical positioning of patient with specific plantar-flexion 
angle and controlled inversion/eversion could reduce potential 
for increased T2* due to magic angle effects26 and provide more 
controlled tendon excursion for precise subregion selection.

The scan-rescan reproducibility and longitudinal study of 
tendon T2* mapping values remains to be assessed. Although 
some short-term changes in off-resonance saturation effects have 
been seen in the Achilles tendon following vigorous exercise,32 

indicating that excessive pre-scan loading can influence tendon 
properties on MRI, a scan–rescan repeatability study of patellar 
tendon UTE bicomponent T2* analysis for subjects who did not 
undergo pre-scan loading and maintained unloading between 
scans found only 3.8–4.8% coefficient of variation for repeat 
scans.21

The T2* values measured in this study provide important base-
line results for comparison to T2* alterations in patients. T2* 
mapping of medial foot/ankle ligaments which are prone to over-
loading in the case of TPT deficiency, in addition to mapping of 
the TPT itself, may provide additional information about both 
the natural history and treatment effects for TPT deficiency and 
presents an interesting opportunity for future work.

In conclusion, significant differences in mean T2* were found to 
exist between subregions along the length of the TPT. Subregion 
analysis of the TPT has the potential to provide important subre-
gion-specific information on tendon changes in patients, which 
is important due to the normal histological variation along the 
course of the tendon and the existence of specific high-risk loca-
tions along the TPT length for injury, degeneration, and rupture.
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