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Abstract: Adaptive optics (AO) scanning laser ophthalmoscopy offers a non-invasive approach
for observing the retina at a cellular level. Its high resolution capabilities have direct application
for monitoring and treating retinal diseases by providing quantitative assessment of cone health
and density across time. However, accurate longitudinal analysis of AO images requires that
AO images from different sessions be aligned, such that cell-to-cell correspondences can be
established between timepoints. Such alignment is currently done manually, a time intensive
task that is restrictive for large longitudinal AO studies. Automated longitudinal montaging
for AO images remains a challenge because the intensity pattern of imaged cone mosaics can
vary significantly, even across short timespans. This limitation prevents existing intensity-based
montaging approaches from being accurately applied to longitudinal AO images. In the present
work, we address this problem by presenting a constellation-based method for performing
longitudinal alignment of AO images. Rather than matching intensity similarities between
images, our approach finds structural patterns in the cone mosaics and leverages these to calculate
the correct alignment. These structural patterns are robust to intensity variations, allowing
us to make accurate longitudinal alignments. We validate our algorithm using 8 longitudinal
AO datasets, each with two timepoints separated 6–12 months apart. Our results show that
the proposed method can produce longitudinal AO montages with cell-to-cell correspondences
across the full extent of the montage. Quantitative assessment of the alignment accuracy shows
that the algorithm is able to find longitudinal alignments whose accuracy is on par with manual
alignments performed by a trained rater.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Adaptive optics (AO) scanning laser ophthalmoscopy offers great potential for assessment of
cellular level change in the retina over time [1–5]. One challenge when working with AO
images is the small field of view each individual image covers. To analyze a full AO acquisition,
individual images must be aligned and montaged to cover larger regions of the retina for analysis.
Several algorithms [6–8] have been introduced that maximize a measure of intensity similarity to
automatically montage AO images from the same imaging session. However, monitoring retinal
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change requires accurate longitudinal montaging that provides cell-to-cell alignment between
images taken across timepoints that differ on the scale of weeks, months and years.
Automated longitudinal montaging of AO images remains a challenge for three primary

reasons: 1) The intensity profile of cones is known to change significantly over time, even in
healthy subjects [9,10] (Fig. 1(a)). This interferes with existing montaging approaches, which rely
on consistent intensity information for image alignment; 2) Subtle optical and motion distortion
in individual images can build up over a full montage. This prevents global alignment of full
montages built at different timepoints; 3) The most prominent global feature, the pattern of
blood vessel shadows on the photoreceptor mosaic, can shift between longitudinal acquisitions
(Fig. 1(b)), further hindering accurate global alignment at the cellular level. Due to these
limitations, manual alignments is the primary available option for longitudinal AO analysis.
However, manual alignment is an expensive and time intensive task, and is generally not feasible
for large scale longitudinal studies. Thus, existing studies often restrict longitudinal AO analysis
to a limited number of small regions of interest across the retina [1,5] or do not require cellular
alignment across time for the regions of interest [11].

Fig. 1. Examples of image differences between AOSLO images of the same subject and
retinal location between two timepoints. (a) shows individual cone intensity changes (circled
in yellow) across two timepoints. (b) shows the shift of vessel shadows (outlined in red and
green) relative to the corresponding cone mosaics shown in (a). The vessel outlines were
found semi-automatically by Gaussian smoothing each image and then adjusting a threshold
to segment the vessel regions.

To address the instability of the intensity information in longitudinally-acquired AO images,
we propose using constellation features to perform alignment between such images. In contrast to
intensity-based features, constellation features are constructed from the structural pattern of the
cone mosaic to identify corresponding regions across time. Our proposed approach is inspired by
methods originally introduced for aligning star constellations to astronomy maps [12–14], where
similar challenges often arises due to atmospheric aberrations. These methods are designed to be
robust to intensity variations, signal loss and spatial distortions. Using constellation features
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together with our previously described framework for within timepoint AO montaging [7], we are
able to construct full multi-timepoint montages with accurate local cell-to-cell correspondence.

2. Methods

2.1. Method overview

Our primary focus in this work is to introduce and evaluate the use of constellation features
for aligning AO images of the same subject taken at different timepoints. We first give a brief
introduction to the general notations we use for image alignment and registration. In Sections
2.2–2.6 we describe how to construct constellations features and use them to align two overlapping
longitudinally acquired AO images. In Sections 2.7–2.9 we describe how we adapt our previously
presented within-timepoint AOmontaging framework [7] to use constellation features to construct
full longitudinal AO montages.

2.2. Image alignment

We begin by defining an image formally as a function I(x) that returns the intensity of the image
when given a location, x = (x, y), within the image’s coordinate space, where x ∈ R2. The goal
of an image alignment (also known as a registration) algorithm is to align two images, Ia(xa)

and Ib(xb) into the same coordinate space, such that corresponding objects and structures in the
two images lie at the same coordinate locations. This alignment can be achieved by finding a
coordinate transform, Tb→a, described by the relationship,

xa = Tb→a(xb) , (1)

which maps each location in xb to a corresponding location in xa. This transformation can be
applied to the image Ia(xa) to create the aligned image

Ib
a (xb) = Ia(Tb→a(xb)) (2)

by substituting the mapping described in Eq. (1) into the image function. From Eq. (2) we see
that Tb→a effectively serves as a “pullback” function that pulls intensity values from image Ia
into the space of image Ib to generate a new transformed version of Ia (denoted Ib

a ) that is aligned
to Ib.

2.3. Constellation features for image alignment

Suppose that Ia(xa) and Ib(xb) are two nominally overlapping AO images from different timepoints.
To solve for the transformation Tb→a between these images, we must first be able to identify
and match corresponding features across longitudinal AO images. The scale invariant feature
transform (SIFT) features used in our previous work [7] are insufficient for the longitudinal case,
because of the intensity variation of the cone mosaic across time (see Fig. 1). Thus, instead
of matching the images by directly using intensity information, we propose using constellation
features [13] constructed from the structural patterns of the cone mosaics in each image. Such
features have been found to be robust to intensity differences, and have been successfully used
for alignment of star constellation images to astronomical maps.
To find the constellation features for each image I, we begin by finding the center locations

of the cones, cn ∈ R
2, in the image, where n ∈ {1, 2, . . .N} is the index for each cone in the

image and N is the total number of cones. In our experiments, we found cone locations using
existing automated algorithms designed for cones detection in AO images. The two algorithms
we evaluated are those presented by Garrioch et al. [15] and Cunefare et al. [16]. The Garrioch et
al. algorithm uses spatial frequency filtering and identifies local intensity maxima in the filtered
image. The Cunefare et al. algorithm uses a deep neural network trained on manually identified
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cone locations. Note, however, that our proposed method is agnostic as to how the cone locations
are identified. It accepts the location of cone centers as a generic input. These can be obtained by
means other than the two algorithms we explored, including semi-automated or manual cone
location identification.
For each cone center, cn, we define a constellation, On, as the set of all other cone center

locations in the image within a radius of Q around cn. More formally,

On = {cx : | |cn − cx | | < Q, x ∈ {1, 2, . . .N}} . (3)

Each of these constellations represents a detected cone mosaic pattern of radius Q within the
image. We then define the constellation feature set of an image as the set of all constellations
detected in the image

d = {On : ∀n ∈ {1, 2, . . .N}} . (4)

2.4. Comparing constellation features via grid matching

Given the constellation feature sets da and db from two images Ia and Ib, respectively, our
goal is to compare the constellation features within these sets and find matching structural
correspondences that can be used to align the two images. There are challenges associated with
this task. First, due to noise, distortions and errors in cone detection, corresponding constellation
features found in two different images will not match exactly. In particular, it is common that
not all cones can be detected in every image, and thus many constellations can only be partially
matched. In addition, each image can have thousands of features that must be compared, and the
number of comparisons grows quadratically with the number of images in the dataset, which
mean the individual comparisons must be implemented in a computationally efficient manner so
that they can be executed rapidly.
To address these limitations, we adopt a matching technique known as grid matching, that

was also originally introduced for matching star constellations [13]. In this technique, we start
by fitting a W ×W sized grid with block size G × G over each constellation, On. This creates
B2 discrete block locations that span the constellation, where B = ceil(W/G). For ease of
computation we set W as an odd multiple of G to ensure that the blocks are an integer number of
pixels and that there is always a center block over the center of the constellation, cn. Thus each
block b(l, k)

n ⊆ R2 at discrete location l ∈ {1, 2, . . . B} and k ∈ {1, 2, . . . B} in the grid covers the
space:

b(l, k)
n = {(bx, by) : |bx − cx

n − G · (l −
B + 1
2
)| ≤

G
2
and |by − cy

n − G · (k −
B + 1
2
)| ≤

G
2
} , (5)

where cx
n and cy

n are the x and y elements of the center location of cn, respectively.
Once the grid is constructed, we check each block in the grid for the presence of a cone. If any

are found, the grid location of that block is set to one, otherwise, it is set as a zero. Thus the grid
block values for each constellation On can be described as a function, gn, with values

gn(l, k) =


1, if c ∈ b(l,k)n for any c ∈ On.

0, otherwise.
(6)

This binary grid pattern is used as a surrogate for the constellation when we are matching features
between different images. Figure 2 shows several example constellations being compared using
grid matching. The orange boxes show the correct matching constellations between the two
images.
Grid matching has two fundamental advantages. First, the coarse representation of each

constellation provides robustness when there are errors in the localization of the cone centers.
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Fig. 2. Visual example of how a constellation feature is constructed and compared between
two images: (a) cone centers detected for the pair of longitudinal images shown in Fig. 1;
(b) zoomed in regions of theboxes shown in each image in (a); (c) grid representation of
the constellation feature for the center cone of each region shown in (b); (d) difference in
the grid patterns for the orange region from Timepoint 1 and each region from Timepoint 2
(Green-T1 only, Magenta-T2 only, White-Both); (e) the original image intensities within
each region; (f) difference in intensities within the orange region for T1 and each region for
T2 (Green-T1 higher intensity, Magenta-T2 higher intensity, Gray-Similar intensities in both
image). The region indicated by orange at T2 has the highest match score. Inspection of (e)
and (f) indicates that it is a good match.
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For example, slight shifts in the detected cone locations across time will typically result in the
same grid blocks being set to one. Second, the binary grid allows for highly efficient comparisons
between the features. Given two vectorized constellation grids g1 and g2, we can compare and
score the fraction of matches between the features using

S(g1, g2) =
2 · | |g1 AND g2 | |0
(dim(g1) + dim(g2))

, (7)

where AND is the logical AND operator, | | • | |0 is the L0 “norm” used to count the number
of nonzero elements in the vector, and dim is the vector’s dimension, which counts the total
number of elements in each vector. However, since all of the grids are identical in size, the factor
2/(dim(g1) + dim(g2)) in Eq. (7) is a predetermined positive constant in the algorithm that does
not affect the comparisons. Thus, the score can be reduced to

Ŝ(g1, g2) = | |g1 AND g2 | |0, (8)

which has an equivalent search space to Eq. (7) for finding the optimal match. Ŝ(g1, g2) can be
evaluated using one AND operation and one bit summation (popcount) operation, both of which
are native, single cycle instructions in modern CPUs. The efficiency of this evaluation allows
us to make comparisons between all possible pairs of features in the two images to find a top
match (i.e. the global maximum of the score) for each constellation. Thus for each constellation
Oa

n ∈ da at index n in image Ia we search across all constellations Ob
m ∈ db at index m in image

Ib for the index of the constellation that has the best match score:

m̂n = argmax
m

Ŝ(ga
n, gb

m). (9)

This creates pairs of matched feature locations between the two images which we express as
(fa

n, a, fa
n, b) = (ca

n, cb
m̂n
) and associated scores sa

n = Ŝ(ga
n, gb

m̂n
). Likewise, if we search in the other

direction starting from the features in images Ib, we get the matches (fb
m, a, fb

m, b) = (ca
n̂m
, cb

m) and
scores sb

m = Ŝ(ga
n̂m
, gb

m). We then set a threshold D and remove low scoring matches, so that we
only retain constellation matches with high match scores. To ensure that each match is unique,
we discard duplicate matches, where (fa

n, a, fa
n, b) = (f

b
m, a, fb

m, b). Thus, we obtain a set of candidate
matching locations between the two images as

Fa↔b = {(fa
n, a, fa

n, b) : ∀n where sa
n > D} ∪ {(fb

m, a, fb
m, b) : ∀m where sb

m > D}, (10)

which we will use to find the alignment transformation between the two images. Note that because
the match is done in both directions, it is possible that Fa↔b can contain matches that partially
overlap. For example, two matches can specify the same location in Ia but different locations in
Ib. Since both of these matches cannot be accounted for by a single coordinate transform, at least
one of them must be a false positive. False positives are handled by the alignment procedure
described in the next section.

2.5. Alignment using random sample consensus (RANSAC)

From the previous sectionwe are given a set ofPmatched pairs of feature locations (fp, a, fp, b) ∈ Fa↔b,
where p ∈ {1, 2, . . . P} is the index across thematched pairs. Our goal is to estimate the transforma-
tion between the two image coordinate spaces using the relationship between these corresponding
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locations, as described in Eq. (1). If we specify Tb→a to be a linear mapping, then we have

F′a = Tb→aF′b , (11)

where

Fa =



x1, a y1, a 1

x2, a y2, a 1

. . .

xP, a yP, a 1


(12)

and

Fb =



x1, b y1, b 1

x2, b y2, b 1

. . .

xP, b yP, b 1


(13)

are the x and y coordinates of the P pairs of matching locations from each respective image stacked
in a matrix form and then transposed (denoted by the ′ symbol in Eq. (11)). The transformation
Tb→a is the alignment transformation we are solving for, which has the form

Tb→a = L


cos θ sin θ tx

− sin θ cos θ ty

0 0 1


. (14)

where tx and ty are the translation in the x and y directions, respectively, θ is the rotation (in
radians), and L is a scaling factor. The scaling factor is included to account for potential changes
in magnification between different timepoints. This value is expected to be small and is restricted
in the algorithm to be be under 10% (i.e. 0.9 < L < 1.1).

In the ideal case where the feature pairs in Fa↔b are perfect correspondences, Eq. (11) can be
used to directly solve for the unknown alignment transformation between the images. However,
we know that the matched feature pairs will contain false positive matches due to the regularity
of the cone-mosiac and similarity between cone constellations. Such false positives will impact
the accuracy of the transformation estimation and must be removed for accurate cell-to-cell
alignment. To address this problem, we use a technique known as random sample consensus
(RANSAC) [17] to remove outlier matches, which has been effective for within timepoint AO
montaging [6–8]. The goal of RANSAC is to estimate multiple prospective transformations, TR,
from random subsets of matched feature pairs in Fa↔b. These transformations are then tested
against the full set of matches and the TR that aligns the highest number of candidate matched
feature pairs within tolerance is considered the final transformation (Tb→a). Figure 3 shows
an example alignment between two images obtained using constellation features. Figure 3(a)
shows all of the candidate matches. Figure 3(b) shows the inlier matches associated with the
best transformation estimated by RANSAC. Figure 3(c) shows the location of every detected
constellation feature. The locations of the inlier matched feature pairs used by RANSAC to
estimate the final transformation are highlighted in red. The mean intensity of the two images
after performing the alignment is shown in Fig. 3(d).

2.6. Rotation in constellation features

One additional consideration we need to take into account when using constellation features is
that eye position changes can cause the same underlying constellation to have a different rotational
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Fig. 3. Example of an alignment between two longitudinal images using the constellation
feature. (a) shows the total matches found. (b) shows the inlier matches found after RANSAC.
(c) shows the location of features found in each image, with those in red showing the features
in the two images corresponding to the inlier matches. (d) shows the average of the two
images after alignment.

orientation across images. To account for this in practice, we enhance the feature set for each
image by including reoriented versions of each constellation feature On. To ensure that these
reoriented constellations are rotated in a consistent manner, we first find the vector

vn→r = cn
r − cn (15)

between the constellation center cn ∈ On and its closest neighboring cone location cn
r ∈ On. We

use this vector to rotate the constellation such that the cone closest to the center will always lie
on the x-axis. We accomplish this by solving for a rotational transformation

Tn→r =


cos θ sin θ

− sin θ cos θ

 , (16)
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that will align vn→r to the unit vector in the x direction, u = (1, 0), where

θ = atan2(| |vn→r × u| |, vn→r • u) (17)

is the angle between the two vectors, and atan2 is the four-quadrant inverse tangent function.
Centering this rotation on cn, we can then generate the reoriented constellation

On→r = {Tn→r(cx − cn) + cn : ∀cx ∈ On} . (18)

Due to possible errors in the cone detection, the closest neighbor cn
r may not always be detected

in the image. To help mitigate such errors, we repeat this reorientation for {rn
1, rn

2, . . . r
n
R}, which

are the indices for the R closest cone centers to cn in constellation On. We then include each
reoriented constellation as an additional feature for the image. This updates the total feature set
defined in Eq. (4) to be

d̄ = {On ∪On→r : ∀n ∈ {1, 2, . . .N},∀r ∈ {rn
1, rn

2, . . . r
n
R}} , (19)

which is the set of all constellations and their duplicates in R different orientations.

2.7. Longitudinal montaging framework

To create a full longitudinal AO montage, we use the constellation-based alignment method
proposed in the previous sections to expand on the framework we previously developed for within
timepoint AO montaging [7]. While this section will summarize and reintroduce the key concepts
of the framework relevant to our approach, we refer the reader to the original paper for more
details.

For a given longitudinal AOSLO dataset, we describe each image in the dataset as I(i, t, m)(x(i, t)),
where i = (i, j) is the nominal retinal location of the image (determined by the fixation location
during acquisition), t = {0, 1, 2 · · · } is the index for the timepoint the image was acquired
at, and m is the AO modality of the image (confocal [18], split detection [19], and dark-field
[20]). Expanding on the notation from the previous section, each image I(i, t, m)(x(i, t)) returns
the intensity of the image given the pixel location, x(i, t) = (x(i, t), y(i, t)), within each image’s
coordinate space. We note that each coordinate space, x(i, t), is specific to the location, i, and time,
t, an image was acquired at, but is independent of the modality of the image. This is because all
three AO modalities are acquired simultaneously and share the same coordinate space for a given
location and time.

The goal of our algorithm is to align every image in the dataset into a single global coordinate
space, common across fixation locations and time. We refer to this as the reference space, xref,
which we select (without loss of generality) as the pixel coordinate space of image, Iref(xref), in
the dataset located closest to the origin of the fixation coordinate grid (iref = (0, 0)) taken at the
first timepoint (tref = 0). Analogous to Eq.(1), we represent the alignment of each image through
a transformation mapping,

x(i, t) = Tref→(i, t)(xref) , (20)

where Tref→(i, t) maps each location in xref to a corresponding location in x(i, t). And analogous to
Eq. (2), this transformation can be applied to the image Ii, t, m(x(i, t)) to create the aligned image

Iref
i, t, m(xref) = Ii, t, m(Tref→(i, t)(xref)) (21)

by substituting the relationship between the coordinate systems described in Eq. (20) into the
image function.
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2.8. Composing relative transformations

For images Ii, t, m(x(i, t)) that directly overlap with Iref(xref), we use the constellation alignment
method we presented in the previous sections to solve for Tref→(i, t). However, for images in
the dataset that do not overlap with Iref(xref) there is no information to find the transformation
Tref→(i, t) directly. Thus, these transformations must be found indirectly by first solving for the
relative local transformations between adjacent images that do overlap, and then chaining together
these relative transformations to create a global transformation for each image into the reference
space. For images that are from the same timepoint as the reference image (i.e. t = 0), we can
describe this global transformation for an image at location i as

Tref→(i,0)(xref) = T(i-1,0)→(i,0)(T(i-2,0)→(i-1,0)(. . . T(1,0)→(2,0)(Tref→(1,0)(xref)))) , (22)

which represents a composition of the relative transformations between nominally adjacent
images starting from location i and ending at the origin. Since these images are all from the
same timepoint, we can use our previously presented montaging algorithm [7] to solve for these
relative transformations.
However, for images that are from a different timepoint than the reference image (i.e. t , 0)

we must consider which spatiotemporal path we take to connect the image to the reference frame.
For example, one possibility is to first align the image to other images within the same timepoint
until it is connected to the origin and then align across timepoints at the origin. Alternatively,
we can first align the image across timepoints at its nominal location and then use the t = 0
transformations from Eq. (3) to reach the reference frame. It is worth noting that in the ideal case,
where there are no errors in the transformations, any choice of spatiotemporal path that connected
two images should result in the same global transformation. However, in practice, accumulation
of errors during the composition can lead to different results between these different path choices.

In our algorithm we chose the path where alignment across time is first performed individually
at each nominal location. This can be described by extending Eq. (3) to include an additional
transformation between timepoints in the composition,

Tref→(i, t)(xref) = T(i,0)→(i, t)(Tref→(i,0)(xref)) . (23)

Our reasoning for this decision is motivated by a primary goal of longitudinal analysis, which is
to observe cellular level change. For this case we want to minimize the amount of alignment
error between images of the same retinal location, when making observations across time. Thus,
we chose a spatiotemporal path where there is only a single transformation between images at the
same nominal location from different timepoints. This also has the advantage of allowing us to
specify a region of interest (ROI) on the baseline montage (t = 0) and having all measurements
at the same location from later timepoints be directly aligned to that ROI.

2.9. Matching criterion and discontinuity detection

Two considerations the algorithm needs to take into account when constructing the full AO
montage is how to decide which image (and thus transformation) to use when multiple images
are overlapping, and how to determine when there was a discontinuity in retinal coverage during
data acquisition and, in such cases, to reject all of the potential transformations. In our previous
work [7] we determined a set of criteria based on the number of inlier matches and the number
of total matches to set the threshold for a valid match. The primary difference here is that we
have found that constellation features tend to generate both more overall matches and more false
positive matches, both of which reduced the relative inlier match percent for valid alignments.
To accommodate for this change we have relaxed the threshold for minimum percentage of inlier
matches from 10% for the within timepoint case to 5% when aligning with constellation features.
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3. Experiments

3.1. Data and default algorithm parameters

The equipment and image acquisition protocol used in this study have been described in detail
previously [5,18,19,21]. To summarize, a scanning laser ophthalmoscope equipped with AO
was used to acquire high-resolution images of the retina. Images were acquired at 16.7 Hz using
795 nm imaging light, with images in three modalities (confocal, split detection, and dark field)
acquired simultaneously. Image sequences were 150 frames in length and were 1◦ by 1◦ of visual
angle in spatial extent.

The research protocol for our experimental data was approved by the institutional review board
at the University of Pennsylvania and the Children’s Hospital of Philadelphia, and the study
adhered to the tenets of the Declaration of Helsinki. All light exposures were below the maximum
permissible limits specified by the American National Standards Institute [22]. All subjects
provided informed consent. Subjects’ pupils were dilated (phenylephrine hydrochloride, 2.5%,
and tropicamide, 1%) prior to image acquisition. Axial lengths for all eyes were measured at
each timepoint using an IOL Master (Carl Zeiss Meditec, Dublin, CA) and were used to calculate
the scale of the AOSLO images at each timepoint.

Eight eyes from eight normal sighted volunteers were imaged at two timepoints (6-12 months
apart). Images were collected across the horizontal and vertical meridians of the retina from
the fovea out to approximately 1800µm eccentricity, with additional images collected in the
central 600µm by using the corners of the scanning square as the fixation location. Four of the
longitudinal datasets were used for the development of the algorithm. The remaining four datasets
were held in reserve to test the algorithm after an optimal set of parameters was determined.

Unless otherwise stated, in each experiment we used the following default algorithm parameters:
70 pixel constellation window size (W = 70), 5 pixels constellation grid size (G = 5), 6 pixel
RANSAC tolerance (σ = 6), 10 degree limitation on rotation (θ < 10) , 10% limitation on scaling
(0.9 < L < 1.1), 3 constellation reorientation variations (R = 3), and a 20% constellation feature
matching threshold (D > 0.2(W/G)2 ≈ 40).

3.2. Preprocessing and distortion correction

Image sequences at each location were combined into a single image by aligning and averaging a
minimum of 50 frames from the image sequence relative to a reference frame. Each reference
frame was automatically selected using a custom algorithm based on the method described by
Solomon et al. [23]. Image sequences were desinusoided using an image of a Ronchi ruling
of equally spacing lines, and strip registered to the reference frame to correct for intra-frame
distortions from eye motion during scanning image acquisition [24]. We corrected for distortions
present in the reference frame, using a custom algorithm based on the method described by
Bedggood and Metha [25], where the median eye motion throughout a given image sequence is
assumed to be zero. More specifically, we estimated the distortions contained within the reference
frame by finding the median translation required to register 49 frames of the image sequence to
each strip of the reference frame, and then fixing the distortion in the reference frame in the equal
yet opposite direction.

3.3. Longitudinal montaging

We ran our proposed montaging algorithm on each of the four longitudinal development datasets
to construct four pairs of full longitudinal montages. As described in Sec. 2.8, the baseline
montage was constructed using our SIFT-based approach [7], and the proposed constellation
features were used to align each image from the second timepoint to an image in the baseline
montage.
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A trained, experienced rater (MC) qualitatively assessed each montage at 5 locations– one
location on each of the four arms and one location at the fovea. For each location in the arms
for all four montages, the rater found that the algorithm produced clear cell-to-cell alignments
between the first and second time point. The foveal locations showed varying degrees of success.
Cell-to-cell alignment could be established in portions of the image, but the tightly packed cell
pattern and reduced visibility of cones near the foveal center degraded the overall quality of the
alignment. Figure 4(a) shows the montages for the baseline (T1) and second (T2) timepoint
from one of the longitudinal datasets. Figure 4(b) shows zoomed in regions of this montage,
demonstrating the cell-to-cell correspondence between the montages.
To assess the montages quantitatively, for each dataset we evaluated the image similarity

between each image in the second timepoint and the baseline image, across the overlapping
regions between the images. The metric we used for this evaluation was the normalized mutual
information (NMI) [26] between the images. NMI is a statistical measure of the agreement
between the images that is robust with respect to overall intensity variation [27]. This makes it a
reasonable choice for evaluating longitudinal AO image alignment where the cone intensities are
known to vary over time. Note, however, that NMI only offers a global evaluation of the statistical
similarities between the images intensities. Thus it is an imperfect metric for determining local
cell-to-cell alignment. This is a limitation of all image similarity metrics of which we are aware.
If we had a metric of image similarity that was robust to the type of variation in individual
cone intensities that occur across AO images, we could use it directly as a cost function in the
longitudinal montaging algorithm.
Figure 5(a) shows a map of the NMI at each of the overlapping regions in the longitudinal

montage created using the proposed method. For comparison, Fig. 5(b) shows the same map
when SIFT was used to perform the longitudinal alignment. In the SIFT case, we see that many
of the areas are missing because the alignment could not meet the minimum threshold criterion
for the number and percentage of inlier matches found between the images. For the cases that did
produce sufficient matches for alignment, we see that the image similarity in the overlapping
region after alignment is much lower than when using the constellation feature algorithm. In
Fig. 5(c) and (d), we show the average confocal intensity between the overlapping images located
at the white box in (a) and (b), respectively. We see that the average is considerably more blurred
in the SIFT montage due to the image misalignment.

3.4. Alignment accuracy and robustness

To quantitatively evaluate the accuracy and robustness of the proposed algorithm, we manually
selected 20 longitudinal image pairs (5 image pairs from each development dataset), where
each pair was known to spatially overlap. The 5 locations for each dataset were selected to
be at different eccentricities, with roughly equal spacing from the fovea to the furthest extent
of the dataset (∼1800 µm). One of the four arms in the dataset was randomly selected for
each eccentricity. Using this development dataset, we evaluated the performance of the image
alignments when using different constellation sizes, approaches to cone detection, AO modalities,
and degrees of cone loss. For each case we evaluated the NMI between the images after alignment
as a metric of alignment accuracy.

3.4.1. Optimal constellation and grid size

We evaluated the effect that the size of the constellation and grids has on the accuracy of the final
alignment. For each of the 20 image pairs, we performed the image alignment using constellation
features of sizes (W) ranging from 10 to 90 pixels (in increments of 10) and grid sizes (G) ranging
from 1 to 10 pixels (in increments of 1). Figure 6(a) shows a plot of the mean relationship
between alignment accuracy, constellation size and grid size. The intensity of each square in the
plot shows the mean NMI over the 20 pairs for a given constellation size and grid size. Figure 6(b)



Research Article Vol. 10, No. 12 / 1 December 2019 / Biomedical Optics Express 6488

Fig. 4. Example of a longitudinal montage between two AO datasets collected a year apart:
(a) montages of the confocal images from each timepoint; (b) zoomed in regions showing
the cell-to-cell correspondence after alignment. The first and third rows show the confocal
modality of the montage, and the second and fourth rows show the split detection modality.
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Fig. 5. Maps of the NMI in the overlapping regions of the second timepoint montage after
longitudinal alignment to the first timepoint using (a) our proposed constellation method
and (b) a SIFT-based approach. Missing areas in the map in (b) indicate areas where the
images could not be aligned due to not finding enough inlier matches to meet the alignment
criterion. (c) and (d) show the average confocal intensity of the overlapping images located
at the white boxes in (a) and (b), respectively.

shows the mean relationship when we bin the results according to the nominal eccentricity (in
degrees) at which the images were acquired.
From these results we see that the optimal operating range for the algorithm on our images

is with a constellation size of 60-70 pixels and a grid size of 4-6 pixels. This optimal range
does not appear to be strongly dependent on eccentricity. However, we observe that the global
performance of the algorithm is sensitive to the eccentricity of the images. In Section 4, we will
discuss the potential reasons for this dependence.

3.4.2. Choice of cone detection algorithm and image modalities

Next, we evaluated the effect that the cone detection algorithm and the modalities used in the
alignment have on the algorithm accuracy. For each of the 20 image pairs in the development
dataset, we evaluated the alignment using the cone detection methods by Garrioch et al. [15] and
Cunefare et al. [16] with just the confocal images, just the split images, and both confocal and
split images as the input. Figure 7 shows a comparison of the NMI for each of these cases across
the 20 pairs. We see that the algorithm performance is roughly equivalent for both cone detection
methods, and using both the split and confocal images together had the best average performance.
Also shown in the plot is a comparison against the intensity-based montaging algorithm using
SIFT features [7].
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Fig. 6. Matrices showing (a) the mean image similarity (NMI) after the alignment
when using different constellation sizes (x-axis) and grid size (y-axis) for aligning the 20
development image pairs. (b) shows the mean image similarity when the image pairs are
binned according to the eccentricity (in degrees) at which they were acquired.

Fig. 7. Comparison of the NMI image similarity (across 20 image pairs) after longitudinal
alignment by SIFT [7] and the proposed constellation algorithm when using different
automated cone detection inputs (Garrioch et al. [15] or Cunefare et al. [16]), and different
AO imaging modalities as inputs (confocal only, split detection only, or both). The box plot
show the median, 25th and 75th percentiles, and non-outlier range (whiskers) of the data.
Blue circles show the outlier points, and the red diamond show the mean of the data.

3.4.3. Effect of cone loss

Due to potential noise, artifacts, image quality, and subject motion it is not always possible for a
cone detection method to correctly locate every cone center in an image. Thus, we evaluated the
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effect that cone loss has on the performance of the alignment. Using the 20 selected image pairs
from the development dataset, we evaluated the automated alignment by our proposed algorithm
with different percentages (0% 20% 40% 60% 80%) of the detected cone centers randomly
removed from both images before construction of the constellation features. For this experiment,
we used the cones detected through Cunefare et al.’s [16] approach as the baseline. Figure 8
shows six algorithm metrics as a function of the percent cone loss including: total number of
inlier and outlier matches found and their ratio, the image similarity after alignment, and the
relative rotational and translational error compared to the cases where the algorithm was run
without simulated cone loss. We see from these plots that, in general, the algorithm can perform
alignments with low translational and rotational error up to a 30% cone loss, at which point
the performance starts decreasing rapidly. In addition, we that see that the point at which the
algorithm starts to perform worse is generally consistent across all six metrics. We note also that
our method appears to be reasonably robust to the total number of matches and inlier matches

Fig. 8. Analysis of the robustness of the constellation features. Each plot shows the median
(across the 20 test pairs) of the relationship between the percent cone loss in the input image
and the total number of (a) inlier (larger is better) and (b) total (larger is better) matches
found, (c) percent of total matches that are inlier (larger is better), (d) NMI between the
images after alignment (larger is better), and the (e) rotational and (f) translational errors
(smaller is better) relative to when there are no simulated cone loss.
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available for alignment. In Fig. 8, at 30% cone loss, we see that the median number of total
matches dropped from 1700 to less than 50, and the median number of inlier matches dropped
from 430 to less than 20. Yet, at this same level of cone loss, the translation error remained under
8 pixels, and the rotational error remained under 0.2 degrees.

3.4.4. Evaluation of withheld dataset against manual alignments

In our final experiment, we evaluated our algorithm using the 4 test datasets (20 image pairs)
that were withheld during the development of the algorithm. For each dataset, the 5 longitudinal
image pair locations were chosen as follows: one located at each of 150µm, 300µm, and 600µm
temporal to fixation; one located as far temporal to the fovea as possible (at 1350 µm, 900 µm,
1960 µm, and 1640 µm); and one variable location for each subject (900 µm, 450 µm, 1200 µm
and 1200 µm temporal to fixation, respectively). The goal of this experiment was to assess if
the algorithm parameters chosen during development could be generalized to new datasets. In

Fig. 9. Comparison between the manual and automated alignment for the 20 withheld test
dataset image pairs. Shown are the plots for the rotation, scale and translation values for
the alignment transformation, and the intensity similarity (using NMI) of the overlapping
regions after each alignment.
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addition, we report a comparison between the automated alignments and manual alignments
constructed by a trained rater.
For this experiment both confocal and split detection modalities were used in the alignment.

The constellation features were constructed using cones detected automatically via Cunefare et al.
[16]. The results of the experiment were evaluated against manually constructed alignments of
the 20 pairs through the following metrics: NMI between the overlapping regions after alignment,
and the difference of the rotation, translation and scale of the transformations found for the
manual and automated alignments. This evaluation was performed double-blind, where neither
the algorithm operator (MC) nor the manual rater (JIWM) were allowed to observe each others’
alignments before the final comparison between the automated and manual alignments. This
experiment was preregistered at https://osf.io/hmt5j/, prior to manual or automated evaluation of
the images.

Upon completion of the preregistered automated alignments (but before evaluating against the
manual alignments) we observed that the algorithm was failing on many of the new images located
in the periphery of the retina. Post-hoc analysis showed that the primary reason for this was
that the confocal images in the new datasets provided better visualization of the rod cells. This
resulted in rods being falsely identified as cones by the automated cone identification software.
As a consequence, the longitudinal alignment algorithm had additional false positives in the
constellation feature matches that prevented RANSAC from finding the correct transformation.
To address this, we made a post-hoc adjustment to the RANSAC sampling parameter that enforced
equal sampling from each image modality. This generated candidate transformations from the
matches in both modalities, thus preventing the false positives in the confocal images from
completely overriding the correct matches found in the split detection (where the rods were not
as apparent). We verified that this algorithm modification did not appreciably change the results
obtained with the original development dataset. We then compared the manual alignments to the
automated alignments after this adjustment (Fig. 9). The results showed excellent agreement,
both in terms of NMI and in terms of the alignment transformation parameters. The largest
differences, apparent in the figure, are in the rotational parameter, where the two methods can
differ by as much as 2 degrees. The manual rater noted that it is very difficult to simultaneously
determine rotation and scale parameters that cause two image regions to match across the entire
overlapping region, and we regard the differences between the two methods as within a reasonable
margin of error.

4. Discussion

4.1. Algorithm performance

Our evaluation results suggest that our proposed algorithm can produce highly accurate automated
montages of AO longitudinal images. This is demonstrated qualitatively in Fig. 4, where we can
see that the montage was aligned cell-to-cell across multiple arms of the montage. This is an
improvement over current practice, where typically the montages are created independently at
each timepoint and then globally aligned, and manually adjusted for each region of interest. In
such cases, the alignment error will often accumulate across the montage and prevent cell-to-cell
alignment at one end of montage depending on where the global alignment is optimized.

Our quantitative analysis of the alignment accuracy, shown in Fig. 9, further supports the good
performance of our algorithm. We see from the comparison of the transformation parameters
and alignment similarity that the automated alignments agree well with the manual alignments
for each of the image pairs. We observe that the primary differences between the manual and
automated alignments is expressed in the rotational component of the transformation. However,
we note that while the relative difference appears large in the figure, the absolute error does
not exceed 2 degrees. These small alignment parameter differences between the automated and
manual alignments do not appear to result in substantial differences in alignment NMI. In fact, of

https://osf.io/hmt5j/
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the 20 image pairs, the algorithm was able to find an alignment with a better image similarity
than the manual rater in 12 of the 20 cases. This highlights the challenge of finding the correct
alignment between longitudinal AO images. Even for a well trained and experienced manual
rater, the inherent longitudinal intensity variation and residual distortions in the images can result
in uncertainties regarding the correct alignment.

4.2. Limitations

The primary limitation of our proposed algorithm is in its reliance on accurate cone locations
for the constellation feature construction. Failures in cone detection, both false positives and
false negatives, can translate to a decrease in alignment performance. From Fig. 8 we see that in
general the algorithm is fairly robust when there is less than 30 percent cone detection failure.
However, beyond 30 percent loss we see a rapid drop in performance. This may make alignment
problematic for images from subjects with retinal pathology and cone degeneration, where cone
detection is more challenging and the number of detected cones is expected to change over time
because of the disease. For such cases, it may be possible to extend the montaging framework to
use areas with intact cone moasics to help align areas where cone loss impairs alignment.
In Fig. 6 we see that the global performance of the algorithm can depend on the nominal

eccentricity at which the images were acquired. For large eccentricities, the decrease in
performance comes mostly from errors in automated cone detection. The more prominent (yet
inconsistent) visibility of rods at large eccentricities often leads to false positive detections, which
directly interferes with the constellation feature construction. In addition, the deep learning based
cone detection algorithm [16] was not originally trained to detect cones at locations outside of
the parafovea. Retraining of the algorithm using examples from these locations can potentially
help address the performance loss. This could be helpful for cone identifications in general, since
even manual raters show lower agreement in making cone identifications at higher eccentricities
due to rod infiltration. [21]

Conversely, near the fovea, cones are usually detected accurately, but the alignment suffers due
to a lack of unique constellation patterns. At these locations, the cones are tightly packed into
a regular pattern, which causes many of the constellation features to be similar to each other.
This may lead to too many false positive matches for RANSAC to identify the correct inlier
transformation.

The impact of these limitations was observed in our final experiment using a withheld dataset.
We saw that the RANSAC sampling parameter had to be adjusted for the new dataset in order for
the algorithm to operate correctly. It is important to keep the possibility of such adjustments,
which can be easily implemented, in mind when applying the algorithm to future datasets or
patient cases.
Lastly, it is worth noting that any similarity metric we use in our analysis is also inherently

affected by the number of cones in the image (and therefore, the eccentricity at which it was
acquired). This is due to the fact that the cone reflectivity changes across timepoints, but the
intercellular space remains dark. Thus, even when perfectly aligned, longitudinal foveal images
will have less similarity with each other than longitudinal images at higher eccentricities will
have with each other. As noted before, this is an additional reason why using intensity-based
image similarity measures directly for longitudinal AO montaging is problematic.

5. Conclusion

We have presented a fully automated framework for longitudinal montaging of AO images
across timepoints. For alignment, our method uses features constructed from constellations of
cone patterns, which are more robust to cone reflection changes than intensity-based alignment
algorithms. Our results show that the algorithm produces accurate pairwise alignment and is able
to construct full cell-to-cell longitudinal AO montages. The constellation features and montaging
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algorithm proposed in this paper is available as open-source software and can be downloaded at:
https://github.com/BrainardLab/AOAutomontaging.
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