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Abstract

Vision, choice, action, and behavioral engagement arise from neuronal activity that may be 

distributed across brain regions. Here we delineate the spatial distribution of neurons underlying 

these processes. We used Neuropixels probes1,2 to record from ~30,000 neurons in 42 brain 

regions of mice performing a visual discrimination task3. Neurons in nearly all regions responded 

non-specifically when the mouse initiated an action. By contrast, neurons encoding visual stimuli 

and upcoming choices occupied restricted regions in neocortex, basal ganglia, and midbrain. 

Choice signals were rare and emerged with indistinguishable timing across regions. Midbrain 

neurons were activated before contralateral choices and suppressed before ipsilateral choices, 

whereas forebrain neurons could prefer either side. Brain-wide pre-stimulus activity predicted 

engagement in individual trials and in the overall task, with enhanced subcortical but suppressed 

neocortical activity during engagement. These results reveal organizing principles for the 

distribution of neurons encoding behaviorally relevant variables across the mouse brain.

Performing a perceptual decision involves processing sensory information, selecting actions 

that may lead to reward, and executing these actions. It is unknown how the neurons 

mediating these processes are distributed across brain regions, and whether they rely on 

circuits that are shared or distinct. Most studies of action selection (here referred to simply 

as choice) have focused on individual regions such as frontal, parietal, and motor cortex, 

basal ganglia, thalamus, cerebellum, and superior colliculus4–11. However, neural correlates 

of movements, rewards, and other task variables have been observed in multiple brain 

regions, including in areas previously identified as purely sensory12–24. It is therefore 
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possible that many brain regions also participate in action selection. Nevertheless, neuronal 

signals that correlate with action do not necessarily correlate with action selection. To carry 

such choice-related signals, a brain region must contain neurons whose firing selectively 

predicts the chosen action before the action occurs25.

Successful performance in a perceptual task depends not only on selecting the correct action, 

but also on choosing to engage in the task in the first place. Stimuli that drive actions during 

an engaged behavioral state do not necessarily drive actions when disengaged, for example 

in contexts where the action will not lead to reward. Furthermore, even well-trained subjects 

often show varying levels of behavioral engagement or vigilance within a task, resulting in 

varying probability of responding promptly and accurately to sensory stimuli26–28. At times 

of low engagement, stimuli arriving at the sense organs evidently fail to effectively drive the 

circuits responsible for selecting and initiating action. It remains unclear whether this 

context-dependent gating occurs globally29 or whether it involves multiple brain systems 

differentially30.

Brain-wide recording in visual behavior

To determine the distribution of neurons encoding vision, choice, action, and behavioral 

engagement, we recorded neural activity across the brain while mice performed a task that 

allows distinguishing these processes (Fig. 1a-c). This task combined the advantages of two-

alternative forced choice and Go/NoGo designs3,31. On each trial, visual stimuli of varying 

contrast could appear on the left or right sides, or both, or neither. Mice earned a water 

reward by turning a wheel with their forepaws to indicate which side had highest contrast 

(Fig. 1a-c). If neither stimulus was present, they earned a reward for making a third type of 

response: keeping the wheel still for 1.5 s. If left and right stimuli had equal non-zero 

contrast, they were rewarded for left or right turns at random. The same visual stimulus 

could therefore lead to either direction of turn, or to no action, allowing us to dissociate the 

neural correlates of the visual stimuli, of action initiation (turning the wheel vs. holding it 

still), and of action selection (turning left vs. right).

Mice performed the task proficiently (Fig. 1c-d, Extended Data Fig. 1). Their choices were 

most accurate for high-contrast single stimuli (i.e. when the other stimulus was absent; 1.7 

± 2.5% incorrect choices, i.e. turns in the wrong direction; 10.1 ± 8.3% Misses, i.e. failures 

to turn; mean ± s.d., n = 39 sessions, 10 mice). They performed less accurately in more 

challenging conditions: with low-contrast single stimuli (5.1 ± 6.4% incorrect choices; 29.8 

± 19.8% Misses); or with competing stimuli of similar but unequal contrast (20.0 ± 7.9% 

incorrect choices; 13.9 ± 11.7% Misses, on trials with high vs. medium or medium vs. low 

contrast). As expected, in these more challenging cases reaction times were longer (Fig 1d, 

p<10-4, multi-way ANOVA).

While mice performed the task, we used Neuropixels probes1,2 to record from ~30,000 

neurons in 42 brain regions (Fig. 1e-j). Inserting two or three probes at a time yielded 

simultaneous recordings from hundreds of neurons in multiple brain areas during each 

recording session (n=92 probe insertions over 39 sessions in 10 mice, Fig. 1h-i). We 

identified the firing times of individual neurons using Kilosort32 and phy33, and determined 
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their anatomical locations by combining electrophysiological features with histological 

reconstruction of fluorescently-labeled probe tracks (Fig. 1g, Extended Data Figs. 2, 3). 

Across all sessions we recorded from 29,134 neurons (n=747 ± 38 neurons per session, 

mean ± s.e.), of which 22,458 were localizable to one of 42 brain regions.

Propagation of activity during the task

Trial onset was followed by increased average activity in nearly all recorded regions. A 

sizeable fraction of all neurons (60.0%, 13,466 neurons) had significant modulation of firing 

rate during the task. Most of these neurons (74.3%) consistently increased their activity 

during the task, but a sizeable minority (20.2%) consistently decreased (Supplementary Fig. 

1, 2). Neurons were diverse in the times they became active during trials, with timing 

differences both within and between brain areas (Extended Data Fig. 4a, b), however, 

neuronal activity was detectable prior to the wheel movement onset in most regions 

(Extended Data Fig. 4c, d). Similarly widespread activity was observed following reward 

delivery (Extended Data Fig. 4e).

Examining rasters of individual neurons’ activity across trials revealed consistent correlates 

of action initiation, sensory stimuli, or choices (Fig. 2a-c). For example, a neuron in the 

subiculum (Fig. 2a) gave no response to the visual stimuli, but consistently fired prior to 

wheel turns regardless of their direction. Neurons with sensory responses often also showed 

non-specific movement correlates. For example, a neuron in visual cortex (Fig. 2b) showed 

activity following visual stimulus onset that was selective for stimulus location, but it also 

fired following wheel turns, regardless of the subject’s choice (i.e. direction of wheel turn). 

Neurons with choice-selective responses were rare but could be found in select nuclei: for 

example, a neuron in the Zona Incerta (ZI; Fig. 2c) had no visual response, but increased its 

firing rate prior to contralateral choices, with no response before or after ipsilateral choices.

Most of the activity occurring throughout the brain following trial onset reflected non-

specific movement correlates (Fig. 2d-h). When a mouse successfully selected a visual 

stimulus contralateral to the recorded hemisphere, activity emerged first in classical visual 

regions such as visual cortex (VIS) and superficial superior colliculus (SCs), and soon 

spread to most of the remaining recorded regions (Fig. 2d). When the mouse successfully 

selected an ipsilateral stimulus, most areas were again activated, but VIS and SCs were now 

amongst the last areas to respond, rather than the first (Fig. 2e). When the mouse missed a 

contralateral stimulus, leading to no action, activity was found in a “visual pathway” 

consisting of classical visual areas, basal ganglia, and several midbrain structures (Fig. 2f), 

but failed to propagate globally. When the mouse missed an ipsilateral stimulus, essentially 

no activity was seen in the recorded hemisphere (Fig. 2g). The widely distributed activity 

seen following trial onset was therefore present only when animals moved, and regardless of 

the particular stimulus and particular action.

Outside of the task context, responses to visual stimuli were similar to those of Miss trials, 

but generally weaker (Fig. 2h). We measured activity in passive replay periods following 

task performance, when the same stimuli were presented without the opportunity to earn 

rewards. In these passive trials the mice hardly ever turned the wheel (94.1% ± 0.6% of trials 
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with high contrast stimuli had no movement). Stimuli contralateral to the recorded 

hemisphere gave rise to weak activity restricted to the visual pathway (Fig. 2h). No activity 

was seen on average following passive presentation of stimuli ipsilateral to the recorded 

hemisphere (not shown).

Taken together, this analysis of average activity suggests that while responses to visual 

stimuli are largely confined to a restricted visual pathway, neural correlates of action 

initiation are essentially global. To assess the distribution of these signals at a finer scale, 

and to search for signals encoding choice, we next examined the activity of individual 

neurons.

Globally distributed action coding

To analyze the firing correlates of individual neurons, we employed an approach based on 

kernel fitting (Extended Data Fig. 5). We fit each neuron's activity with a sum of kernel 

functions time-locked to stimulus presentation and to movement onset. We fit six stimulus-

locked kernels – one for each of three possible contrast values on each side (‘Vision’ 

kernels) – which captured variations in amplitude and timing of the visual activity driven by 

different stimuli. We fit two movement-locked kernels: an ‘Action’ kernel triggered by a 

movement in either direction, and a ‘Choice’ kernel capturing differences in activity 

between movements to the Left vs. the Right.

To determine which neurons encoded vision, action, and choice, we used a nested test: we fit 

a model including all kernels except the one to be tested and asked whether adding the test 

kernel improved this fit for held-out data. Applying this test to the example neurons from 

before, we find that this method succeeds in quantifying the contralateral visual stimulus 

(Fig. 3a) and action (Fig. 3b) correlates inferred from examining each trial type (c.f. Fig 

2b,a). In determining whether a neuron passed this test, we used parameters which gave 

false-positive error rates of 0.33% on shuffled data (Extended Data Fig. 5h). As our question 

concerns activity predictive of upcoming movements, we applied this analysis only to pre-

movement activity. Consistent with its raster plot (Fig. 2a), the example subicular neuron 

examined earlier required only an Action kernel, indicating entirely non-selective action 

correlates (Fig. 3b). By contrast, the example visual cortical neuron (Fig. 2b) required only 

Vision kernels (Fig. 3a), indicating that it had exclusively visual correlates prior to action 

initiation. The fraction of cross-validated variance the kernels explained was frequently 

small (Fig. 3c; Extended Data Fig. 6a), even for neurons whose mean rates they accurately 

predicted (50.2% for the neuron in Fig. 3a and 13.6% for the neuron in Fig. 3b), as expected 

from trial-to-trial variability and encoding of task-independent variables14,34.

Neurons encoding vision (i.e. requiring Vision kernels) were found in a pathway comprising 

primarily classical visual areas (Fig. 3d,f). They were common in visual cortex (VIS) and 

thalamus, and superficial superior colliculus (SCs), but also were found occasionally in other 

structures such as frontal cortex (MOs, ACA, PL), basal ganglia (CP, GPe, SNr), and several 

midbrain nuclei (SCm, MRN, APN, ZI; Fig. 3d,f, Extended Data Fig. 6a).
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In contrast, neurons encoding action (requiring an Action kernel) were spread throughout all 

recorded regions (Fig. 3e, g). The distribution of these neurons encoding action was 

significantly broader that of neurons encoding visual stimuli (Extended Data Fig. 4f). The 

great majority of neurons encoding action did not require an additional Choice kernel: they 

responded equally for movements in either direction. The rare exceptions requiring a Choice 

kernel will be discussed next.

Forebrain and midbrain choice coding

Neurons encoding specific choices were found in a small subset of brain regions (Fig. 4a,b). 

We identified choice-selective neurons as neurons for which the Choice kernel was required 

to explain their activity, in the nested test described above. These neurons were rare, and 

were found in frontal cortex (MOs, PL, and MOp), basal ganglia (CP, SNr), higher-order 

thalamus, motor-related superior colliculus (SCm), as well as two subcortical nuclei which 

unexpectedly contained neurons selective for choice (MRN and ZI; Fig. 4b). This set of 

regions encoding choice overlapped partially with the visual pathway: both included frontal 

cortex, basal ganglia, and several midbrain structures, but choice-selective neurons were not 

found in VISp. Neurons encoding choice were again significantly more localized than 

neurons encoding action (Extended Data Fig. 4f). To further confirm these conclusions, we 

developed a version of choice probability analysis for tasks with many stimulus conditions, 

called “combined-conditions choice probability” (Methods). This statistic quantifies the 

probability that a neuron’s spike count will be greater on trials with one choice than trials of 

another, for matched stimulus conditions, just as in classic choice probability. Employing 

this method, we obtained similar results (Extended Data Fig. 7).

Choice signals emerged with similar timing across choice-encoding regions (Figure 4c-d). 

To examine timing, we performed two analyses. First, we trained a decoder to predict the 

subject’s choice from recorded population activity, after first subtracting the prediction of 

population activity from the Vision and Action kernels (to yield a decoding of choice 

isolated from visual and non-specific action signals). This population-level decoding 

identified similar areas encoding each variable as did the individual neuron decoding 

(Extended Data Fig. 5g), and we found that the time course of choice decoding could not be 

statistically distinguished between choice-selective regions in frontal cortex, striatum, and 

midbrain (two-way ANOVA on brain region and time, interaction p > 0.05; Fig. 4c). Second, 

we validated this conclusion using joint Peri-Event Canonical Correlation (jPECC) analysis, 

a novel extension of the “joint Peristimulus Time Histogram” method35,36 modified to detect 

correlations in a “communication subspace”37 between two populations. While jPECC 

revealed a consistent time-lag for activity correlations between visual and frontal cortex (and 

between visual cortex and midbrain choice areas), it revealed no lag for activity correlations 

between frontal and midbrain areas (Fig. 4d; Extended Data Fig. 8).

Although the encoding of choice emerged with indistinguishable timing in midbrain and 

forebrain, these regions encoded choice differently (Fig. 4e-h). In midbrain (MRN, SCm, 

SNr, and ZI) nearly all choice-selective neurons (53/54, 98%) preferred contralateral choices 

(Fig. 4e, top, and Fig. 4f). By contrast, choice-selective neurons in forebrain (MOs, PL, 

MOp, and CP) could prefer either choice, with a sizeable proportion preferring ipsilateral 
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choices (19/48, 40%, significantly more than in the midbrain (p<10-5, Fisher’s exact test; 

Fig. 4e, bottom, and Fig. 4g). Many midbrain choice-selective neurons, moreover, exhibited 

directionally-opposed activity: their activity increased before one choice and decreased 

below baseline before the other (29/54, 54%; note points to the left of x=0 in Fig. 4f). In 

forebrain, by contrast, neurons typically increased firing prior to both left and right choices 

(10/48, 21% suppressed for non-preferred choice, significantly less than in the midbrain; 

p<10-3, Fisher’s exact test; Fig. 4g). Neurons encoding choice, therefore, exhibit a 

distinctive ‘bilateral’ encoding of both choices in the forebrain, versus a ‘unilateral’ 

encoding of contralateral choices in the midbrain (Fig. 4h).

Distributed coding of task engagement

We next asked whether engagement in a trial or in the overall task corresponded to 

characteristic patterns of brain activity. We reasoned that Go trials (i.e. either Left or Right 

choice trials), Miss trials, and passive visual responses (measured outside the task) might 

represent three points along a continuum corresponding to progressively lower levels of task 

engagement.

We began by comparing two conditions where both visual stimuli and behavioral reports 

were identical: passive visual responses measured outside the task context, and responses on 

Miss trials in task context (Fig. 5a-c). Even though the two conditions were matched for 

visual stimulation and (lack of) action, they were accompanied in many areas by different 

activity, both before and after stimulus presentation (Fig. 5a, Extended Data Fig. 6b). 

Consistent with the average firing rates presented earlier (Fig. 2f,h), more neurons were 

significantly activated by visual stimuli during the task (Miss trials), than in the passive trials 

(Fig. 5b). Consistent differences were also seen in pre-stimulus firing rates: for instance, 

activity in VISp was lower in the task (Miss trials) than in the passive trials, whereas activity 

in CP showed the opposite modulation (Fig. 5a). While neocortex and sensory thalamus 

showed a net decrease in pre-stimulus activity during task context, other regions – including 

basal ganglia and other subcortical choice-encoding areas – showed a consistent increase 

(Fig. 5c, Extended Data Fig. 9a). This effect extended also to neurons that were not 

otherwise responsive during the task (Supplementary Fig. 3).

Consistent with the hypothesis of a continuum of engagement across passive, Miss, and Go 

trials, the pattern of activation accompanying task engagement predicted successful 

performance on individual trials (Fig. 5d-f). For this analysis, we examined only pre-

stimulus activity, which could not be conflated with the large non-specific responses related 

to movements. Areas that showed differences in pre-stimulus firing rate between task and 

passive contexts also showed similar differences between Go and Miss trials (Fig. 5d). 

Indeed, it was possible to predict whether an animal would respond to the stimulus on a 

given trial within the task context, by projecting pre-stimulus population activity onto a 

weight vector given by the difference of pre-stimulus activity in passive and task contexts 

(“engagement index”, Fig. 5e). This engagement index differed between Go and Miss trials 

consistently across recordings (Fig. 5f; paired t-test, p<10-4), an effect that could not be fully 

explained by variability in pupil diameter, in overt movements detectable by video 

recordings, in the presence of a reward on the previous trial, or in the inter-trial interval 
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(Extended Data Fig. 9b-k). This index is therefore distinguishable from correlates of 

movement, reward, and arousal, and represents a specific brain-wide neural signature of 

engagement.

Discussion

Using brain-wide recordings of neuronal populations, we delineated simple organizing 

principles for the spatial distribution of neurons across the brain carrying distinct behavioral 

correlates in a visual choice task. Neurons encoding non-selective action are global. Neurons 

encoding choice are localized and exhibit distinct encodings within ‘unilateral’ midbrain and 

‘bilateral’ forebrain areas. Correlates of engagement are characterized by enhanced 

subcortical activity and suppressed neocortical activity.

Neurons with action correlates are found globally: neurons in nearly every brain region were 

non-selectively activated in the moments leading up to movement onset. This global 

representation of action is consistent with reports of widespread action correlates in multiple 

species14,34,38, and suggests that non-specific action correlates may in fact be ubiquitous in 

the mouse brain, cortically and subcortically. These signals may comprise forms of corollary 

discharge39, but cannot reflect sensory re-afference as they were observed prior to movement 

onset. Global non-selective action correlates may underlie brain-wide task-related activity 

observed in rodents29 and humans23. This ubiquitous presence of non-selective action 

correlates underscores the importance of multi-alternative tasks for studying the neural 

correlates of behavioral choice: go/nogo tasks cannot distinguish neurons that 

nonspecifically fire for any action, from neurons selective for specific choices.

The set of areas encoding choice is spatially restricted and is characterized by qualitatively 

distinct midbrain and forebrain components. It includes many of the areas classically 

implicated in choice behavior including frontal cortex5, striatum6, substantia nigra pars 

reticulata7, and the deep layers of the superior colliculus8,40, but also unexpected regions 

including the midbrain reticular nucleus and zona incerta. These regions also contained 

neurons encoding visual stimuli, even during passive stimulus presentation; whether visual 

neurons would be found these “motor” areas in untrained animals is not clear from these 

data. Our analyses revealed a striking anatomical organizing principle: forebrain (i.e. 

neocortex and striatum) choice neurons are enhanced prior to both contra- and ipsilateral 

choices and can prefer either, but midbrain neurons are almost exclusively enhanced for 

contralateral choices and often also suppressed for ipsilateral choices. Despite this distinct 

encoding, we could not distinguish the timing of choice-related signals between these 

regions, an observation parsimoniously explained by a recurrent loop across them 

(Supplementary Fig. 4a).

Brain-wide correlates of engagement are characterized by enhanced subcortical activity and 

suppressed neocortical activity prior to visual stimulus onset. Engagement-related cortical 

suppression might seem surprising, given that visual cortex is required for performance of 

this task3,41. However, reduced spiking activity and hyperpolarization has been associated 

with increased arousal in multiple cortical areas, an effect that may improve signal-to-noise 

ratios of sensory representations42,43. Enhanced activity in subcortical areas, by contrast, 
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brings activity in these regions closer to the level at which actions are initiated, providing a 

potential mechanism for increased probability of action in engaged states (Supplementary 

Fig. 4b-d).

In summary, we have identified organizing principles that succinctly describe the 

distribution and character of the neuronal correlates of a lateralized visual discrimination 

task across the mouse brain. Future work will be required to determine the circuit 

mechanisms that enforce these principles; how they extend to areas such as cerebellum and 

brainstem omitted from the current survey; and the extent to which similar principles govern 

the neural correlates of different choice tasks.

Methods

Experimental procedures were conducted according to the UK Animals Scientific 

Procedures Act (1986) and under personal and project licenses released by the Home Office 

following appropriate ethics review.

Subjects

Experiments were performed on 10 male and female mice, between 11 and 46 weeks of age 

(Supplementary Table 1). Multiple genotypes were employed, including: Ai95;Vglut1-Cre 

(B6J.Cg-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/MwarJ crossed with B6;129S-

Slc17a7tm1.1(cre)Hze/J), TetO-G6s;Camk2a-tTa (B6;DBA-Tg(tetO-GCaMP6s)2Niell/J 

crossed with B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ), Snap25-G6s (B6.Cg-

Snap25tm3.1Hze/J), Vglut1-Cre, and wild-type (C57Bl6/J). None of these lines are known to 

exhibit aberrant epileptiform activity44. Of 13 subjects initially trained for inclusion in this 

study, three developed health complications before training completed and were not 

recorded. The other 10 successfully learned the task (see criteria below) and were included. 

The sample sizes (n = 10 mice; n = 39 recording sessions; n = 29,134 neurons) were not 

determined with a power analysis.

Surgery

A brief (~1 h) initial surgery was performed under isoflurane (1-3% in O2) anesthesia to 

implant a steel headplate (~15 x 3 x 0.5mm, ~1 g) and, in most cases, a 3D-printed recording 

chamber. The chamber was a semi-conical, opaque piece of polylactic acid (PLA) with 12 

mm diameter upper surface, and lower surface designed to fit to the shape of an average 

mouse skull, exposing approximately the area from 3.5 anterior to 5.5 posterior to bregma, 

and 4.5 left to 4.5 right, and narrowing near the eyes. The implantation method largely 

followed the method of Guo et al45 with some modifications and was described 

previously44. In brief, the dorsal surface of the skull was cleared of skin and periosteum and 

prepared with a brief application of green activator (Super-Bond C&B, Sun Medical Co.). 

The chamber was attached to the skull with cyanoacrylate (VetBond; World Precision 

Instruments) and the gaps between the cone and the skull were filled with L-type radiopaque 

polymer (Super-Bond C&B). A thin layer of cyanoacrylate was applied to the skull inside 

the cone and allowed to dry. Thin layers of UV-curing optical glue (Norland Optical 

Adhesives #81, Norland Products) were applied inside the cone and cured until the exposed 
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skull was covered. The headplate was attached to the skull over the interparietal bone with 

Super-Bond polymer, and more polymer was applied around the headplate and cone.

Following recovery, mice were given three days to recover while being treated with 

carprofen, then acclimated to handling and head-fixation prior to training.

Two-alternative unforced choice task

The two-alternative unforced choice task design was described previously3. In this task, 

mice were seated on a plastic apparatus with forepaws on a rotating wheel, and were 

surrounded by three computer screens (Adafruit, LP097QX1) at right angles covering 270 x 

70 degrees of visual angle (d.v.a.). Each screen was ~11cm from the mouse’s eyes at its 

nearest point and refreshed at 60Hz. The screens were fitted with Fresnel lenses (Wuxi 

Bohai Optics, BHPA220-2-5) to ameliorate reductions in luminance and contrast at larger 

viewing angles near their edges, and these lenses were coated with scattering window film 

(“frostbite”, The Window Film Company) to reduce reflections. The wheel was a ridged 

rubber Lego wheel affixed to a rotary encoder (Kubler 05.2400.1122.0360). A plastic tube 

for delivery of water rewards was placed near the subject’s mouth. Licking behavior was 

monitored by attaching a piezo film (TE Connectivity, CAT-PFS0004) to the plastic tube and 

recording its voltage. Full details of the experimental apparatus including detailed parts list 

can be found at http://www.ucl.ac.uk/cortexlab/tools/wheel.

A trial was initiated after the subject had held the wheel still for a short interval (duration 

uniformly distributed between 0.2-0.5 s on each trial; Figure 1b). At trial initiation, visual 

stimuli were presented at the center of the left and right screens, or directly left and right of 

the subject. These stimulus locations are in the central of the monocular zones of the 

mouse’s visual field so that no eye or head movements were required for the mice to see 

them. The stimulus was a Gabor patch with orientation 45 degrees, sigma 9 d.v.a., and 

spatial frequency 0.1 cycles/degree. After stimulus onset there was a random delay interval 

of 0.5-1.2 s, during which time the subject could turn the wheel without penalty, but visual 

stimuli were locked in place and rewards could not be earned. The subjects nevertheless 

typically responded immediately to the stimulus onset. At the end of the delay interval, an 

auditory tone cue was delivered (8 kHz pure tone for 0.2 s) after which the visual stimulus 

position became coupled to movements of the wheel. Wheel turns in which the top surface 

of the wheel was moved to the subject’s right led to rightward movements of stimuli on the 

screen, i.e. a stimulus on the subject’s left moved towards the central screen. Put another 

way, clockwise turns of the wheel, from the perspective of the mouse, led to clockwise 

movement of the stimuli around the subject. A left or right turn was registered when the 

wheel was turned by an amount sufficient to move the visual stimuli by 90 d.v.a. in either 

direction (~20 mm of movement of the surface of the wheel). When at least one stimulus 

was presented, the subject was rewarded for driving the higher contrast visual stimulus to the 

central screen (if both stimuli had equal contrast, left/right turns were rewarded with 50% 

probability). When no stimuli were presented, the subject was rewarded if no turn was 

registered during the 1.5 s following the go cue. There were therefore three trial outcomes 

that could lead to reward depending on the stimulus condition (left turn, right turn, no turn), 

and in this sense the task was a three-alternative task. Immediately following registration of 
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a choice or expiry of the 1.5 s window, feedback was delivered. If correct, feedback was a 

water reward (2 – 3 μL) delivered by the opening of a valve on the water tube for a 

calibrated duration. If incorrect, feedback was a white noise sound played for 1 s. During the 

1 s feedback period, the visual stimulus remained on the screen. After a subsequent inter-

trial interval of 1 s, the mouse could initiate another trial by again holding the wheel still for 

the prescribed duration.

Trials of different contrast conditions were randomly interleaved. The experimenter was not 

blinded to contrast condition either during data acquisition or during analysis.

Training protocol

Mice were trained on this task with the following shaping protocol. First, high contrast 

stimuli (50 or 100%) were presented only on the left or the right, with an unlimited choice 

window, and repeating trial conditions following incorrect choices (‘repeat on incorrect’). 

Once mice achieved high accuracy and initiated movements rapidly – approximately 70 or 

80% performance on non-repeat trials, and with reaction times nearly all < 1 s, but at the 

experimenter’s discretion – trials with no stimuli were introduced, again repeating on 

incorrect. Once subjects responded accurately on these trials (70 or 80% performance, at 

experimenter’s discretion), lower contrast trials were introduced without repeat on incorrect. 

Finally, contrast comparison trials were introduced, starting with high vs low contrast, then 

high vs medium and medium vs low, then trials with equal contrast on both sides. The final 

proportion of trials presented was weighted towards easy trials (high contrast vs zero, high 

vs low, medium vs zero, and no-stimulus trials) to encourage high overall reward rates and 

sustained motivation.

On most trials for which subjects eventually made a left or right turn by the end of the trial, 

the subjects responded immediately to the stimulus presentation, turning the wheel within 

400 ms of stimulus appearance (64.9 ± 14.0% s.d., n=39 sessions), nearly always in the 

same direction as their final choice (96.6 ± 3.4%). For this study, data analyses focused on 

this initial 400 ms period, and we defined Left and Right Choice trials as those in which this 

period contained the onset of a clockwise or counterclockwise turn of sufficient amplitude 

(90 d.v.a.), and NoGo trials as those in which it contained no detectable movement. To 

exclude trials in which wheel turns were coincidentally made before subjects could respond 

to the stimuli, only trials with movement onset between 125 to 400ms post-stimulus onset, 

or with no movement of any kind during the window from -50 to 400ms post-stimulus onset, 

were included. Trials with other movements, that were detectable but would not have 

resulted in registering a choice by the end of the movement, were excluded.

The algorithm for detecting wheel movement onsets (“findWheelMoves3”, https://

github.com/cortex-lab/wheelAnalysis/blob/master/+wheel/findWheelMoves3.m) was 

designed in order to identify the earliest moment at which the wheel began detectably 

moving. First, non-movement periods were identified as those which had less than 1.1 mm 

of wheel movement over 0.2 s duration. Next, a dilation and contraction of these periods was 

performed with size 0.1 s to remove gaps smaller than this. Finally, the timing of the ends of 

the non-movement periods were refined by looking sequentially backwards in time to 

identify the first moment at which the position deviated by more than a smaller threshold of 
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0.2 mm. The double-threshold procedure (first 1.1 mm, then looking backwards for 0.2 mm) 

was necessary because 0.2 mm is just two units of the rotary encoder’s measurement, and 

these two-unit steps could happen due to noise at any time. In this way, the movement onsets 

(and consequently the reaction times) were measured at the resolution of the rotary encoder. 

Smaller detection thresholds will lead to earlier detection of wheel turns, but potentially at 

the risk of false-positive detections. To assess how our detector performed, we decoded the 

subject’s choice from the instantaneous wheel velocity (difference in wheel position 

between t and t-10 ms) at different times relative to detected movement onset (Extended 

Data Fig. 1q). The decoder performed essentially at chance 50 ms prior to movement onset 

(47.7%) compared to near perfect performance 50 ms after movement onset (94.6%).

Behavioral trials when the mouse was disengaged were excluded from analysis. These trials 

were defined as Miss trials (stimulus present but wheel not turned) preceded by two or more 

other Miss trials, as well as all NoGo trials occurring consecutively at the end of the session.

When analyzing activity following reward delivery (Extended Data Fig. 4e), only correct 

NoGo trials were included, i.e. trials with no visual stimulus and no wheel movement.

Sessions were included when at least 12 trials of each type (Left, Right, NoGo) could be 

included for analysis, and when anatomical localization was sufficiently confident (see 

below).

For analyses requiring trials with different choices but matched for stimulus contrast, we 

considered all trials with contralateral stimulus contrast greater than zero, and split them by 

low, medium, and high contralateral contrast. For each contrast level, we counted the 

number of trials with that contrast and each response type (Left or Right; NoGo; or passive 

condition). We took the minimum of these three numbers, and selected that many trials 

randomly from each group. This resulted in three sets of trials - trials with Left or Right 

choices; trials with NoGos; and trials in the passive condition – which each contained low, 

medium, and high contralateral contrasts but which all contained exactly the same numbers 

of each contrast. When fewer than 10 such trials could be found, the session was excluded 

for the matched-contrast analyses (n=34 of 39 sessions included).

Video monitoring

Eye and body movements were monitored by illuminating the subject with IR light (830nm, 

Mightex SLS-0208-A). The right eye was monitored with a camera (The Imaging Source, 

DMK 23U618) fitted with zoom lens (Thorlabs MVL7000) and long-pass filter (Thorlabs 

FEL0750), recording at 100Hz. Body movements were monitored with another camera 

(same model but with a different lens, Thorlabs MVL16M23) situated above the central 

screen, recording at 40Hz.

Neuronal recordings

Recordings were made using Neuropixels (“Phase3A Option 3”) electrode arrays1, which 

have 384 selectable recording sites out of 960 sites on a 1 cm shank. Probes were mounted 

to a custom 3D-printed PLA piece and affixed to a steel rod held by a micromanipulator 

(uMP-4, Sensapex Inc.). To allow later track localization, prior to insertion probes were 
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coated with a solution of DiI (ThermoFisher Vybrant V22888 or V22885) by holding 2μL in 

a droplet on the end of a micropipette and touching the droplet to the probe shank, letting it 

dry, and repeating until the droplet was gone, after which the probe appeared pink.

On the day of recording or within two days before, mice were briefly anaesthetized with 

isoflurane while one or more craniotomies were made, either with a dental drill or a biopsy 

punch. After at least three hours of recovery, mice were head-fixed in the setup. Probes had a 

soldered connection to short external reference to ground; the ground connection at the 

headstage was subsequently connected to an Ag/AgCl wire positioned on the skull. The 

craniotomies as well as the wire were covered with saline-based agar. The agar was covered 

with silicone oil to prevent drying. In some experiments a saline bath was used rather than 

agar. Two or three probes were advanced through the agar and through the dura, then 

lowered to their final position at ~10 μm/s. Electrodes were allowed to settle for ~15 min 

before starting recording. Recordings were made in external reference mode with LFP gain 

= 250 and AP gain = 500. Recordings were repeated at different locations on each of 

multiple subsequent days (Supplementary Table 2), performing new craniotomy procedures 

as necessary. All recordings were made in the left hemisphere. The ability of a single probe 

to record from multiple areas, and the use of multiple probes simultaneously, led to a 

number of areas being recorded simultaneously in each session (Supplementary Table 3).

Passive stimulus presentation

After each behavior session we performed a passive replay experiment while continuing to 

record from the same electrodes. Mice were presented with two types of sensory stimuli 

without possibility of receiving reward for any behavior: replay of task stimuli; and sparse 

flashed visual stimuli for receptive field mapping.

The replayed task stimuli were: left and right visual stimuli of each contrast; some 

combinations of left and right visual stimuli simultaneously; go cue beeps; white noise 

bursts; and reward valve clicks (but with a manual valve closed so that no water was 

delivered). These stimuli were replayed at 1-2 s randomized intervals for 10 or 25 randomly 

interleaved repetitions each.

Receptive fields were mapped with white squares of 8 d.v.a. edge length, positioned on a 10 

x 36 grid (some stimulus positions were located partially off-screen) on a black background. 

The stimuli were shown for 10 monitor frames (167ms) at a time, and their times of 

appearance were independently randomly selected to yield an average rate of ~0.12 Hz.

Data analysis

The data were automatically spike sorted with Kilosort32 (https://github.com/cortex-lab/

Kilosort) and then manually curated with the ‘phy’ gui (https://github.com/kwikteam/phy). 

Extracellular voltage traces were preprocessed common-average referencing46: subtracting 

each channel’s median to remove baseline offsets, then subtracting the median across all 

channels at each time point to remove artifacts. During manual curation, each set of events 

(‘unit’) detected by a particular template was inspected and if the events (‘spikes’) 

comprising the unit were judged to correspond to noise (zero or near-zero amplitude; non-

physiological waveform shape or pattern of activity across channels), the entire unit was 
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discarded. Units containing low-amplitude spikes, spikes with inconsistent waveform 

shapes, and/or refractory period contamination were labeled as ‘multi-unit activity’ and not 

included for further analysis. Finally, each unit was compared to similar, spatially 

neighboring units to determine whether they should be merged, based on spike waveform 

similarity, drift patterns, or cross-correlogram features. Units were also excluded if their 

average rate in the analysis window (stimulus onset to 0.4 s after; ‘trial firing rate’) was less 

than 0.1 Hz. Units passing these criteria were considered to reflect the spiking activity of a 

neuron.

Neurons were only included for further analysis when at least 13 neurons passing the above 

criteria were identified as coming from the same brain region, in the same experiment. 

Furthermore, brain regions were only included for which recordings from at least two 

subjects had sufficient numbers of neurons.

To determine whether a neuron was active during the task (Supplementary Fig. 1), a set of 

six statistical tests were used to detect changes in activity during various task epochs and 

conditions: 1) Wilcoxon signrank test between trial firing rate (rate of spikes between 

stimulus onset and 400 ms post-stimulus) and baseline rate (defined in period -0.2 to 0 s 

relative to stimulus onset on each trial); 2) signrank test between stimulus driven rate (firing 

rate between 0.05 and 0.15 s after stimulus onset) and baseline rate; 3) signrank test between 

pre-movement rates (-0.1 to 0.05 s relative to movement onset) and baseline rate (for trials 

with movements); 4) Wilcoxon ranksum test between pre-movement rates on left choice 

trials and those on right choice trials; 5) signrank test between post-movement rates (-0.05 to 

0.2 s relative to movement onset) and baseline rate; 6) ranksum test between post-reward 

rates (0 to 0.15 s relative to reward delivery for correct NoGos) and baseline rates. A neuron 

was considered active during the task, or to have detectable modulation during some part of 

the task, if any of the p-values on these tests were below a Bonferroni-corrected alpha value 

(0.05/6 = 0.0083). However, because the tests were coarse and would be relatively 

insensitive to neurons with transient activity, a looser threshold was used to determine the 

neurons included for statistical analyses (Figs. 3-5): if any of the first four tests (i.e. those 

concerning the period between stimulus onset and movement onset) had a p-value less than 

0.05.

In determining the neurons statistically significantly responding during different task 

conditions (Fig. 2d-h, right sub-panels; Fig. 5b), the mean firing rate in the post-stimulus 

window (0 to 0.25 s), taken across trials of the desired condition, was z-scored relative to 

trial-by-trial baseline rates (from the window -0.1 to 0) and taken as significant when this 

value was > 4 or < -4, equivalent to a two-sided t-test at p<10-4.

For visualizing firing rates (Extended Data Fig. 4), the activity of each neuron was then 

binned at 0.005 s, smoothed with a causal half-Gaussian filter with standard deviation 0.02 s, 

averaged across trials, smoothed with another causal half-gaussian filter with standard 

deviation 0.03 s, baseline subtracted (baseline period -0.02 to 0 s relative to stimulus onset, 

including all trials in the task), and divided by baseline + 0.5 sp/s. Neurons were selected for 

display if they had a significant difference between firing rates on trials in the task with 

Steinmetz et al. Page 13

Nature. Author manuscript; available in PMC 2020 May 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



stimuli and movements versus those without both, using a sliding window 0.1 s wide and in 

steps of 0.005 s (ranksum p<0.0001 for at least three consecutive bins).

Visual receptive fields (Extended Data Fig. 2d) were determined by sparse noise mapping 

outside the context of the behavioral task. The evoked rates for each presentation were 

measured as the spike count in the 200ms following stimulus onset. The rates evoked by 

stimuli at the peak location and surrounding four nearest locations were combined and 

compared to the rates for all locations > 45 d.v.a. from the peak location using a Wilcoxon 

ranksum test. Any neurons for which the p value of the test was less than 10-6 were counted 

as having a significant visual receptive field. If the peak receptive field location was within 

18 d.v.a. of the location used for the visual stimulus in the behavioral task (i.e. within 2x the 

standard deviation of the Gaussian aperture of that stimulus), the neuron was counted as 

having an ‘on-target’ receptive field. Note that neurons are included in analyses regardless of 

receptive field location; in particular, recorded LGd neurons did not have receptive field 

locations overlapping with task stimuli.

Kernel regression analysis

To identify choice-selective neurons, we began by fitting a ‘kernel regression’ model47–49. In 

this analysis, the firing rate of each neuron is described as a linear sum of temporal filters 

aligned to task events. For the current study, only visual stimulus onset and wheel movement 

onset kernels were required, since we consider here only the period in between the two. In 

the model, the predicted firing rate f n t  for neuron n is given as

f n t = ∑
c

∑
ts ∈ Sc

Kc, n t − ts + ∑
tm ∈ M

Km, n t − tm + DmKD, n t − tm

Here, c represents of the the 6 stimulus types (contralateral low, medium, or high, or 

ipsilateral low, medium, or high), Sc represents the set of times for which this contrast 

appeared, and Kc,n(t) represents the Vision kernel function of this contrast for neuron n. M 
represents the set of movement times and Km,n(t) represents the Action kernel for neuron n; 

Dm represents direction of movement m (encoded as ±1), and KD,n represents the Choice 

kernel for neuron n. The Vision kernels Kc,n(t) are supported over the window -0.05 to 0.4 s 

relative to stimulus onset, and the Action and Choice kernels are supported over the window 

-0.25 to 0.025 s relative to movement onset. Prior to estimating the kernels, the discretized 

firing rates fn(t) for each neuron were estimated by binning spikes into 0.005 s bins and then 

smoothing with a causal half-Gaussian filter with standard deviation 0.025 s. The Vision 

kernels therefore contain Lc = 90 time bins, while movement kernels contain Ld = 55 time 

bins.

The large number of parameters to be fit, combined with the relatively small number of trials 

of each type pose a challenge for estimation. We devised a solution to this problem that 

leverages the large number of neurons recorded using reduced rank regression (Extended 

Data Fig. 5b), which we found to give better cross-validated results (see next section).
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First, for each kernel to be fit, we construct a Toeplitz predictor matrix (Extended Data Fig 

5d). For stimuli of contrast c, we define a Toeplitz predictor matrix Pc of size T × Lc, where 

T is the total number of time points in the training set, and Lc is the number of lags required 

for the Vision kernels. The predictor matrix contains diagonal stripes starting each time a 

visual stimulus of contrast c is presented: Pc(t, l) = 1 if t – l ∈ Sc and 0 otherwise. Predictor 

matrices of size T × Ld were defined similarly for the Action and Choice kernels, and the six 

stimulus predictor matrices and two movement predictors are horizontally concatenated to 

yield a global prediction matrix P of size T × 650. (650 = 6Lc + 2Ld is the total length of all 

kernels for one neuron.)

The simplest approach to fit the kernel shapes would be to minimize the squared error 

between true and predicted firing rate using linear regression. To do this, we would 

horizontally concatenate the rate vectors of all N neurons together into a T × N matrix F, 

and estimate the kernels for each neuron by finding a matrix K of size 650 × N to minimize 

the squared error:

E = F−PK 2

However, as each kn has 650 parameters, linear regression results in noisy and overfit 

kernels when fit to a single neuron, particularly given the high trial-to-trial variability of 

neuronal firing. Although expressing the kernels as a sum of basis functions can reduce the 

number of required parameters47, the success of this method depends strongly on the choice 

of basis functions, with an appropriate choice will differ depending on properties of the task 

and stimuli. The large number of neurons in the current dataset allows an alternative 

approach.

This approach is based on reduced rank regression50, which allows regularized estimation by 

factorizing the kernel matrix K into the product of a 650 × 650 matrix B and 650 × N matrix 

W minimizing the total error:

E = F−PBW 2

The T × r matrix PB may be considered as a set of temporal basis functions, which can be 

linearly combined to estimate each neuron’s firing rate over the whole training set. Reduced 

rank regression ensures that these basis functions are ordered, so that predicting population 

activity from only the first r columns will result in the best possible prediction from any rank 

r matrix.

To estimate each neuron’s kernel functions, we estimated a weight vector wn to minimize an 

error En = |fn – PBwn|2 for each neuron with elastic net regularization (using the package 

cvglmnet for Matlab51 with parameters α = 0.5 and λ = 0.5), and used cross-validation to 

determine the optimal number of columns rn of PB to keep when predicting neuron n. The 

kernel functions for neuron n were then unpacked from the 650-dimensional vector obtained 

by multiplying the first rn columns of B by wn. Neurons with total cross-validated variance 

explained of <2% were excluded from analyses.
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Comparison of reduced-rank model to alternative models

To demonstrate the validity of this reduced-rank kernel method, we compared its 

performance of the reduced-rank regression method to two alternative approaches to spike 

train prediction: 1) Fitting regression to the Toeplitz predictor matrix directly; and 2) A 

model with raised cosine basis functions (Extended Data Fig. 5d).

The Toeplitz predictor matrix was the matrix Pc described above. The cosine predictor 

matrix was constructed similarly, but with each row containing a raised cosine of width 100 

ms, and spaced by 25 ms. The cosine predictor matrix therefore contained Lc = 18 rows for 

each of the 6 contrasts, and Ld = 11 time rows for each movement kernel, for 130 predictors 

total (Extended Data Fig. 5d).

To evaluate the performance of these three methods we fit regression weights with elastic net 

regression as described above, and evaluated performance as the percentage of variance 

explained (5-fold cross validation across trials). To compare models fairly, the number of 

columns included in the reduced-rank model was not allowed to vary per neuron as 

described above, but was instead fixed at n=18 components. The reduced-rank projection 

matrix B was not itself cross-validated. The reduced rank method outperformed both other 

methods (Extended Data Fig. 5e)

To estimate the degree to which differing performance of the models arose from over- vs. 

under-fitting, we computed the “proportion of overfit explained variance” as:

CVtrain − CVtest
CVtrain

where CVtrain is the train set variance explained and CVtest is the test set variance explained, 

thus quantifying the difference between the two (a measure of overfitting) relative to the 

total variance explained (Extended Data Fig. 5f).

Determining individual neuron selectivity

To assess the selectivity of individual neurons for each kernel, we used a nested approach. 

We first fit the activity of each neuron using the reduced rank regression procedure above 

(including deriving a new basis set), but excluding the kernel to be tested. We subtracted this 

prediction from the raw data to yield residuals, representing aspects of the neuron’s activity 

not explainable from the other kernels. We then repeated the reduced rank regression 

procedure one more time, using the residual firing rates as the independent variable, and 

using only the test kernel. The cross-validated quality of this fit determined the variance 

explainable only by the test kernel. If this variance explained was >2%, the neuron was 

deemed selective for that kernel and was included in Fig. 3d,e or Fig. 4b.

In principle, inaccuracies in the model fits from one kernel could leave variability to be 

explained by another correlated variable, resulting in false positives from this test. For 

instance, since motor actions are correlated with visual stimuli, activity related to task-

unrelated movements (e.g., as reported in Ref. 14) could appear to be visually-related signals 
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if it was not accurately captured by the Action and Choice kernels. However, we consider it 

unlikely that a significant proportion of the Contralateral Vision correlates reported here 

arise from such a confound, since the same argument should apply to Ipsilateral Vision 

correlates, and we found very little of such correlates (Extended Data Fig. 5g).

Another possible source of error is that neurons were chosen for inclusion in the analysis 

based on criteria that could relate to the results of the analysis. Specifically, one of the 

criteria by which a neuron could be included was the observation of significant differences 

between Left and Right choice trials (see above). However, our empirically estimated false 

discovery rate is very low (0.3%, Extended Data Fig. 5h), and it should not differ between 

brain regions. Thus, the observation that choice-selective neurons were not found in most 

brain regions studied is an internal control, showing that false discovery of neurons based on 

analysis inclusion criteria cannot account for our findings.

Estimation of false positive rate for determining individual neuron selectivity with reduced-
rank kernel regression

To choose the threshold for counting a neuron as selective, we searched for a value giving 

low false-positive error rates for choice selective neurons. To estimate false positive rates, 

we performed a shuffle analysis, re-labeling each trial with a Left or Right choice with a 

randomly drawn choice from another Left or Right choice trial, without replacement. The 

analysis was then repeated from the start, including fitting the reduced rank regression and 

the cross-validated nested model. We selected the threshold for counting a neuron as choice 

selective to ensure a low false-positive error rate as assessed with this measure (0.33%; 

Extended Data Fig. 5h).

Population decoding of task correlates

To perform population decoding (Figure 4c; Extended Data Fig. 5g), we began with the 

residual firing rates produced as described above, produced by fitting without a test kernel. 

We then split trials in a binary fashion: trials that had vs. did not have an ipsilateral stimulus; 

had vs. did not have a contralateral stimulus; had vs. did not have any movement (either left 

or right); had left choice vs. had right choice (considering only trials with one of the two). 

We identified a population coding direction encoding the difference between the two sets of 

trials, by fitting an L1-regularized logistic regression on data from training trials, using the 

period 0.05 to 0.15 s relative to stimulus onset for Vision decoding, and the period -0.05 to 0 

s relative to movement onset for Action or Choice decoding. We then predicted the binary 

category of test data by projecting firing rates from test set trials, from each time point 

during the trial, onto the weight vector of the logistic regression. (Although it is in principle 

possible that these signals are encoded in a nonlinearly separable way, the robust predictions 

obtained suggest information can be read out linearly.) The population decoding was taken 

as the difference between projections between test set trials of each binary category. For 

Action decoding, where trials with Left or Right choices were compared to those with 

neither, a “movement onset time” was chosen for trials without a movement randomly from 

the distribution of movement onset times on Left and Right choice trials.
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To statistically compare decoding time course across areas, we took the population decoding 

score from each key area in each recording (n=29 populations from frontal cortex including 

MOs, PL, and MOp; n=29 populations from midbrain including SCm, MRN, SNr, ZI; n = 5 

striatum, CP), and normalized each so the mean across recordings within an area was 1 at 

choice time. We then performed a two-way ANOVA, with factors time relative to movement 

onset and area (frontal, midbrain, striatum). We found a significant effect of time (50 d.f., F 

= 10.43, p<10-71) but no significant effect of area (2 d.f., F = 0.28, p<0.05) and no 

significant interaction between time and area (100 d.f., F = 0.12, p>0.05).

Joint Peri-event Canonical Correlation (jPECC) analysis

To perform jPECC analysis (Figure 4d, Extended Data Fig. 8), we took spike counts of 

individual neurons from simultaneously recorded regions, combining neurons from all 

regions within a group (“VIS”: VISp, VISpm, VISl, VISrl, VISa, VISam; “Midbrain”: SCm, 

MRN, ZI, SNr; “Frontal”: MOs, MOp, PL). Thus, only one jPECC per pair of region groups 

could be computed per recording. Spikes were counted in 10 ms bins and smoothed with a 

half-gaussian causal filter with 25 ms standard deviation, and normalized by dividing by 

baseline +1 sp/s. For each region group, principal components analysis was performed 

across time points and trials to reduce population activity to 10 dimensions. Trials were 

divided 10-fold into training and test sets. Canonical correlation analysis was performed on 

the training set PCs from each region group, L2 regularized using λ = 0.5. The test set PCs 

were projected onto the top canonical dimension, and the Pearson correlation coefficient was 

computed between these projections across test-set trials. This process was repeated for each 

pair of time bins, creating a matrix of cross-validated correlation coefficients with both 

dimensions of time points relative to the event. When representing a single recording’s 

jPECC analysis, the statistical significance of these correlation coefficients was used to gray 

out non-significant regions (Extended Data Fig. 8b) but this value was not used in further 

analyses.

To quantify lead-lag relationships across recordings, an asymmetry index was computed by 

diagonally slicing the jPECC matrix from -50 to +50 ms relative to each time point. The 

average correlation coefficient across the left half of this slice (i.e. the average along a vector 

from [t-50, t+50] to [t,t]) was subtracted from the right half of this slice (from [t, t] to [t+50, 

t-50]) to yield the asymmetry index for time point t. This index was computed for each time 

point t relative to events and the values across recordings were compared to 0 with a t-test.

Engagement Index and pre-stimulus analyses

To statistically compare pre-trial firing rates between the task and passive conditions (i.e. 

between trials of active task performance, versus later passive stimulus replay, Extended 

Data Fig. 9a), we performed a nested multiple ANOVA test, in order to account for 

correlated variability between neurons within recording sessions. Each observation was a 

neuron’s average measured pre-trial firing rate in the window between 250 and 50ms prior to 

stimulus onset, log transformed (log10(x + 1 sp/s)) to make distributions approximately 

normal. Any trials with detectable wheel movement in this interval were excluded. The 

ANOVA had three factors: active/passive condition, recording session, and neuron identity 

(nested within recording session). The null hypothesis of no difference between baseline 
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rates in active and passive conditions for neurons from a given brain region was rejected if 

the p-value for the active/passive condition factor was less than 0.0012, i.e. less than 0.05 

after applying a Bonferroni correction for the 42 brain regions tested.

To compute the trial-by-trial ‘engagement index’, we took the difference in pre-stimulus 

firing between the average of all task (‘active’) trials a and of all passive trials p, over the 

200 ms period prior to stimulus onset:

xn = fn
a −0.2 < t < 0 − fn

p −0.2 < t < 0

This quantity was computed for each neuron in one of the areas with significant differences 

between task and passive determined by nested ANOVA analysis (319 ± 32.5 mean ± s.e. 

neurons included per session, n=34 sessions), accumulated into a vector x and normalized to 

unit L2 magnitude for each session. To compute the engagement index for each trial i we 

computed the dot product x · fi, where fi is the vector of pre-stimulus firing rates for each 

trial i. We then computed the mean across Go and the mean across Miss trials, and took the 

difference of the two. The Go and Miss trials included in this analysis were matched for 

contrast so that difference in visual drive could not influence the difference between trial 

types. To do this, N trials were selected from each contralateral contrast condition where N 

was the minimum of the number of trials at that contrast condition having a Go outcome and 

the number having a NoGo outcome.

Measurement of pupil area and video motion energy

We measured pupil area from the high-zoom videos of the subject’s eye, using 

DeepLabCut52. In ~200 training frames randomly sampled across all sessions, four points 

spaced at 90 degrees around the pupil were manually identified, and the network was trained 

with default parameters. Then, ~100 more frames were manually annotated focusing on 

frames with errors, and the network re-trained. The pupil area was taken to be the area of an 

ellipse with major and minor axis lengths given by the distances between opposite pairs of 

detected points. Some recordings were excluded from these analyses due to video quality 

that was un-usable for sufficiently accurate measurement of the pupil (n=5 out of 39), 

primarily due to obscured pupils due to eyelashes or eyelids.

We measured video motion energy from the low-zoom videos of the frontal aspect of the 

subjects, which included the face, arms, and part of the torso of the mice. As nothing in the 

frame except the mouse could move, we calculated total motion energy of the pixels of the 

video as an index of overt movements of the mouse. This was computed as:

∑
pixels

abs it − it − 1

where it is the intensity of the pixel on frame t.

Both pupil area and video motion energy were z-scored prior to GLM fitting.
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GLM prediction of P(Go) from pre-stimulus variables

To determine the impact of arousal-, reward-, and history-related variables on the ability to 

predict whether the upcoming trial’s outcome would be a Go response (i.e. a left or right 

choice), and whether these factors could account for the relationship between Engagement 

Index and Go/Miss trials, we fit a GLM model to the following variables: inter-trial interval, 

previous trial reward outcome (coded as 0 or 1), pupil area in the pre-stimulus window (z-

scored), and motion energy in the pre-stimulus window (z-scored). A GLM with binomial 

link function was fit to these variables (Matlab function ‘fitglm’) to predict whether the 

following trial had a Go or Nogo outcome. Squared terms were included for pupil area and 

video motion energy after it was observed that the empirical relationship between each of 

these and the P(Go) had an inverted U-shape53. Trials were selected for the model fitting to 

have matched contrast between these two types (see section Engagement Index above). A 

deviance test was used to compare this model with a model that additionally had 

Engagement Index included as a predictor. A significant value of this test does not indicate 

that the Engagement Index suffices to predict P(Go), with other variables making no further 

contribution; rather, it indicates that the other variables did not fully predict P(Go), and that 

Engagement Index can improve this prediction. The population vector analysis in Extended 

Data Fig. 9k further argues that Engagement Index relates to P(Go) more closely than does 

the population vector of these other variables.

Combined-conditions Choice Probability (ccCP) and Detect Probability analysis

Choice probability (CP) is a non-parametric measure of the difference in firing rate between 

trials with identical stimulus conditions but different choices. Typically, it is calculated 

separately for each stimulus condition, but here we used an algorithm that combines 

observations across stimulus conditions into one number, allowing it to be calculated even 

for our small number of trials per condition (since there are 16 stimulus conditions, and 

trials with no-go responses are excluded for the choice probability calculation). It is 

classically calculated as the area under a receiver operating characteristic (ROC) curve, 

which is equivalent to a Mann-Whitney U statistic, i.e. to the probability that a firing rate 

observation from the trials with one choice is greater than that from trials with the other 

choice. Accordingly, this can be calculated by comparing each trial of one condition to each 

of the other condition, counting the number of such comparisons for which the first 

condition wins, and dividing by the total number of comparisons. Rather than dividing these 

two numbers to get a CP number for each stimulus condition, here we add the numerators 

and denominators of this ratio across all conditions, and then divide. In this way, the core 

logic of the CP - that trials of one choice are only compared to trials of the other choice 

under identical stimulus conditions - is preserved, but all stimulus conditions can be 

combined into one number per neuron. This number quantifies the same thing as the classic 

CP, namely, the probability that the spike count of a neuron will be greater for trials of one 

choice than another, given matched stimulus conditions. To estimate statistical significance, 

a shuffle test was used in which trial labels (as left or right choice) were randomly permuted 

within each stimulus condition 2,000 times, and the CP was computed for each shuffle. 

Because this algorithm combines trials from multiple stimulus conditions into a single 

statistic, we refer to it as the ‘combined-conditions Choice Probability’, or ccCP.
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We used the same algorithm to compute a “detect probability” (DP) comparing trials with 

Nogo outcomes to those with either Left or Right choices.

Importantly, not all trials can be included in the ccCP analysis. Specifically, the trials from 

any stimulus condition in which the subject only made left or only made right choices 

cannot contribute to the CP. This is unlike the kernel regression analysis, in which those 

trials would still contribute to the estimates of the Vision and Choice kernels (and note that 

the kernel analysis additionally makes use of reaction time variability to separate these 

representations). Due to this, six sessions had to be excluded for having fewer than 10 trials 

include-able in the CP analysis. Notably, two of these six sessions contained some of the 

MOs neurons with significant choice representations under the kernel analysis, so that 

20.8% of MOs choice-selective neurons were not included here.

Focality Index

To statistically test the degree to which neurons encoding different task variables were 

localized, we used a Focality index, defined as:

F =
∑ pa

2

∑ pa
2

where pa is the proportion of neurons in an area selective for the task correlate of interest 

(Action, Contralateral Vision, or Choice), as assessed by reduced rank regression analysis 

(Figure 3c, e, and Figure 4b). This measure is an adaptation of the sparseness measure of 

Treves and Rolls54, and would take the value 1 if all neurons were located in a single region, 

and the value 1/N if neurons were equally probable in N regions. 95% confidence intervals 

were computed using the bootstrap, with a Normal approximated interval with bootstrapped 

bias and standard error (function bootci in matlab).

Anatomical targeting and probe localization

To select probe insertion trajectories, we first identified desired recording sites, and then 

designed appropriate trajectories to reach them using the allen_ccf_npx gui (A. J. Peters, 

www.github.com/cortex-lab/allenCCF). In doing so, Allen CCF coordinate [5.4 mm AP, 0 

DV, 5.7 LR] was taken as the location of bregma. Craniotomies were targeted accordingly 

and angles of insertion were set manually. For some of the visual cortex recordings, surface 

insertion coordinates were targeted based on prior widefield calcium imaging. Using 

techniques described previously44, we imaged activity across cortex during presentation of 

the sparse visual noise receptive field mapping stimulus described above. Responses to 

visual stimuli near the intended location of the task stimuli were combined and used to 

identify cortical locations with retinotopically-aligned neurons. In some cases, these same 

imaging sessions were used to target MOp and SSp recordings to the area of large activity 

observed during forelimb movements that covers both of those areas41. Finally, MOs 

recordings were targeted at and around the cortical coordinates identified as disrupting task 

performance when inactivated, around +2 mm AP, 1 mm ML41.

Steinmetz et al. Page 21

Nature. Author manuscript; available in PMC 2020 May 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/cortex-lab/allenCCF


Recording sites were localized to brain regions by manual inspection of histologically 

identified recording tracks, in combination with alignment to the Allen Institute Common 

Coordinate Framework, as follows.

Mice were perfused with 4% PFA, the brain was extracted and fixed for 24 hours at 4 C in 

PFA, then transferred to 30% sucrose in PBS at 4 C. The brain was mounted on a microtome 

in dry ice and sectioned at 60 μm slice thickness. Sections were washed in PBS, mounted on 

glass adhesion slides, and stained with DAPI (Vector Laboratories, H-1500). Images were 

taken at 4x magnification for each section using a Zeiss AxioScan, in three colors: blue for 

DAPI, green for GCaMP (when present), and red for DiI.

An individual DiI track was typically visible across multiple slices, and recording locations 

along the track were manually identified by comparing structural aspects of the histological 

slice with features in the atlas. In most cases, this identification was aided by reconstruction 

of the track in Allen CCF coordinates. To achieve this, we used the following procedure.

1) We manually identified the 3D locations within the Allen Common Coordinate 

Framework of each observed DiI spot on each slice (15.1 ± 6.9 such spots per probe, 

Extended Data Fig. 2a). Code for doing this is provided open-source (https://github.com/

cortex-lab/allenCCF, in particular ‘Sharp-track’55). There was no ambiguity about which 

dye stain corresponded to which penetration, as penetrations were not repeated within a 

subject.

2) After identifying 3D points along a probe penetration, we fit a line to those points, which 

represents an estimate of the probe trajectory based on all DiI spots (Extended Data Fig. 2b). 

We quantified the lateral localization error by the median distance of the DiI spots from this 

common trajectory (39.3 μm) as a quantitative estimate of the error of step #1. Though this 

error is already small, the fitting of a line to many points presumably further reduces the 

error, resulting in a reliable estimate of the probe’s vector through the brain. Moreover, the 

predicted set of brain regions that this vector passes through can be directly verified by 

histological inspection (Extended Data Fig. 3). On completion of this step, the method 

therefore provides an estimate of the probe trajectory through the 3D atlas, but does not yet 

provide a mapping from each recording site to a location along this trajectory.

3) Next, we found the longitudinal mapping from recording sites to the probe trajectory. 

While the tip location provides one number that can identify the offset, it cannot estimate 

scaling which may vary due to shrinkage. We therefore adopted an alternative approach that 

uses multiple electrophysiological landmarks to estimate scaling and depth on a brain-by-

brain basis. These landmarks consist of thin structures such as the CA1 pyramidal layer, or 

white matter boundaries, that are unambiguously identifiable in spike rasters. Behavioral 

task correlates and visual receptive fields were not considered during this alignment 

procedure. We found the offset and scaling of a linear relationship between recording site 

number and distance along the probe trajectory by linear regression of these multiple 

landmarks. We show an example of this process (Extended Data Fig. 2c-e), in which six 

landmarks are used to find the appropriate depth and scaling (1.01 in this case, and across all 

recordings 1.08 ± 0.02 mean ± std. dev.). We find the shrinkage factor of our fixed tissue 
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relative to the atlas to be 8% on average, but estimate it on a brain-by-brain basis when 

aligning electrode tracks.

Finally, we quantitatively estimate the accuracy of this longitudinal alignment procedure by 

taking advantage of the fact there are more points constraining the alignment than there are 

parameters. To estimate alignment errors, we used a cross-validation approach: we fit the 

longitudinal mapping using all landmarks except one, and estimated how far the predicted 

location of this held-out landmark is from its true location (Extended Data Fig. 2f). We 

found that the median absolute deviation of these errors was 88.7 μm, comparable to the 

width of the probe shank itself (70 μm), i.e., near the resolution limits of the method.

Extended Data
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Extended Data Figure 1. Behavioral performance as psychometric curves for each subject, and 
analysis of wheel movements.
a, Psychometric curves for mouse Cori, showing the probability of choosing Left (blue), 

Right (red) or NoGo (purple) as a function of stimulus contrast. Panels are grouped by 

pedestal contrast on each row, corresponding to subsets of trials with different minimum 

contrast on the left and right screens. The horizontal axis encodes the relative contrast from 

the pedestal value, positive numbers indicating higher contrast on the right screen, and 

negative numbers for higher contrast on the left screen (e.g. at pedestal=50%, a ΔContrast of 
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+50% corresponds to trials with 50% contrast on the left screen and 100% contrast on the 

right screen). Dots and lines indicate the empirical fraction of choices made and 95% 

binomial confidence intervals for the fraction estimate, pooling data over sessions. Solid 

lines indicate the fit of a multinomial logistic model: 

ln p Le f t
p NoGo = bL + sLcL

n; ln p Right
p NoGo = bR + sRcR

n , where cL and cR are the contrast on the left 

and right, and parameters bL, sL, n, bR, sR are fit by maximum likelihood estimation to the 

data for each subject3. b-j, As in a, for the remaining subjects. k, The model fit for all 

subjects overlaid, for Left choices (blue) and Right choices (orange), in both cases for 

pedestal=0%. l, Summary of performance on high-contrast trials. Dots reflects the session-

pooled proportion correct of each mouse for trials with 100% versus 0% contrast, with 95% 

binomial confidence interval. m, Example segment of wheel position data showing wheel 

movements detected as left turns (blue), right turns (orange), or incidental movements 

(black). Detected onsets (green circles) and offsets (red circles) marked for each movement. 

Y-axis scale: distance moved at the circumference of the wheel (i.e. 2πRθ where R is wheel 

radius and θ its angular position). n, Wheel velocity trace for the same segment of data as in 

a. o, Example wheel turns aligned to the detected onset time. Dashed box indicates the 

region expanded in d. p, Example wheel turns aligned to detected onset time, zoomed to 

show the moment of takeoff, illustrating that the wheel had moved by less than 0.5mm by 

onset. The step-like appearance of the trace reflects the resolution of the rotary encoder 

(each step unit is 0.135 mm at the surface of the wheel). q, Decoding the eventual direction 

of the wheel movement using the instantaneous velocity at different times relative to 

detected movement onset reveals that the direction only starts to be decodable around 20 ms 

prior to detected onset, and is not reliably (>80%) decoded until the time of onset. Error bars 

represent s.d. across sessions (n=39).
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Extended Data Figure 2. Method for histological alignment.
a, Prior to insertion, probes are dipped in DiI. The brain is sliced and imaged, and locations 

of each probe’s DiI spots are manually identified on the Allen CCF atlas (15.1 ± 6.9 per 

probe). When multiple penetrations were performed in a single brain, their tracks are 

sufficiently far apart to avoid confusion. b, A vector is fit to the probe track using total least 

squares linear regression. The median distance of individual points from this vector is 39.3 

μm, providing an estimate of lateral displacement error. c, To fit the longitudinal mapping 

from recording sites to brain locations, we used landmarks easily detectable by their 
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electrophysiological signatures (arrows, left), linearly interpolating the location of sites 

between these landmarks. d, visual receptive fields served as a post-hoc check on correct 

alignment, but were not used to estimate track location. Each horizontally elongated plot 

with two vertical black lines indicates the responsiveness of all spikes recorded in an 80 μm 

depth bin to flashed white squares at varying locations on the three screens (see Methods, 

receptive field mapping). Colormap brightness is proportional to spike rate, independently 

scaled for each map. e, areas assigned for each recording site. Right: example DiI traces in 

slices corresponding to these locations. f, Example of cross-validation procedure to assess 

error in longitudinal alignment. For each point, the longitudinal mapping was recomputed 

excluding this point, and the distance from this point to the mapping fit to other points 

provides an estimate of longitudinal alignment error. Brain diagrams were derived from the 

Allen Mouse Brain Common Coordinate Framework (version 3 (2017); downloaded from 

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/).
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Extended Data Figure 3. Examples of DiI tracks showing recording sites from the depicted sub-
surface brain regions in aligned histology.
Visual inspection of the DiI tracks confirms that the probe indeed passed through that region 

at some point along the recording span. Brain diagrams were derived from the Allen Mouse 

Brain Common Coordinate Framework (version 3 (2017); downloaded from http://

download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/).
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Extended Data Figure 4. Global activity of individual neurons during task performance; global 
activity during the task and following reward delivery; and ‘focality index’ analysis of coding 
distribution.
a, Activity of example neurons in VISp and VISam, showing the neuron’s waveform and 

anatomical location (top), rasters sorted by contralateral contrast (middle), and trial-averaged 

firing rates (smoothed with 30 ms causal half-Gaussian) for each of the four contralateral 

contrasts (bottom). Shaded regions: +/- s.e. across trials. b, Colormap showing trial-averaged 

firing rates of all highly-activated neurons (p<10-4 compared to pre-trial activity), vertically 

sorted by firing latency. Latency sorting was cross-validated: latencies for each neuron were 
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determined from odd-numbered trials, and activity from even-numbered trials is depicted in 

the plot. Gray scale represents average normalized firing rate across even-numbered trials 

with contralateral visual stimuli and movement. c-e, Curves showing mean firing rate across 

responsive neurons in each area, aligned to visual stimulus onset (c), movement onset (d), or 

reward onset (e). Shaded regions: ± s.e. across neurons. f, The focality index, defined as 

Σ pa
2 / Σ pa

2, where pa is the proportion of neurons in area a selective for the kernel in 

question, measures how widely versus focally distributed a representation is, with a floor of 

0.0238 for a uniform distribution (across 42 brain regions) and a max of 1.0 if all selective 

neurons were found in a single brain region. This focality index was 0.079 for choice, 0.069 

for visual kernels and 0.040 for action kernels; the differences between Choice and Move, as 

well as Contralateral Vision and Action, were statistically significant (p<0.05; bias-corrected 

bootstrap). Dots represent the true value and error bars represent bias-corrected bootstrap-

estimated 95% confidence intervals. Brain diagrams were derived from the Allen Mouse 

Brain Common Coordinate Framework (version 3 (2017); downloaded from http://

download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/).
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Extended Data Figure 5. Comparison of the reduced-rank kernel regression method to other 
methods for spike train prediction.
a, Example fit of spiking data for an individual neuron with the kernel model. Green trace 

shows spike data smoothed with a causal filter, black shows the model’s prediction, and 

other colored traces show the components of the prediction from each kernel. Data between 

trials is omitted from the fitting and from this plot. b, Relationship between Move and 

Choice kernels, which together combine to give rise to arbitrary firing rate shapes for Left 

and Right choice trials. c, Cartoon of the three methods evaluated. In the Toeplitz and Cosine 
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models, a predictor matrix X of size Ntimepoints × Npredictors is constructed from task events 

(illustrated, transposed, in panel c). A linear fit from predictors X to spike counts Y is 

estimated using elastic net regularization. In the reduced rank regression method, the 

predictor matrix X is the same as the Toeplitz model, but predicts Y after passing through a 

low-rank bottleneck (X*b), which is optimized using reduced rank regression. d, The 

structure of predictor matrices. The Toeplitz predictor has rows for each variable and time 

offset, which take non-zero values for time points (columns) corresponding to the 

appropriate time offset from the given event. The cosine model has similar structure but with 

rows replaced by smooth raised cosine functions, allowing a smaller number of basis 

functions. The reduced rank regression model has learned a small number of dense basis 

functions optimized to predict spike counts. e, Density scatterplot of cross-validated variance 

explained for each neuron under the Toeplitz model against the reduced rank model (upper), 

and for the cosine model versus the reduced rank model (lower). Each point represents one 

cell, colored to show density when they overlap. Plots at right are zooms on the densest 

region of the plots. These comparisons show that the reduced rank model consistently 

outperforms the other two (points lie below the diagonal), and that it overfits fewer neurons 

(fewer points with c.v. var expl < 0). f, The proportion of overfit explained variance, i.e. 

(CVtrain – CVtest)/CVtrain where CVtrain is the train set variance explained and CVtest is the 

test set variance explained. Smaller values for reduced rank model show it overfits less. g, 
Left: Population decoding of contralateral visual stimulus contrast from residual population 

activity in each area, after fitting a model including all other kernels. Subsequent three 

panels depict the same analysis for decoding of ipsilateral visual stimulus contrast; action; 

and direction of choice. h, Distributions of the cross-validated proportion variance explained 

for each neuron when shuffling the trial choice labels (left and right) versus that from the 

original data. A small number (14, 0.33%) of neurons are false positives in this shuffle test. 

Dashed line represents the 2% C.V. Variance Explained threshold employed. Y-axis is 

clipped.
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Extended Data Figure 6. Summary of variance explained by the kernel model and population 
average responses on Go, Miss, and Passive trials.
a, The unique contribution of each predictor variable as assessed by nested prediciton. Each 

panel depicts the distribution of variance explained across neurons of a single brain region, 

using various reduced-rank kernel regression models, (c.f. Figure 3c,e and Figure 4b). Each 

bar shows the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution for a single 

prediction model, color-coded by model identity. The numbers in the subplot title indicate 

the number of all neurons analyzed with the full model (i.e. the distribution shown with the 

grey bar), and the number of neurons included for nested model analysis (i.e. cells with ≥ 
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2% variance explained with the full model). Black bar shows distribution of variance 

explained by the full model in this subset; colored bars show the unique contribution of each 

predictor. Note that the unique contributions need not sum to the variance of the full model, 

as predictor variables are correlated. Variance explained by the Action kernel (yellow) is 

essentially global, whereas Contralateral Vision variance explained is distinctly restricted, 

and Choice is rare enough to be difficult to see in these plots. b, Population average firing 

rates across neurons for each brain region in Go, Miss, and Passive trials, selected to have 

matched contralateral visual stimulus contrasts. The patterns characteristic of engagement 

can be seen in pre-stimulus activity (i.e. before time 0): the pre-stimulus firing rate of 

midbrain, basal ganglia, and hippocampal regions is in the order Passive < Miss < Go; 

whereas pre-stimulus activity in neocortical areas instead is arranged as Passive > Miss and 

Go. Thalamic regions can exhibit either pattern; notably, visual thalamic regions (LGd, LP, 

LD) follow the pattern of neocortical areas.
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Extended Data Figure 7. Choice probability and Detect probability analysis.
a, The percentage of neurons with significant CP (i.e. neurons whose rate differed 

significantly between Left and Right Choices in response to the same stimulus; left two 

columns) and DP (i.e. neurons whose rate differed significantly between Go and NoGo trials 

in response to the same stimulus; right two columns), computed with the combined-

conditions Choice Probability (ccCP) analysis, as a function of time aligned to visual 

stimulus onset (left) and movement onset (right). Horizontal dashed line represents the value 

expected by chance given the statistical threshold alpha=0.05. b, Percentage of neurons in 
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each area with significant Detect Probability measured around movement onset, replicating 

the finding from Fig 2d,e and Fig 3e that non-selective action signals are distributed widely. 

* indicates that the 95% confidence intervals of the proportion did not include the proportion 

expected by chance (5%, horizontal dashed line). c, As in b, for Choice Probability in the 

same window. Though the number of trials usable in this analysis is limited and some 

sessions (n=6 of 39) had to be excluded for this reason, this analysis broadly replicates the 

finding from Fig 4b that choice selective neurons, around the time of movement onset, are 

restricted to frontal cortex, basal ganglia, midbrain, and certain thalamic nuclei. d, As in a, 

for Choice Probability in a later window well after movement onset, showing that choice-

related signals are distributed more widely after movement onset, including visual and 

parietal cortex. These signals are too late to have participated in generating the choice. As 

behavior during this period is relatively un-constrained – unlike in the pre-movement period 

otherwise studied in this paper – and subjects may have employed diverse motor strategies, 

this analysis should be interpreted with caution. e, The percentage of neurons with 

significant Choice Probability, as a function of time relative to movement onset for selected 

areas (zoom and overlay of certain traces from a), replicating that choice related activity 

arises in the final 50-100 ms relative to movement onset and with similar timing across 

multiple areas. Note that six sessions were excluded from CP analysis for having too few 

trials; these six sessions included 20.8% of the MOs neurons determined to have choice-

selective responses with kernel regression. f, The pre-stimulus Detect Probability (after 

subtracting 0.5, so that positive values indicate higher rates on Go trials, and negative values 

the reverse) versus the mean Go-Miss firing rate difference for each area (used in Fig 5d), 

demonstrating that these two quantities identify essentially the same factor. The pre-stimulus 

Detect Probability was correlated with the Engagement Index (i.e. Task-Passive difference) 

similarly to the Go-Miss difference (with r = 0.48, p=0.001; not shown).
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Extended Data Figure 8. Joint Peri-Event Canonical Correlation (jPECC) analysis for 
determining whether correlations occur with a temporal offset between a pair of regions.
a, Canonical correlation analysis is applied to firing rates at every pair of timepoints relative 

to a behavioral event (illustration shows 0.1s after stimulus onset in VISp and 0.15s after in 

MOs). Canonical correlation analysis is applied to two matrices containing each cell’s firing 

rate on each training set trial (90% of the total) to find dimensions in each population 

maximally correlated with each other. (For regularlization purposes, this is applied after 

dimensionality reduction using PCA). The strength of population correlation is summarized 
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by the correlation of test set activity projected onto the first canonical dimension. b, Results 

on an example session, showing relationships between visual cortex, midbrain, and frontal 

cortex relative to stimulus onset (top) and movement onset (bottom). Visual cortical activity 

leads frontal and midbrain activity, as can be seen from the below-diagonal bias in 

correlations. However, no lead/lag relationship is seen between midbrain and frontal cortex. 

Gray: p>0.05. c, Average across all recording sessions that contained each pair of areas, 

showing similar relationships to the example in each case. d, Summary of lead-lag 

interactions, obtained by subtracting the averages of the jPECC coefficients over inter-area 

time ranges of -50 to 0 and 0 to 50ms, as a function of time relative to events. Gray region: 

2*s.e. across experiments. Visual cortex reliably leads frontal cortex and midbrain at around 

100ms after the stimulus; and over a range -200 to -50ms relative to movement.

Steinmetz et al. Page 38

Nature. Author manuscript; available in PMC 2020 May 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 9. Statistical analysis of Engagement Index, and influence of alertness-, 
reward-, and history-related variables on pre-stimulus firing rates.
a, A nested ANOVA with factors of session and subject was used to assess statistical 

significance of pre-stimulus task-passive firing rate differences (here normalized, unlike Fig. 

5c-d and Extended Data Fig. 6b, to meet statistical assumptions) in each brain region (see 

Methods). All non-neocortical regions that showed a significant difference between engaged 

task and passive states had higher mean pre-stimulus firing rates in task context, except for 

visual thalamus. All neocortical regions that showed a significant difference between task 
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and passive contexts had lower mean pre-stimulus firing rates in the task context. b, An 

engagement index was computed for each trial by projecting population activity onto the 

vector of differences between pre-stimulus activity in task and passive contexts. Histogram 

shows the distributions of this index over contrast-matched Miss and Go trials; p-value 

computed by t-test. c-f, Same plot after restricting to contrast-matched trials following 

rewards (c); after removing the reward effect by partial regression (i.e. by subtracting the 

mean within trials of each previous reward condition) (d); after restricting to contrast-

matched trials following short inter-trial intervals (e) or after restricting to contrast-matched 

trials following long inter-trial intervals (f). The effect persists in each case. g, Histogram of 

pupil areas in the pre-stimulus period after previous trials that were rewarded or non-

rewarded, showing the expected effect of reward on arousal as a positive control for the 

validity of pupil diameter measurements. h, To initiate the next trial, subjects must hold the 

wheel still for 500ms; video analysis shows they reduce other movements as well. Top, Total 

video motion energy (mean-square frame difference) as a function of time relative to 

stimulus onset, on each trial, for an example recording. Bottom, mean motion energy across 

these trials overlaid (red; shaded region represents s.e.m. across trials). Inset, example frame 

from video monitoring the face and arms of the mouse. i. Results of a logistic generalized 

linear model (GLM) predicting the probability of a Go response on the subsequent trial from 

each of the given variables; plot format as in Fig 5e. The null hypothesis that engagement 

index had no additional effect on Go probability over all other variables was rejected using a 

deviance test (p=1.5e-8). Each panel’s curve shows effect of one individual variable on Go 

probability. Red points: mean Go probability averaged over a bin, red error bars, 95% 

confidence interval. Black line, fit of GLM, setting all other variables to their mean; gray 

shading, 95% confidence interval. j. Average Go probability and GLM fit as a function of 

Engagement Index (x-axis), and previous trial reward (color). Correlation of P(Go) from 

Engagement Index persists despite the additional effect of previous trial’s reward. k, To 

additionally test whether engagement index more specifically relates to P(Go) than any other 

variable, we asked whether the engagement vector (i.e. the mean difference in pre-stimulus 

population activity between Task and Passive contexts) matches the population vector 

encoding differences prior to Go and Miss trials, better than it does differences in other 

behavioral variables. To do so, we computed the Pearson correlation between the 

engagement vector and the Go-Miss vector for each recording. This correlation coefficient 

can be interpreted as the cosine of the angle between the two vectors in Nneurons dimensional 

space. Each panel shows a scatter plot, with one dot per recording, comparing this 

correlation against the engagement vector’s correlation with vectors defined for each other 

behavioral variable. In each case we find that the correlation is greater for the Go-Miss 

vector (not reaching significance at alpha=0.05 level, however, for the comparison with the 

previous reward vector, p=0.096).
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Extended Data Table 1
Brain regions recorded

Abbreviation Full name N recordings N mice N responsive 
neurons

N total 
neurons

% 
responsive

ACA Anterior cingulate area         11 8 395 608 65.0

ACB ACB Nucleus 
accumbens

        3 3 152 255 59.6

APN APN Anterior pretectal 
nucleus

        2 2 177 235 75.3

BLA Basolateral amygdalar 
nucleus

        2 2 107 261 41.0

CA1 Field CA1         21 10 494 1129 43.8

CA3 Field CA3         10 6 243 438 55.5

CP Caudoputamen         5 5 524 914 57.3

DG Dentate gyrus         16 10 336 711 47.3

GPe Globus pallidus 
external segment

        3 3 146 274 53.3

ILA Infralimbic area         3 3 192 338 56.8

LD Lateral dorsal nucleus 
of the thalamus

        6 5 209 308 67.9

LGd Dorsal part of the 
lateral geniculate 
complex

        10 5 397 811 49.0

LP Lateral posterior 
nucleus of the thalamus

        11 8 393 732 53.7

LS Lateral septal nucleus         7 5 508 844 60.2

MD Mediodorsal nucleus of 
the thalamus

        3 3 244 381 64.0

MG Medial geniculate 
complex of the 
thalamus

        2 2 180 276 65.2

MOp Primary motor area         3 3 553 682 81.1

MOs Secondary motor area         19 9 993 1534 64.7

MRN Midbrain reticular 
nucleus

        11 7 722 857 84.2

OLF Olfactory areas         9 5 210 684 30.7

ORB Orbital area         6 5 281 770 36.5

PAG Periaqueductal gray         3 3 72 130 55.4

PL Prelimbic area         10 7 438 728 60.2

PO Posterior complex of 
the thalamus

        5 4 342 620 55.2

POL Posterior limiting 
nucleus of the thalamus

        3 3 132 190 69.5

POST Postsubiculum         4 3 163 272 59.9

RSP Retrosplenial area         9 5 308 598 51.5

RT Reticular nucleus of the 
thalamus

        2 2 111 160 69.4
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Abbreviation Full name N recordings N mice N responsive 
neurons

N total 
neurons

% 
responsive

SCm Superior colliculus 
motor related

        11 6 738 997 74.0

SCs Superior colliculus 
sensory related

        10 6 192 317 60.6

SNr Substantia nigra 
reticular part

        4 3 201 274 73.4

SSp Primary somatosensory 
area

        5 4 296 461 64.2

SUB Subiculum         9 7 494 669 73.8

VISa Anterior visual area         5 4 207 285 72.6

VISam Anteromedial visual 
area

        11 8 501 805 62.2

VISI Lateral visual area         3 2 248 403 61.5

VISp Primary visual area         12 8 649 923 70.3

VISpm Posteromedial visual 
area

        4 4 230 516 44.6

VISrI Rostrolateral visual 
area

        2 2 85 236 36.0

VPL Ventral posterolateral 
nucleus of the thalamus

        4 3 202 255 79.2

VPM Ventral posteromedial 
nucleus of the thalamus

        4 2 235 357 65.8

ZI Zona incerta         4 2 167 220 75.9
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Figure 1. Brain-wide recordings during a task that distinguishes vision, choice, and action.
a, Mice earned water rewards by turning a wheel to indicate which of two visual gratings 

had higher contrast, or by not turning if no stimulus was presented. When stimuli had equal 

contrast, a Left or Right choice was rewarded with 50% probability. Grey rectangles indicate 

the three computer screens surrounding the mouse. Arrows (not visible to the mouse) 

indicate the rewarded wheel turn direction and the coupled movement of the visual stimulus 

(black X indicates reward for no turn), and the colored dashed circle (not visible to the 

mouse) indicates the stimulus location at which a reward was delivered. b, Timeline of the 

task. Subjects were free to move as soon as the stimulus appeared, but the stimulus was fixed 

in place and rewards were unavailable until after an auditory tone cue. If no movement was 

made for 1.5 s after the tone cue, a NoGo was registered. The grey region is the analysis 

window, from 0 to 0.4 s after stimulus onset. c, Average task performance across subjects, 

n=10 subjects, 39 sessions, 9,538 trials. Colormaps depict the probability of each choice 

given the combination of contrasts presented. d, Reaction time as a function of stimulus 

contrast and presence of competing stimuli. e, Mice were head-fixed with forepaws on the 
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wheel while multiple Neuropixels probes were inserted for each recording. f, Frontal view of 

subject performing the behavioral task during recording, with forepaws on wheel and lick 

spout for acquiring rewards. g, Example electrode track histology with atlas alignment 

overlaid. h, Recording track locations as registered to the Allen Common Coordinate 

Framework 3D space. Each colored line represents the span recorded by a single probe on a 

single session, colored by mouse identity. D, dorsal; A, anterior; L, left. i, Summary of 

recording locations. Recordings were made from each of the 42 brain regions colored on the 

top-down view of cortex (left) and sagittal section (right). For each region, number in 

parentheses indicates total recorded neurons. For abbreviations, see Extended Data Table 1. 

j, Spike raster from an example individual trial, in which populations of neurons were 

simultaneously recorded across visual and frontal cortical areas, hippocampus, and 

thalamus. Brain diagrams were derived from the Allen Mouse Brain Common Coordinate 

Framework (version 3 (2017); downloaded from http://download.alleninstitute.org/

informatics-archive/current-release/mouse_ccf/).
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Figure 2. Activity propagates from a visual pathway to the entire brain during task performance.
a-c, Rasters showing activity of three example neurons following visual stimuli presented on 

the contralateral or ipsilateral side alone, on correct choice trials (when they evoked wheel 

turns in the correct direction), miss trials (when mice failed to respond in the task context), 

and when stimuli were presented in a passive context with no opportunity to earn reward. 

Top six panels: aligned to stimulus onset, black dots represent movement. Bottom two 

panels: aligned to movement, black dots represent stimulus onset. d-h, Colormaps showing 

firing rates averaged over responsive neurons in each region, and over trials of the indicated 
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type. Contralateral visual stimulus contrasts were matched between d, f, and h so that 

differences in activity do not reflect differing visual drive. Subpanels to the right of each 

colormap represent the percentage of neurons in each area significantly more responsive 

during that condition than baseline, (p<10-4; see Methods).
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Figure 3. Neurons encoding vision are localized but neurons encoding action are found globally.
a. Example of regression analysis for the example VISpm neuron shown in Fig. 2b. Firing 

rate was averaged (solid thin line, mean; shaded regions, s. e. across trials) across the trial 

types indicated: all trials with contralateral stimuli (dark brown), with ipsilateral stimuli 

(dark blue); all trials with contralateral choices (orange), with ipsilateral choices (blue). Top 

plots show mean firing rate overlaid with cross-validated prediction of the regression model 

using all kernels (solid thick lines). Bottom plots show mean rate overlaid with fits 

excluding the indicated kernel (dashed lines). The good fit of the full model is lost when 
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excluding the Contralateral Vision kernels, indicating that this neuron has stimulus-locked 

activity that cannot be explained by other variables. b, Similar analysis for activity of the 

SUB neuron from Fig. 2a, for which a good fit cannot be obtained when excluding the 

Action kernel. c, Box plots showing distribution of the percentage of spiking variance 

explained in cross-validated tests of the full model, for all neurons within each brain region. 

d, Fraction of neurons in each brain region for which accurate prediction of pre-movement 

activity required the Contralateral Vision kernel. Empty bars indicate those for which the 

number of neurons passing analysis criteria was < 5. e, as in (d) but for the Action kernel. f, 
Illustration of (d) on a brain map. White areas were not recorded. g, As in (f) but for the 

Action kernel. Brain diagrams were derived from the Allen Mouse Brain Common 

Coordinate Framework (version 3 (2017); downloaded from http://

download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/).
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Figure 4. Choice signals emerge simultaneously across a localized set of forebrain and midbrain 
areas.
a, Firing rates of four example neurons, averaged across indicated trial types (shaded 

regions, s.e.m. across trials), cross-validated fits of the kernel model using all kernels (solid 

lines), and fits using all kernels except Choice (dashed lines). The VISp neuron can be 

accurately predicted without Choice kernel, indicating that its differing responses between 

left and right choices can be explained by visual responses. The other three neurons cannot 

be predicted without the Choice kernel. The ZI neuron also appeared in Figure 2c. b, 
Fraction of neurons in each brain region for which accurate prediction required the Choice 

kernel (false positive rate on shuffled data: 0.3%). Empty bars indicate areas for which the 

number of neurons passing analysis criteria was < 5. c, Time courses of population decoding 

of choice from frontal cortex (MOs, MOp, PL), striatum (CP), and midbrain (MRN, SCm, 

ZI, SNr) did not significantly differ (p>0.05, 2-way ANOVA). Shaded regions: s.e.m. across 

recordings. d, Left: joint peri-event canonical correlation (jPECC) analysis shows that 

population activity in visual cortex predicts that in frontal cortex following a ~40 ms lag, but 

only in the period ~200ms prior to movement. Right: population activity in midbrain and 

frontal cortex do not show a consistent lead/lag relationship. e, Trial-averaged firing rates of 
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example neurons recorded in the midbrain (top row) and forebrain (bottom row) aligned to 

contralateral (orange) and ipsilateral choices (blue). f,g, Scatter plot of activity of individual 

midbrain and forebrain neurons at movement onset relative to baseline activity, for trials 

with contralateral versus ipsilateral choices (estimated from the kernel model). Darker points 

represent neurons with significant choice encoding. h, Summary of (f,g) on a brain map. Red 

and tan indicate regions containing neurons of unilateral or bilateral selectivity. Brain 

diagrams were derived from the Allen Mouse Brain Common Coordinate Framework 

(version 3 (2017); downloaded from http://download.alleninstitute.org/informatics-archive/

current-release/mouse_ccf/).
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Figure 5. Task engagement correlates differently with cortical and subcortical activity.
a, Comparison of population average spiking activity for several brain regions, for task-

context trials when contralateral stimuli were presented but subjects did not respond (i.e. 

‘Miss’ trials, blue) and for stimulus presentations during the passive context (grey). Visual 

stimulus contrasts were matched between the two conditions. b, Excess fraction of neurons 

significantly activated in task context miss trials compared to passive condition, for matched 

contrast stimuli. c, Brain map showing difference in pre-stimulus firing rate between task 

and passive conditions, averaged over all neurons in each region. d, Scatterplot showing 

difference in pre-stimulus rate between task and passive contexts (x-axis) and between go 

and miss trials within the task context (y-axis), averaged over all neurons in a region. Text 

size indicates number of neurons in the analysis (range 130-1534). e, On each trial, an 
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engagement index is computed by projecting pre-stimulus population activity onto a vector 

defined by the each neuron’s rate difference between task and passive contexts. The graph 

shows probability of Go response as a function of z-scored engagement index. Red: 

movement probability for each bin of engagement index (error bars: s.e.m. across trials). 

Black: logistic regression fit with 95% confidence bands (gray). f, Histogram of differences 

in pre-stimulus engagement index for Go versus Miss trials for each recording. Inverted 

triangle represents the mean value across recordings (mean = 8.42 a.u.). Brain diagrams 

were derived from the Allen Mouse Brain Common Coordinate Framework (version 3 

(2017); downloaded from http://download.alleninstitute.org/informatics-archive/current-

release/mouse_ccf/).
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