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ABSTRACT
Shiga toxin-producing Escherichia coli (STEC) colonize the gastrointestinal tract of animals;
however, STEC may also cause severe diarrheal diseases. Food-producing animals have been
acting as reservoirs and disseminators of multidrug-resistant (MDR) bacteria and antimicrobial
resistance genes (ARGs); however, there are few studies characterizing molecularly bacterial
isolates from sheep. Therefore, this study aimed to characterize E. coli isolates obtained from
feces of sheep in a Brazilian farmhouse. A total of 14 MDR E. coli isolates were obtained from
100 feces samples, six of which were classified as non-O157 STEC (stx1, stx2 and ehxA). MDR
E. coli isolates presented different ARGs [blaCTX-M-Gp9, blaCMY, blaSHV, qnrS, oqxB, aac(6ʹ)-Ib, tet(A),
tet(B), tet(C), sul1, sul2, and cmlA] and plasmids (IncI1, IncFrepB, IncFIB, IncFIA, IncHI1, IncK, and
ColE-like). In addition, mutations in the quinolone-resistance determining region of GyrA
(Ser83Leu; Asp87Asn) and ParC (Glu84Asp) were detected. PFGE showed a high genetic
diversity (30.9 to 83.9%) and thirteen STs were detected (ST25, ST48, ST155, ST162, ST642,
ST1247, ST1518, ST1725, ST2107, ST2522, ST3270, ST5036, and ST7100). Subtyping of the fimH
gene showed seven fimH-type (25, 32, 38, 41, 54, 61, and 366). The results found in the present
study showed high genetic diversity among MDR ARGs-producing E. coli obtained from
a farmhouse. This study reports for the first time, the presence of MDR STEC and non-STEC
belonging to ST25, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST3270, ST5036, and ST7100
in sheep, and contributes to the surveillance studies associated with One Health concept.
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Introduction

Diarrheagenic Escherichia coli are responsible for diarrheal
diseases in animals and humans, which are classified into
well-defined pathotypes. Among them, Shiga toxin-
producing Escherichia coli (STEC) are defined as zoonotic
pathogens that colonize the gastrointestinal tract of ani-
mals (e.g. sheep and bovine); however, STEC may also
cause severe diarrheal diseases [1,2]. Diarrheal diseases
are classified as a public health problem, which affect the
developing countries and industrialized countries, caus-
ing high rates of morbidity and mortality, as well as high
health care costs [3].

Resistance to antimicrobials in bacteria is a global
public health problem and multidrug-resistant (MDR)
bacteria, including E. coli, have been spreading to differ-
ent sources, which is worrying. The One Health concept
has been applied worldwide due to the global challenge
of bacterial resistance to antimicrobials [4]. The animals
have been acting as reservoirs and disseminators (e.g. for

humans and the environment) of MDR bacteria carrying
several antimicrobial resistance genes (ARGs), including
the extended-spectrum β-lactamases (ESBL) [5–8].

Many studies related to bacterial resistance to anti-
microbials are performed in food-producing animals (i.e.
chickens, cattle and pigs); however, there are few stu-
dies characterizing molecularly bacterial isolates from
sheep. Therefore, the present study aimed to character-
ize E. coli isolates obtained from feces of sheep in
a Brazilian farmhouse regarding resistance to antimicro-
bials, ARGs, plasmids, diarrheagenic virulence genes and
serotypes, as well as sequence types, phylogenetic
groups and fimH-type.

Materials and methods

Obtaining and identification of isolates

A total of 100 fecal samples were obtained in
a farmhouse (4 ha) from Jardinópolis City, São Paulo
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State, Brazil. The feces samples were collected using
sterile recipients and transported to the laboratory on
the same day. The fecal samples (1 g) were added in
sterile saline solution (5 mL) (0.9% NaCl) and, subse-
quently, seeded on MacConkey Agar (Oxoid, UK) and
incubated at 37 ºC for 24 hours. A glucose-fermenting
colony from each sample was selected and stocked at
−80ºC in Brain Heart Infusion broth (Oxoid, UK) plus 15 %
glycerol.

Molecular identification

The GenElute™ Bacterial Genomic DNA Kit (Sigma-
Aldrich, USA) was used for the extraction of genomic
DNA. The sequencing of the 16S rDNA gene was per-
formed for the identification of the isolates using the
BigDye™ Terminator v3.1 Cycle Sequencing Kit
(Thermo Fisher Scientific, USA) [9].

Detection of diarrheagenic virulence genes and
E. coli serotyping

Detection of diarrheagenic virulence genes (ipaH, stx1,
stx2, ehxA, aaiC, aatA, eae, bfpA, aggR, elt, est, aap,
aggR, and AA probe) was performed by PCR [10–14].
Serotyping was performed by agglutination assays in
96-well Microtiter™ microplates (Thermo Fisher
Scientific, USA), using rabbit antisera against 1 to 187
somatic (O) and 53 flagellar (H) antigens (SERUNAM,
registered trademark in Mexico, 323,158/2015) [15,16].

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by
disk diffusion [17]. Thirty-two antimicrobials were
tested, including aminoglycosides (streptomycin, genta-
micin, tobramycin, amikacin), β-lactams (ampicillin,
amoxicillin-clavulanate, ampicillin-sulbactam, piperacil-
lin-tazobactam, cefoxitin, cefazolin, cefuroxime, cefaclor,
cefepime, cefotaxime, ceftriaxone, ceftazidime, ertape-
nem, meropenem, imipenem, aztreonam), (fluoro) qui-
nolones (nalidixic acid, ciprofloxacin, levofloxacin,
ofloxacin, norfloxacin, lomefloxacin), tetracyclines (min-
ocycline, doxycycline, tetracycline), nitrofurans (nitrofur-
antoin), sulfonamides (trimethoprim-sulfamethoxazole),
and phenicols (chloramphenicol). The isolates were clas-
sified as multidrug-resistant when presented non-
susceptibility to ≥ 1 antimicrobial in ≥ 3 antimicrobial
categories [18].

Detection of ARGs and plasmid replicon typing

The ARGs were detected by PCR in non-susceptible
(resistant or intermediate) isolates for (fluoro) quino-
lones (oqxAB, qepA, qnrA, qnrB, qnrS), tetracyclines [tet
(A) to (E), tet(G), tet(J), tet(L), tet(M), tet(O), tet(P), tet(Q),
tet(S), and tet(X)], β-lactams [blaCTX-M (groups 1, 2, 8

and 9), blaCMY, blaVEB, blaPER, blaOXA-1-like, blaSHV], phe-
nicols (floR, cmlA), sulfonamides (sul1, sul2, sul3), and
aminoglycosides [aph(3ʹ)-Ia, aph(3′)-VI, aac(6ʹ)-Ib, aac
(6′)-Ih, aac(3′)-Ia, aac(3′)-IIa, ant(2”)-Ia] [19–28]. The
amplicons were sequenced for confirmation.

Detection of mutations in the quinolone-resistance
determining region (QRDR) of GyrA (encoded by gyrA
gene) and ParC (encoded by parC gene) was also per-
formed [29,30]. Plasmids were detected by PCR-based
replicon typing for twenty plasmid families (IncFrepB,
IncFIB, IncFIA, IncFIC, IncU, IncR, IncHI1, IncHI2, IncK,
IncY, IncI1, IncL/M, IncW, IncP, IncN, IncA/C, IncT, IncX,
ColE-like) [31,32].

Pulsed-field gel electrophoresis (PFGE)

Genetic relatedness of E. coli isolates was performed by
PFGE using 50U of XbaI restriction enzyme (Thermo
Fisher Scientific, USA). Salmonella Braenderup H9812
was used as a molecular mass standard. The electro-
phoresis was performed on the CHEF-DR III system
(Bio-Rad, USA) at 14 °C (Voltage: 6 V; Initial switch
time: 6.76 seconds; Final switch time: 35.38 seconds;
Included angle: 120°; Run time: 19 hours). A similarity
dendrogram was constructed on the BioNumerics
v. 7.6 (Applied Math, Belgium) using unweighted pair
group method with arithmetic mean (UPGMA) and
DICE similarity coefficient (optimization: 1.5%; band
position tolerance: 1.5%). Discrimination index (DI)
was evaluated using the Simpson’s diversity [33].

Phylogenetic groups, multilocus sequence typing
(MLST) and fimH subtyping

The phylo-typing method was used to determine phylo-
genetic groups (A, B1, B2, C, D, E, and F) using five target
genes (chuA, yjaA, TspE4.C2, arpA, and trpA) [34]. MLST
analysis was performed as described by Achtman scheme
(housekeeping genes [adk, gyrB, icd, fumC, purA, mdh,
and recA]) available in Escherichia MLST website (https://
pubmlst.org/escherichia/) and subtyping of fimH gene
was performed using the FimTyper 1.0 [35,36].

Results

Isolates, diarrheagenic virulence genes and
serotypes

In this study, 14 MDR E. coli isolates were obtained from
feces of sheep from a Brazilian farmhouse. These isolates
were identified by sequencing of the 16S rDNA (GenBank
access no. MN147823-MN147836). Three diarrheagenic
virulence genes (stx1, stx2 and ehxA) related to STEC
pathotype were detected in six isolates (SJA6, SJA11,
SJA29, SJA31, SJA80, and SJA92). The other diarrheagenic
virulence genes (ipaH, aaiC, aatA, eae, bfpA, aggR, elt, est,
aap, aggR, and AA probe) were not detected. Thirteen
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serotypes were assigned in E. coli isolates, including
O153:H12 (2), O8:H21 (1), O127:H43 (1), O173:HNM (1),
O100:HNM (1), O147:H19 (1), O154:H9 (1), O54:H21 (1),
ONT:H10 (1), O102:H21 (1), O8:H19 (1), O78:HNM (1)
(Figure 1).

Antimicrobial resistance profile

All isolates were classified as MDR and presented several
ARGs for β-lactams, aminoglycosides, tetracyclines,
(fluoro) quinolones, phenicols, and sulfonamides
(Table 1). All isolates were resistant to ampicillin, tetracy-
cline and doxycycline, 12 (85.7%) to cefazolin, cefuroxime,
cefaclor and trimethoprim-sulfamethoxazole, 5 (35.7%) to
streptomycin, gentamicin and tobramycin, three (21.4%)
to ampicillin-sulbactam, nalidixic acid, ciprofloxacin, levo-
floxacin, norfloxacin, lomefloxacin and ofloxacin, and two
(12.3%) to chloramphenicol (Table 1).

ARGs and plasmids

Twelve different ARGs were detected in the MDR E. coli
isolates and all presented at least two ARGs investigated.
All isolates presented tet(B), followed by tet(A) (11),
blaCTX-M-Gp9 (7), sul1 (6), sul2 (6), blaSHV (3), qnrS (2), cmlA
(2), aac(6ʹ)-Ib (2), blaCMY (1), tet(C) (1), and oqxB (1)
(Table 1). Among the fluoroquinolone-resistant E. coli iso-
lates (SJA29, SJA91 and SJA92), only SJA29 showedmuta-
tions in QRDR of GyrA (Ser83Leu; Asp87Asn) and ParC
(Glu84Asp) (GenBank accession no. MN148169-
MN148182). Among the plasmid families, the IncI1 (11)
was the most prevalent, followed by ColE-like (5), IncFrepB
(4), IncFIB (4), IncFIA (3), IncHI1 (3), and IncK (1) (Table 1).

Epidemiological analysis

PFGE showed a high genetic diversity (30.9 to 83.9%)
among the MDR E. coli isolates and thirteen sequence
types (STs) belonging to six clonal complexes (CCs)
were detected (ST25, ST48/CC10, ST155/CC155,
ST162/CC469, ST642/CC278, ST1247, ST1518/CC206,
ST1725, ST2107, ST2522, ST3270, ST5036/CC86, and
ST7100). Subtyping of the fimH gene showed seven
fimH-type (fimH25, 32, 38, 41, 54, 61 and 366) (Figure 1)
(GenBank access no. MN148183-MN148196). Three
phylogenetic groups [B1 (8), A (3) and Unknown (3)]
were detected. Interestingly, the isolates SJA80 and
SJA92 presented 100% of genetic similarity and the
same diarrheagenic virulence genes, pathotype, sero-
type, ST, phylogenetic group and fimH-type; however,
they presented different resistance profile as well as
ARGs and plasmids (Table 1; Figure 1).

Discussion

STEC produces Shiga toxins [Stx1 (stx1) and Stx2 (stx2)],
which may be associated with the enterohemolysin
(ehxA), a virulence marker. STEC can cause diarrheal
disease and outbreaks by STEC have been reported
and are principally related to the consumption of con-
taminated products [1,2,37,38]. Infections by non-O157
STEC belonging to several serogroups (O8, O78, O100,
O127, O153, and O154) have been increasing signifi-
cantly over time in the United States, mainly in children
(1 to 4 years) [39,40].

Resistance to β-lactams (ampicillin and cephalospor-
ins), tetracyclines and sulfonamides have been increas-
ingly detected in E. coli isolates obtained from different

Figure 1. Dendrogram based on PFGE XbaI fingerprints representing the genetic relatedness among the MDR E. coli isolates
obtained from sheep. IST, isolate; DVG, diarrheagenic virulence genes; PTT, pathotype; STEC, Shiga toxin-producing E. coli; PGroup,
phylogenetic group; ST, sequence type; CC, clonal complex.
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spheres. This MDR profile is associated with the presence
of β-lactamases (CTX-M-like, SHV and CMY), acquired
efflux pumps (TetABC) and changed dihydropteroate
synthase (Sul) [41,42]. For other antimicrobials, such as
aminoglycosides, phenicols and (fluoro) quinolones, the
resistance is correlated to the presence of aminoglyco-
side-modifying enzymes (APH, ANT and AAC), efflux
pumps (ClmA and FloR), and mutation in QRDR and/or
plasmid-mediated quinolone resistance genes (PMQR),
respectively [42–44].

Detection of antimicrobial-resistant E. coli, including
MDR non-O157 STEC, obtained from animals (e.g.
sheep) have been reported worldwide, including in
Brazil [45–49]. Many studies characterize only the anti-
microbial resistance profile of non-O157 STEC obtained
from animals; however, there are few studies reporting
different ARGs related to this phenotype. Srinivasa et al.
[50], Ferdous et al. [51] and Bai et al. [52] reported non-
O157 STEC carrying ARGs for tetracyclines (tet genes),
(fluoro) quinolones (qnrS and oqxA) and sulfonamides
(sul1 and sul2).

CTX-M-like β-lactamases have extended-spectrum
against β-lactams antimicrobials and have been increas-
ingly detected worldwide, including non-O157 STEC
from animals [51,53–56]. The ARGs detected in the pre-
sent study are commonly reported in plasmids [e.g.
IncI1, IncF (FrepB, FIA and FIB), HI1, K, and ColE-like],
which carrying principally encoding genes for β-
lactamases, PMQR and efflux pumps [56–59]. IncI1 plas-
mids were the most detected in this study and have
been reported carrying several ARGs, including tet(A), tet
(B), blaCTX-M-like, sul1 and sul2 in E. coli isolates obtained
from humans and animals [8,60,61].

The association of molecular typing and subtyping
methods (i.e. phylogenetic group, MLST and fimH-type)

has been used for epidemiological studies related to
antimicrobial resistance and virulence in E. coli isolates.
From this association, is possible to differentiate within
the same ST/CC [34,36,62]. According to Enterobase
Database (https://enterobase.warwick.ac.uk/), the ST48/
CC10, ST155/CC155 and ST2522 have already been
detected in sheep; however, all the other STs detected
in the present study have been reported carrying ARGs in
different sources (e.g. human, animal, food and the
environment).

Curiously, E. coli isolates assigned as B1-ST2522-
fimH38, B1-ST642-fimH25 and B1-ST155-fimH366 were
previously reported in food, human, animals (i.e. food-
producing animal, companion animal and wild animal),
and in the environment (i.e. soil andwater). Besides, ESBL-
producing E. coli belonging to CC10 and CC155 are com-
monly reported causing infections in humans [63,64].
Therefore, to the best of our knowledge, this is the first
report in theworld ofMDR STEC and non-STECbelonging
to ST25, ST162/CC469, ST642/CC278, ST1247, ST1518/
CC206, ST1725, ST2107, ST3270, ST5036/CC86, and
ST7100 in sheep.

In conclusion, the results found in the present study
showed high genetic diversity among MDR ARGs-
producing E. coli, including non-O157 STEC, obtained
from a farmhouse. These results contribute to the surveil-
lance studies associatedwithOneHealth concept and call
attention to the monitoring of MDR E. coli in animals,
mainly in sheep.
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Table 1. STEC and non-STEC isolates according to antimicrobial resistance profile, ARGs and plasmids found.

Isolate Antimicrobial resistance profilea ARGsb
Plasmid incompatibility

(Inc) groups

STEC SJA6 AMP, STP, GEN, TOB, TET, DOX, SXT, CLO tet(A), tet(B), sul2, cmlA FIA, FIB, ColE-like
SJA11 AMP, CFZ, CRX, CFC, STP, GEN, TOB, TET, DOX tet(A), tet(B), aac(6ʹ)-Ib I1, ColE-like
SJA29 AMP, ASB, CFZ, CRX, CFC, STP, GEN, TOB, TET, DOX, NAL,

CIP, LVX, NOR, LMX, OFX, SXT
blaCTX-M-Gp9, blaCMY, tet(A), tet

(B), aac(6ʹ)-Ib, sul2
FrepB, FIA, I1

SJA31 AMP, CFZ, CRX, CFC, TET, DOX tet(B), tet(C) FrepB, FIA, I1
SJA80 AMP, CFZ, CRX, CFC, TET, DOX, SXT blaCTX-M-Gp9, tet(B), sul2 I1
SJA92 AMP, CFZ, CRX, CFC, STP, GEN, TOB, TET, DOX, NAL, CIP,

LVX, NOR, LMX, OFX, SXT
blaSHV, tet(B), qnrS, oqxB, sul1 HI1

Non-STEC SJA1 AMP, TET, DOX, SXT, CLO tet(A), tet(B), sul1, cmlA FIB
SJA7 AMP, ASB, CFZ, CRX, CFC, TET, DOX, SXT blaCTX-M-Gp9, tet(A), tet(B), sul1 FIB, I1, ColE-like
SJA43 AMP, CFZ, CRX, CFC, TET, DOX, SXT blaCTX-M-Gp9, tet(A), tet(B), sul2 FrepB, I1
SJA44 AMP, CFZ, CRX, CFC, TET, DOX, SXT blaCTX-M-Gp9, tet(A), tet(B), sul1 I1, ColE-like
SJA45 AMP, CFZ, CRX, CFC, TET, DOX, SXT blaCTX-M-Gp9, blaSHV, tet(A), tet

(B), sul1
I1, K, ColE-like

SJA49 AMP, CFZ, CRX, CFC, TET, DOX, SXT tet(A), tet(B), sul1 FrepB, I1
SJA81 AMP, CFZ, CRX, CFC, TET, DOX, SXT tet(A), tet(B), sul2 HI1, I1
SJA91 AMP, ASB, CFZ, CRX, CFC, STP, GEN, TOB, TET, DOX, NAL,

CIP, LVX, NOR, LMX, OFX, SXT
blaCTX-M-Gp9, blaSHV, qnrS, tet(A),

tet(B), sul2
FIB, HI1, I1

a AMP, ampicillin; ASB, ampicillin-sulbactam; CFZ, cefazolin; CRX, cefuroxime; CFC, cefaclor; STP, streptomycin; GEN, gentamicin; TOB, tobramycin; TET,
tetracycline; DOX, doxycycline, SXT, trimethoprim-sulfamethoxazole; NAL, nalidixic acid; CIP, ciprofloxacin; LVX, levofloxacin; NOR, norfloxacin; LMX,
lomefloxacin; OFX, ofloxacin; CLO, chloramphenicol.

b ARGs, antimicrobial resistance genes.
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