Table 3.
Model | Accuracy | Δa | Sensitivity | Δ | Specificity | Δ | PPVb | Δ | NPVc | Δ | Kappa | Δ | |
Dataset: 10-fold cross-validation applied on the balanced training dataset (N=1014, delirium=50%) | |||||||||||||
|
ANNd | 71.7 (4.3) | nse | 71.8 (7) | +f | 71.6 (7) | −g | 71.7 (5) | − | 71.7 (7) | − | 43.3 (9) | ns |
|
BBNh | 71.3 (4.4) | ns | 72.2 (7) | + | 71.2 (7) | − | 69.9 (5) | − | 71.3 (7) | − | 43.1 (9) | ns |
|
DTi | 70.1 (4.3) | ns | 68.1 (7) | ns | 72.9 (9) | ns | 72.9 (5) | ns | 72.6 (9) | ns | 43.3 (8) | ns |
|
LRj | 73.3 (4.4) | Bk | 69.8 (7) | B | 76.7 (7) | B | 75 (5) | B | 75.6 (6) | B | 44.5 (9) | B |
|
NBl | 73.0 (4.2) | ns | 64.8 (7) | ns | 79.5 (5) | + | 74.4 (5) | ns | 79.5 (5) | + | 42.9 (8) | ns |
|
RFm | 72.5 (4.4) | ns | 74.3 (7) | + | 71.7 (7) | − | 72.1 (4) | ns | 72.8 (7) | − | 45.7 (9) | ns |
|
SVMn | 71.3 (4.5) | ns | 60.2 (8) | − | 83.8 (5) | + | 77.8 (5) | + | 83.1 (5) | + | 43.2 (9) | ns |
Dataset: Imbalanced test dataset (N=1117, delirium=11.4%) | |||||||||||||
|
ANN | 74.3 (3.2) | ns | 67.7 (5) | + | 72.9 (5) | ns | 24.3 (14) | ns | 94.6 (5) | ns | 22.85 (9) | ns |
|
BBN | 74.1 (3.8) | ns | 68.7 (9) | + | 70.8 (9) | − | 22.9 (15) | ns | 94.5 (6) | ns | 21.81 (11) | ns |
|
DT | 74.4 (5.4) | ns | 66.9 (10) | + | 75.4 (10) | ns | 25.8 (17) | ns | 94.7 (10) | ns | 24.97 (13) | ns |
|
LR | 75.6 (4.7) | B | 64.6 (9) | B | 77.1 (7) | B | 26.5 (16) | B | 94.4 (8) | B | 22.6 (13) | B |
|
NB | 71.7 (3.1) | − | 66.1 (12) | ns | 72.4 (8) | − | 23.5 (18) | ns | 94.3 (9) | ns | 21.55 (10) | ns |
|
RF | 75.4 (3.4) | ns | 72.4 (4) | + | 72.4 (4) | − | 25.2 (8) | + | 95.3 (4) | + | 24.69 (7) | ns |
|
SVM | 78.9 (2.1) | + | 62.2 (4) | ns | 81.1(3.2) | + | 29.7 (12) | + | 94.4 (6) | ns | 29.33 (9) | + |
aChange compared to base model (B).
bPPV: positive predictive value.
cNPV: negative predictive value.
dANN: artificial neural networks.
ens: not a statistically significant change in performance (P≥.05).
fStatistically significant improvement of performance metric (P<.05).
gStatistically significant deterioration of performance metric (P<.05).
hBBN: Bayesian belief networks.
iDT: J48 decision tree.
jLR: logistic regression.
kB: base comparator (reference) algorithm.
lNB: naïve Bayesian.
mRF: random forest.
nSVM: support vector machines.