Table 4.
Model | ROC-AUCa | F1 scoreb | PRC-AUCc | |||||||||||||||||||||||||
|
|
Yesd | Δe | Nof | Δ | Avgg | Δ | Yes | Δ | No | Δ | Avg | Δ | |||||||||||||||
Dataset: 10-fold cross-validation applied on the balanced training dataset (N=1014, delirium=50%) | ||||||||||||||||||||||||||||
|
ANNh | 80.4 (4) | nsi | 71.7 (5) | ns | 71.7 (5) | ns | 71.7 (5) | ns | 78.5 (5) | ns | 80.1 (5) | ns | 79.3 (5) | ns | |||||||||||||
|
BBNj | 77.4 (4) | −k | 70.1 (5) | ns | 69.1 (5) | ns | 69.6 (5) | ns | 75.3 (5) | ns | 77.3 (5) | ns | 76.3 (5) | − | |||||||||||||
|
DTl | 77.2 (4) | ns | 70.9 (4) | ns | 72.4 (4) | ns | 71.7 (4) | ns | 74.4 (5) | ns | 73.8 (5) | ns | 73.8 (5) | − | |||||||||||||
|
LRm | 81.4 (4) | Bn | 72.3 (5) | B | 74.2 (5) | B | 73.2 (5) | B | 79.8 (5) | B | 81 (5) | B | 80.4 (5) | B | |||||||||||||
|
NBo | 79.9 (4) | ns | 72.7 (5) | ns | 73.2 (5) | ns | 73 (5) | ns | 78.1 (5) | ns | 79.8 (5) | ns | 78.9 (5) | ns | |||||||||||||
|
RFp | 81.3 (4) | ns | 74.1 (5) | ns | 72.6 (5) | ns | 73.3 (5) | ns | 78.8 (5) | ns | 81 (5) | ns | 79.9 (5) | ns | |||||||||||||
|
SVMq | 81.1 (5) | ns | 67.2 (6) | − | 74.4 (6) | ns | 71.1 (6) | − | 80.4 (5) | ns | 80.5 (5) | ns | 80.4 (5) | ns | |||||||||||||
Dataset: Imbalanced test dataset (N=1117, delirium=11.4%) | ||||||||||||||||||||||||||||
|
ANN | 78.2 (6) | ns | 35.8 (9) | ns | 82.4 (9) | ns | 77.1 (9) | ns | 30.4 (9) | +r | 96.2 (9) | ns | 88.7 (9) | ns | |||||||||||||
|
BBN | 77.3 (6) | ns | 34.3 (8) | ns | 82.9 (8) | ns | 76.6 (8) | ns | 30.7 (8) | + | 95.8 (8) | ns | 88.4 (8) | ns | |||||||||||||
|
DT | 74.6 (7) | − | 37.3 (8) | ns | 83.9 (8) | ns | 78.6 (8) | ns | 25.3 (8) | ns | 94.3 (8) | ns | 86.5 (8) | ns | |||||||||||||
|
LR | 77.5 (5) | B | 37.6 (11) | B | 84.9 (11) | B | 79.5 (11) | B | 27.1 (10) | B | 97.1 (10) | B | 88.4 (10) | B | |||||||||||||
|
NB | 75.6 (8) | ns | 34.7 (10) | ns | 81.9 (10) | ns | 76.6 (10) | ns | 28.7 (9) | ns | 95.6 (9) | ns | 88.0 (9) | ns | |||||||||||||
|
RF | 78.0 (4) | ns | 37.4 (8) | ns | 82.3 (8) | ns | 77.2 (8) | ns | 28.3 (8) | ns | 96.3 (8) | ns | 88.6 (8) | ns | |||||||||||||
|
SVM | 77.2 (6) | ns | 40.2 (7) | + | 87.2 (7) | + | 81.9 (7) | + | 29.6 (9) | + | 96.0 (9) | ns | 88.4 (9) | ns |
aROC-AUC: receiver operator curve-area under the curve.
bF1 score: harmonic mean of precision and recall.
cPRC-AUC: precision-recall curve-area under the curve.
dYes: positive instances or patients who developed delirium.
eChange compared to base model (B)
fNo: negative instances or patients who did not develop delirium.
gAvg: weighted average measured as the sum of all values in that metric, each weighted according to the number of instances with that particular class label by multiplying that value by the number of instances in that class, then divided by the total number of instances in the dataset.
hANN: artificial neural networks.
ins: not a statistically significant change in performance (P≥.05).
jBBN: Bayesian belief networks.
kStatistically significant deterioration of performance metric (P<.05).
lDT: J48 decision tree.
mLR: logistic regression.
nB: base comparator (reference) algorithm.
oNB: naïve Bayesian.
pRF: random forest.
qSVM: support vector machines.
rStatistically significant improvement of performance metric (P<.05).