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Abstract

In recent years, tissue-resident memory T cells (TRM) have emerged as essential components of 

immunological memory. Following antigenic challenge, TRM remain in nonlymphoid tissues and 

defend against re-exposure. Although accumulating evidence suggests important roles for TRM in 

mediating protective immunity, fundamental aspects of the population biology of TRM remain 

poorly understood. Here we discuss how results from different systems shed light on the 

ecological dynamics of TRM in mice and humans. We highlight the importance of dissecting 

processes contributing to TRM maintenance, and how these might vary across phenotypically and 

spatially heterogeneous subsets. We also discuss how the diversity of TRM communities within 

specific tissues may evolve under competition and in response to antigenic perturbation. 

Throughout, we illustrate how mathematical models can clarify inferences obtained from 

experimental data, and help elucidate the homeostatic mechanisms underpinning the ecology of 

TRM populations.

Introduction

Following primary infection and resolution of the associated cellular immune response, 

memory T cells are generated to protect against secondary exposures. It is well established 

that memory T cells comprise heterogeneous subsets. While central memory T cells (TCM) 

and effector memory T cells (TEM) circulate between the blood and secondary lymphoid 

organs (SLOs) or peripheral tissues, respectively, tissue-resident memory T cells (TRM) are 

found in diverse tissue sites and provide crucial defenses against previously encountered 

pathogens (1–13). TRM are widely dispersed throughout the body and have been associated 

with protection against viral and bacterial infections, anti-tumor immunity, and the 

pathology of allergic and autoimmune diseases (3, 7, 14–21).

TRM are phenotypically and transcriptionally distinct from TEM and TCM, and the factors 

involved in their differentiation and maintenance have been studied extensively (reviewed in 
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refs. (22–28)). As shown in parabiosis experiments involving the conjoining of two mice, 

TRM persist within a wide variety of nonlymphoid tissues (NLT) (17, 29, 30). TRM have also 

been identified in draining SLOs following local infection in the female reproductive tract 

(FRT) and skin (31). Evidence that TRM persist in the presence of agents which deplete 

circulating peripheral T cells (e.g. FTY720 or anti-T cell antibodies) further indicates that 

TRM are non-circulating and largely maintained independently of circulating populations 

(14, 32, 33). While TRM are phenotypically heterogeneous, and there are no perfect markers 

of tissue residency, the most commonly associated marker in mice is CD69. Although CD69 

is often attributed to recent antigenic stimulation, it may also function to retain TRM within 

NLT (22), and parabiosis experiments have confirmed its utility in distinguishing tissue-

resident from circulating cells (11, 17, 25). Another frequently used marker is CD103, which 

is predominantly associated with CD8+ TRM (34), although CD103+ CD4+ TRM are found in 

skin and FRT (3, 34–37). Other markers, such as CD11a and CXCR3, are associated with 

the TRM phenotype in certain tissues (11, 32, 34, 38–40).

Despite this extensive characterization, many fundamental aspects of TRM biology remain 

poorly understood. For example, what determines the longevity of memory encoded by 

TRM? How does the presence of TRM impact the recruitment of new antigen-specific T cells 

upon exposure to related or unrelated pathogens? Is there competition between pre-existing 

and newly generated TRM, and if so what factors mediate this competition? To address these 

questions requires formulating a quantitative ecology of tissue-resident memory, so that we 

may understand how continual exposure to environmental and infectious antigens impacts 

the distribution, diversity and persistence of TRM at different sites across the body.

By pairing quantitative models with experimental observations one can test different 

hypotheses regarding cellular turnover and interactions, estimate quantities that may not be 

directly measured, and generate quantitative, testable predictions. Notably, mathematical 

models have elucidated mechanisms underlying the generation and resolution of effector T 

cell responses, and the maintenance of naive and circulating memory T cell populations 

(reviewed in ref. (41); see also, for example, refs. (42–52)). Further afield, there is a rich 

literature employing models to understand the ecological processes sustaining communities 

of plants, animals, and infectious agents (see, for example, refs. (53–56)). In this article we 

collate information regarding the ecological dynamics of TRM, including current quantitative 

estimates of growth and loss rates in different tissues. We first consider studies performed in 

mice, as these comprise the bulk of the work to date, and then discuss our understanding of 

TRM ecology in humans. Throughout this review we illustrate how mathematical tools can 

be harnessed to refine and enhance current experimental insights, and highlight open 

questions and areas for future work.

Identifying ontogenic pathways

The ontogeny of TRM across different tissues has not been fully characterized. Although, in 

general, it seems that TRM are enriched for relatively long-lived, quiescent cells in an early-

differentiated state (57, 58), a definitive differentiation pathway remains elusive. One barrier 

to consensus in this area is that T cell responses are heterogeneous, and move through high-

dimensional phenotypic trajectories, of which any given experiment only views a projection. 
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However, by allowing us to frame mechanistic descriptions of the dynamics of proliferation, 

loss and differentiation, mathematical models can be used to explore competing hypotheses 

regarding patterns of T cell differentiation (45, 47, 59–61).

In addition to identifying precursor populations, quantifying the rate of TRM generation from 

these populations, and whether this rate changes over both short timescales (such as during 

the contraction phase of an immune response) and throughout life is important for 

understanding how TRM populations are established and maintained. Recent work suggests 

that host age modulates the rate of TRM generation, as activated T cells in infants show 

reduced capacity to differentiate into lung TRM compared to cells in adults (62). Such 

hypotheses can be explored using models that test the impact of host and/or cell age on 

population kinetics (49, 52, 63). For instance, a comparison of models describing different 

mechanisms of naive T cell homeostasis identified increasing cell survival with post-thymic 

age as the most likely determinant of population stability throughout life (49). Such methods 

could be used to dissect the roles of host and cell age in modulating TRM formation.

Discriminating between models of T cell responses in vivo, and of TRM ontogeny in 

particular, requires frequent sampling of the phenotypic profile of T cells during the acute, 

resolution and memory phases, both in the tissue and draining lymph nodes. Such data are 

typically cross-sectional, but even data from single cell fate-mapping experiments leave 

uncertainty regarding lineage relationships (45, 59, 64, 65). Nevertheless, if candidate 

mechanisms or pathways can be expressed as mathematical models, there exist statistical 

methods to compare the support for each (see, for example, ref. (66)). Such methods assess 

the ability of different models to describe observations while penalizing those which are too 

complex and tend to ‘over-fit’ – that is, those models which are overly tailored to the 

particulars of a given (inevitably noisy) dataset, and do not generalize well to data from 

other experiments. The most parsimonious models can thus be identified from a set of 

candidates, and used to infer biological parameters and underlying mechanisms. Additional 

data may then be used to test the predictions of models, and further assess their biological 

relevance.

Quantifying and dissecting contributions to TRM longevity

Perhaps the key motivation for understanding mechanisms of TRM development and 

maintenance is to optimize immunization protocols and maximize the longevity of tissue-

resident immunity. Important questions include: does the longevity of TRM clones depend on 

antigen-specificity and/or tissue location? Does longevity map directly to the phenotypic 

heterogeneity of TRM? And to what extent does competition between TRM, either at the level 

of the whole population or among antigen-specific populations, influence longevity? To 

tackle these questions quantitatively, we first note that the longevity of a TRM population is 

determined by the balance between self-renewal, loss, and recruitment from circulating 

precursor populations (Box 1). In particular, if there is proliferative self-renewal of TRM, the 

lifetime of individual TRM cells may be shorter than the lifetime of the population as a 

whole. In what follows, then, we use the term ‘longevity’ to define the persistence of a 

population, combining the net effects of influx, division, and loss.
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Measuring longevity is hampered by the censoring of experimental information – estimates 

can be dependent on the duration of sampling. Nevertheless, broad patterns have emerged 

that indicate potential tissue-specificity in TRM longevity: populations in the lungs and liver 

persist for weeks to months (7, 11, 32, 67–70), whereas those in tissues such as the brain and 

skin may persist for months to years (Table 1) (4–6, 8, 12, 17, 35). While the longevity of 

TRM may also be phenotype-specific, as it is in circulating memory subsets (41), little is 

known in this regard. Despite evidence that CD8+ memory cell populations persist longer 

than CD4+ memory cells in tissues such as the skin and FRT (5, 35, 71, 72), there have been 

no direct comparisons of the longevity of CD4+ and CD8+ TRM. Similarly, although some 

evidence suggests regulatory CD4+ T cells, another distinct subset of resident memory, can 

persist for over 50 days in the skin and lungs, their population dynamics are, in general, 

more poorly defined than those of conventional CD4+ and CD8+ TRM (73, 74).

Although experimental studies have provided valuable insights into longevity in different 

tissues, the majority measure TRM abundance over time and cannot untangle the 

contributions of recruitment, self-renewal, and loss. For instance, the rapid loss of influenza-

specific TRM in the lung has been attributed to all three components of population longevity: 

high levels of apoptosis-driven loss, low levels of proliferation, and decreasing recruitment 

of circulating precursors over time (67, 69, 75). However, direct quantitative comparisons of 

the relative roles of each are currently lacking. Ultimately, to develop a mechanistic 

understanding of TRM homeostasis, we need to quantify the relative contributions of 

proliferation, recruitment, and loss. These factors are discussed in detail below.

The extent of TRM recruitment at steady state (in the absence of infection) varies across 

NLT, cell phenotypes, and possibly infections. Recently-generated CD4+ TRM in the lung, 

and CD8+ TRM in the brain and skin, remain stable in numbers in the absence of input from 

the circulation (32, 35, 76). In contrast, CD8+ TRM in the lung are at least partly replenished 

by circulating memory precursors (69, 77), and there may also be low level seeding in the 

FRT (17). Given the sensitivity of the above analyses to sampling times, and the potential for 

changes in the rate of recruitment from precursors over time (69), further work is needed to 

measure the long-term contribution of recruitment to TRM maintenance.

Although TRM populations expand efficiently in response to antigenic restimulation (12, 58, 

78), the extent to which they self-renew at steady state is unclear. BrdU-labeling experiments 

have indicated that low-level proliferation occurs in the lung, skin, and brain, with 0–5% 

BrdU uptake over seven days (3, 69, 76). However, it has also been shown that a more 

substantial fraction (around 9%) of established TRM in the brain express Ki67, a marker of 

recent division (12). Evidence that these Ki67hi cells are established TRM, rather than 

recently-divided immigrants, implies a more important role for self-renewal in certain 

tissues (12, 76).

Finally, loss of TRM can result from cell death (turnover) or tissue egress. In some systems, 

such as the lungs, TRM express lower levels of the anti-apoptotic protein Bcl-2, and 

increased levels of the pro-apoptotic caspase 3/7, than their circulating counterparts, 

suggesting impaired cell survival (69). However, this impairment is not apparent for TRM in 

the skin, illustrating that loss rates likely vary across different tissues and cell phenotypes.
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Combining these experimental observations with quantitative models will enable (i) 

characterization of homeostatic dynamics as cells die, divide, and/or differentiate; and (ii) 

rates of recruitment, self-renewal, and loss to be inferred (41, 46, 48). Although some 

quantitative methods have been employed to infer population half-lives in the liver and lungs 

(Table 1; see refs. (11, 70, 79)), these may be overestimates as cell recruitment was not taken 

into account (Box 1). To discriminate self-renewal of existing TRM from the recruitment of 

new cells, one can use fate-mapping systems, or adoptive transfer of congenically labeled T 

cells prior to secondary challenge. As an example, the former has been employed to track 

the differentiation of congenically labeled cells that develop normally in the thymus and are 

released into a lymphoreplete periphery (47). In combination with BrdU-labeling, models 

were used to quantify heterogeneity in the dynamics of effector and memory CD4+ T cells, 

and the rate of naive cell recruitment into these populations. Applying similar approaches to 

TRM could disentangle the processes of recruitment and renewal, and identify heterogeneity 

in population dynamics. In particular, heterogeneity is suggestive of TRM subpopulations 

with distinct homeostatic niches (Box 2), and the combination of modeling and fate-

mapping may reveal whether these coexist independently or whether there is interconversion 

between them. These methods also allow projection of TRM population dynamics beyond 

typical experimental timecourses, to develop a more complete picture of TRM homeostasis 

and persistence (Box 3).

TRM competition and community composition

Community composition refers to the diversity and spatial distribution of cells coexisting 

within a tissue. This composition may be altered if TRM compete with other cells (including 

other TRM subsets) within their local niche. In the following section we consider 

competition and its subsequent impact on cell diversity within NLT, first by focusing on 

competition arising during homeostasis, or following a single inflammatory response, and 

then by considering how populations change across multiple exposures.

First, it is important to understand the extent to which TRM compete with one another for 

homeostatic resources. In particular, competition implies the existence of a ‘carrying 

capacity’ that may limit the amount of TRM a tissue can support. Such a restriction on 

population size may be important in the skin following HSV challenge, where TRM numbers 

eventually plateau with increasing numbers of transferred effector cells, despite a continued 

increase in numbers in the spleen (58). Although saturation in TRM formation must be 

carefully distinguished from saturation of other upstream immune responses (80), 

identifying potential carrying capacities is important as the density of antigen-specific TRM 

within a tissue can influence the efficacy of protection (11, 58). Models can provide further 

insights into these systems by exploring the density of TRM required to provide effective 

protection and predicting when populations will drop below this threshold (79, 81).

One mechanism that may drive cell competition is cytokine-mediated signaling. For 

example, TRM maintenance and homeostatic division in the skin, salivary glands, liver, and 

kidney may be IL-15 dependent, with IL-15 deficiency leading to significant reductions in 

cell numbers (34, 70, 82–84). However, these data do not address whether IL-15 is limiting 

at steady state and thus are not direct evidence for cytokine-mediated competition under 
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normal conditions. Another mechanism through which TRM may compete is antigen 

availability. If TRM formation is antigen-dependent, immunodominance hierarchies can arise 

amongst the newly generated population: more abundant epitopes stimulate greater numbers 

of the corresponding clone. Such hierarchies have been observed in the lungs, skin, and FRT 

(3, 8, 68, 85, 86). The clonal composition of TRM at a tissue site may be further shaped by 

influx from memory precursors (17, 69) and subsequent antigen exposure (78).

One caveat to the above discussion is that most studies of TRM maintenance use specific 

pathogen-free (SPF) or germ-free mice, which are typically isolated from exposure to 

environmental antigens. As such, the density and diversity of TRM in tissues may be 

relatively low. In contrast, greater insights may be gained from so-called ‘dirty mice’ which 

are exposed to more diverse environmental antigens than those in traditional SPF facilities, 

and in which TRM are typically found at greater densities (31). The populated tissues of 

these mice may more closely reflect normal conditions, and thus provide a better system to 

study competition between cells.

With respect to sequential exposures, multiple antigenic stimuli may change the diversity of 

the TRM community as newly recruited and pre-existing cells compete for resources within a 

particular niche (87). In the skin, proliferation of pre-existing TRM following HSV 

rechallenge is accompanied by increased apoptosis, suggesting prior population expansion 

may be controlled during recall responses (58). Despite this, a stable population of original 

cells can coexist with new recruits following either homologous or heterologous infection 

(58). In the FRT, TRM numbers increase following consecutive homologous challenge, 

primarily due to in situ proliferation of pre-existing cells (78). Finally in the liver, pre-

existing and newly established TRM coexist following consecutive transfers of three 

heterologous populations (70). Together these results suggest heterogeneous TRM 

populations can persist in a number of NLT following multiple exposure events. However, 

the extent to which this applies over longer timescales, across other sites, and against more 

biologically relevant exposure histories (e.g. SPF vs dirty mice) has yet to be determined.

An additional challenge in understanding community composition is to identify the specific 

rules of replacement – is TRM homeostasis democratic, in the sense that all specificities or 

phenotypes compete equally for space and/or homeostatic resources in the absence of 

antigen? Do pre-existing TRM tend to exclude new immigrants, or do newer cells have a 

competitive advantage? Does competition take place on a global level (independent of 

antigen specificity), or are there antigen-specific niches, created either by persistent antigen, 

or cell congregation at previous sites of infection? These questions can be addressed by 

further measuring the persistence of epitope-specific TRM after multiple exposures to related 

and heterologous pathogens (70). Such insights will be of critical importance in 

understanding how host immunity changes in response to sequential infections.

The ecology of tissue-resident memory in humans

TRM in humans are less well studied, primarily due to difficulties in sampling NLT. 

Although in vivo challenge experiments have been carried out with healthy volunteers (10, 

88), such studies are generally rare. Nonetheless, recent insights have been gained from a 

variety of valuable sources, including tissues sampled from organ donors and patients 
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undergoing surgical procedures (86, 89–94). These snapshots in time reveal the diversity of 

TRM populations that accumulate throughout life in response to multiple pathogen 

exposures. In addition, they complement studies of germ-free and SPF mice that do not 

consider dynamics in the context of pre-existing immune landscapes.

In general, the phenotypes of human TRM are relatively well-characterized. Despite 

differences in the transcription factors regulating their differentiation (95–99), human TRM 

share core transcriptional and phenotypic profiles with their murine counterparts, including 

high expression of CD69 and enrichment for CD103 in CD8+ populations (86, 90, 96, 100–

104). Additional surface markers, including CD49a, CXCR6, and CD101, are also enriched 

at multiple sites (96, 105). Another notable finding from human studies is that TRM are more 

widely distributed than in laboratory mice: TRM have been identified in human lymphoid 

tissues (e.g. spleen, lymph nodes, and tonsils) in addition to NLT, and are the most abundant 

T cell subset at these sites (90, 96). This greater dissemination may reflect increased 

exposure to environmental antigens (103), and is consistent with recent findings that TRM 

accumulate in the draining lymph nodes of mice following repeated antigenic stimulation 

(31). Overall, these studies highlight the importance of considering environment and host 

ecology when developing a conceptual framework of TRM dynamics.

Determining the dynamics of TRM maintenance in human tissues is particularly challenging 

given the difficulty of tracking cell populations over time. Nevertheless, cross-sectional 

analyses of mucosal and lymphoid tissues has revealed that TRM are maintained at 

remarkably stable frequencies from childhood well into old age, at levels that are tissue-

specific (106, 107). Important insights have also been gained from longitudinal studies. 

Firstly, TRM clones specific for the allergen diphenylcyclopropenone (DPCP) persist in 

healthy human skin for at least four months (10). Secondly, donor TRM persist in lung and 

intestine transplant recipients for over one year following transplantation (93, 94). 

Collectively, these findings suggest stable maintenance of human TRM, although quantitative 

estimates from other tissues and antigens will be required before broad conclusions can be 

drawn.

The relative contributions of recruitment, self-renewal, and loss to overall population 

maintenance are also not well known. However, the gradual formation of recipient TRM 

following lung transplantation suggests continual recruitment can occur (94). In addition, 

cross-sectional data from donor tissues indicate homeostatic proliferation of resident CD8+ 

and CD4+ cells is detectible, but low, across mucosal sites (91). In particular, few resident 

skin and intestine cells express Ki67 (93, 108), and expression levels in the lung are less 

than 8% (96). Although these observations suggest relatively low average rates of 

homeostatic self-renewal, recent partitioning of TRM based on their ability to efflux 

fluorescent dye has revealed underlying differences in Ki67 expression: cells capable of 

efflux (efflux+) show reduced rates of proliferation compared to efflux− cells (106). 

Moreover, the efflux+ subset exhibited increased CD127 expression and enhanced IL-7 

signaling following ex vivo stimulation, suggesting greater survival capacity. Together, these 

findings suggest important heterogeneity in cell quiescence and survival that modulates TRM 

longevity at the population level.
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Finally, with respect to competition and community composition, humans are exposed to a 

greater number and diversity of environmental antigens than germ-free or SPF mice. Thus, 

one important question is how the accumulation and composition of different TRM 

communities is impacted by these more frequent and multifaceted challenges. Recent 

sampling of donor tissue suggests a diverse range of influenza-specific TRM clonotypes can 

be maintained in the adult human lung (86). A high degree of TCR diversity has also been 

observed in healthy human skin, and is largely maintained in vitro during IL-2 and IL-15 

induced expansion (89). These findings hint that human NLT can support an array of 

coexisting TRM communities. Mapping the dynamics of such communities, in the face of 

differential individual exposure history and genetic background, will be a key challenge for 

the future. In the absence of longitudinal sampling, one approach may be to use quantitative 

imaging of human tissue sections, including markers of proliferation and apoptosis, to 

establish the spatial organization of TRM in different organs and how self-renewal and 

turnover reflect tissue location and local TRM densities.

Concluding remarks

TRM are a crucial component of the adaptive immune system and provide frontline defenses 

against invading pathogens. Understanding the mechanisms underlying population 

persistence and community composition is therefore crucial to enhancing immune memory 

and improving vaccine-mediated protection. Although recent experimental studies have 

provided many insights into the molecular factors governing cell differentiation and 

maintenance, a broader picture of TRM ecology is still lacking. Mathematical modeling can 

help bridge this gap by providing a quantitative framework for exploring multiple different 

aspects of TRM ecology. In particular, integrating models with data will allow us to 

disentangle the contributions of recruitment, proliferation, and loss to TRM longevity, and 

project population dynamics beyond current experimental limits. Success in this endeavor 

will require longitudinal data from NLT and SLOs – a particularly challenging prospect for 

human studies.
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Box 1:

Modeling TRM homeostasis

Consider a single homogeneous population of TRM, T. A simple model of homeostasis 

assumes that newly recruited TRM cells enter the population from a precursor subset at a 

constant rate, r. They then divide in situ at rate p and are lost at some rate d, which 

reflects both cell death and egress from the tissue (Fig. 1). The average residence time of 

an individual cell in the tissue is 1/d. These processes can be expressed mathematically as

dT
dt = r + pT − dT

= r − d − p T ,
(1)

where d − p is the net loss rate from the population, which is the balance of loss and self-

renewal through division.

If there is no recruitment from precursor populations, then r = 0 and Eq. 1 can be solved 

to give

T = T(0)e− d − p t, (2)

where T(0) is the initial number of TRM. Thus, assuming cells are lost at a faster rate than 

they divide (i.e. d > p), the population will decline exponentially at net loss rate (d − p). 

This quantity, rather than the residence time of any particular cell, is most relevant for 

quantifying the duration of immunity (i.e. the persistence of a T cell population that 

undergoes both loss and self-renewal). It follows that the average time for this population 

to halve in size is ln(2)/(d − p). One can use this net loss rate to estimate, for example, the 

time taken for the population size to fall below a defined threshold of protection.

Finally, if r 6= 0, then some cell loss will be masked by recruitment of new TRM. Models 

that fail to account for this recruitment will underestimate the net loss rate, (d − p), and 

thus overestimate the corresponding population halflife. If r is constant and d > p, the 

population will eventually reach an equilibrium, T*, where influx and renewal are 

balanced by loss. This steady-state population size can be found be setting dT/dt = 0, 

giving T* = r/(d − p).
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Figure 1 –. 
Schematic of TRM homeostasis model. Cells are recruited at a constant rate, r, self-renew 

through division at rate p, and are lost at rate d, leading to exponentiallydistributed 

residence times within the tissue. Extensions of this model include different residence 

time distributions, or decomposing the decay rate into distinct terms for cell death and 

tissue egress (109).
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Box 2.

Heterogeneity in TRM populations

The homogeneous model of TRM homeostasis (Eq. 1) assumes the rates of input, loss, 

and division are constant over time, and across all cells in the population. However, these 

assumptions may not always hold. For instance, input rates may wane over time, as has 

been found in the lung (69), and phenotypic heterogeneity may lead to different rates of 

division and/or loss, as has been found in other T cell subsets (43, 47). Such mechanisms 

can lead to heterogeneous population dynamics. For example, differences in net loss rates 

among phenotypic subsets can manifest as multiple phases of exponential decline, rather 

than the single phase of a homogeneous population (Fig. 2) (46). By modifying Eq. 1 to 

reflect these scenarios, heterogeneity in TRM ontogeny and homeostasis can be identified 

and compared (although the ability to detect such heterogeneity requires sufficient data, 

such as detailed timecourses from fate-mapping and DNA labeling) (47, 110, 111).
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Figure 2 –. Impact of heterogeneity on population dynamics.
(A) Assuming precursor input is negligible, homogeneity in the net loss rate across the 

population leads to a single exponential decay function (Eq. 2). (B) Conversely, if there is 

heterogeneity in net loss among cell subsets (e.g. due to different death rates), then the 

observed decay (dashed line) reflects the sum of the decay kinetics of each subset (red 

and blue lines).
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Box 3:

Mathematical analysis of published data

To illustrate the insights that can be gained from mathematical modeling, we collated 

data from two independent studies of CD8+ TRM persistence in mice. One describes the 

number of OT-I TRM in the lungs and nasal tissues (NT) from 20–120 days following 

infection with the recombinant X31-OVA strain of influenza virus (68). The other follows 

the number of P14 TRM in the skin and lungs 20–200 days after infection with either 

Vaccinia-GP33 (skin) or PR8-GP33 (lungs) (69). The latter study also follows the 

endogenous TRM response to the NP366 protein following infection with the PR8 strain 

of influenza.

Due to sparse information on the extent of TRM recruitment in each tissue, we make the 

simplifying assumption that r = 0; i.e. influx is negligible over the experimental time 

frame. Although this assumption may be applicable to the NT and skin, it is unlikely to 

hold strongly in the lung (35, 68, 69). We also assume cells within each population are 

homogeneous with respect to their rates of division (p) and loss (d). TRM decline can then 

be modeled using Eq. 2 to estimate the half-life of the population (Fig. 3). If in situ 
proliferation is minimal, then p ≈ 0 and the net loss rate of the population (d − p) is 

equivalent to the loss rate of individual cells (d); this may be the case for lung and NT 

TRM (68, 69). More generally, however, p ≠ 0 (12), and distinguishing the contributions 

of p and d to the net loss rate requires further data regarding TRM self-renewal (e.g. Ki67 

expression), death, or egress. Note also that the net loss rate will be underestimated if 

there is significant TRM recruitment (Box 1).

Importantly, mathematical models can be used to project population dynamics beyond 

experimental time frames. For example, our model predicts that OT-I (Fig. 3A) and 

NP366 (Fig. 3B) TRM cells will become undetectable in 230 and 210 days, respectively. 

These estimates are in agreement with the observation that lung TRM are undetectable 

seven months (approximately 210 days) after infection (7).
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Figure 3 –. Mathematical analysis of published TRM data.
Eq. 2 fitted to data from refs. (68) (A) and (69) (B). Solid lines are the model predictions, 

points are the data, and grey shaded regions are prediction envelopes obtained by 

sampling parameters from their 95% confidence intervals. Least-squares optimization 

was performed on the log-scale and residuals were normally-distributed (using the 

Shapiro-Wilk test), except those for the NT. The NT fits are thus included for 

approximate comparison only. Note that we use the above approach to illustrate how a 

simple model can be applied to experimental data. In a more thorough analysis, these 

predictions would then be compared with those from alternative models to identify the 

most parsimonious description of the data. Code for the above analysis can be found at 

https://github.com/SineadMorris/TRMecology.
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