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Spatially Adjusted Time-
varying Reproductive Numbers: 
Understanding the Geographical 
Expansion of Urban Dengue 
Outbreaks
Ta-Chou Ng1 & Tzai-Hung Wen2*

The basic reproductive number (R0) is a fundamental measure used to quantify the transmission 
potential of an epidemic in public health practice. However, R0 cannot reflect the time-varying nature 
of an epidemic. A time-varying effective reproductive number Rt can provide more information 
because it tracks the subsequent evolution of transmission. However, since it neglects individual-level 
geographical variations in exposure risk, Rt may smooth out interpersonal heterogeneous transmission 
potential, obscure high-risk spreaders, and hence hamper the effectiveness of control measures in 
spatial dimension. Therefore, this study proposes a new method for quantifying spatially adjusted 
(time-varying) reproductive numbers that reflects spatial heterogeneity in transmission potential 
among individuals. This new method estimates individual-level effective reproductive numbers (Rj) 
and a summarized indicator for population-level time-varying reproductive number (Rt). Data from the 
five most severe dengue outbreaks in southern Taiwan from 1998–2015 were used to demonstrate the 
ability of the method to highlight early spreaders contributing to the geographic expansion of dengue 
transmission. Our results show spatial heterogeneity in the transmission potential of dengue among 
individuals and identify the spreaders with the highest Rj during the epidemic period. The results also 
reveal that super-spreaders are usually early spreaders that locate at the edges of the epidemic foci, 
which means that these cases could be the drivers of the expansion of the outbreak. Therefore, our 
proposed method depicts a more detailed spatial-temporal dengue transmission process and identifies 
the significant role of the edges of the epidemic foci, which could be weak spots in disease control and 
prevention.

The basic reproductive number (R0) is a fundamental measure used to quantify the transmission potential of an 
epidemic1. It is defined as the number of infections caused by an index case within a completely susceptible pop-
ulation, i.e., a population in which there is no pre-existing immunity. R0 is a summary index suggesting both the 
intrinsic transmissibility of a pathogen and the infrastructure that allows the disease to spread in a given setting. 
In particular, the value of R0 is affected by transmission probability, contact rate and duration of infectiousness2.

Based on deterministic homogenous-mixing epidemic models3, public health practitioners usually regard 
R0 = 1 as a useful threshold for ensuring the development of an outbreak, referred to as the epidemic threshold4. 
The health authorities also use R0 for predicting final epidemic size3,5 and assessing the resources required to con-
tain the outbreak, e.g., determining what proportion of people should be vaccinated2. Therefore, it is of great prac-
tical importance to estimate R0 for a possible outbreak in public health practice. The value of R0 is estimated from 
the initial growth rate of an epidemic based on mechanistic models, such as the susceptible-infected-recovered 
model3,6. For example, R0 has been estimated at approximately 1.5 for 2009 H1N1 influenza7, at 3 for the 2003 
severe acute respiratory syndrome (SARS) outbreak8, and at 12–18 for historical measles outbreaks9. As an epi-
demic unfolds, however, the depletion and recovery of the susceptible population cause fluctuating effective 
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transmissibility, so the value of R0 cannot reflect the time-varying nature of an epidemic. Moreover, when an 
epidemic occurs in a realistic contact network, R0 can also fail to characterize the transmission potential at the 
initial stage10.

On the other hand, the effective reproductive number (R) is defined as the number of infections caused by any 
case11. The difference between R and R0 is that the value of R does not depend on the assumption that the pop-
ulation is completely susceptible, which is often violated in later stages of an outbreak or in a situation in which 
the population has been exposed to the pathogen previously. Therefore, R aims to characterize the progression 
of an epidemic in a realistic scenario. Intuitively, counting the branches of infection on transmission trees (i.e., 
who infects whom6) precisely quantifies the value of R; however, doing this is impractical in most circumstances 
except for confined outbreaks where contact tracing is feasible12. The epidemic curve (an illustration of the num-
ber of new infections) does not encode transmission dynamics and cannot be used to infer R directly. The renewal 
equation11, which describes the temporal transmission relationship between propagating generations of infected 
cases, is therefore proposed to estimate R from incidence data in different epidemic periods. More specifically, 
the renewal equation estimates the values of the time-varying effective reproductive number (Rt), defined as the 
population-level transmission potential at time t11,13. In a fully susceptible population, early values of Rt should 
approximate R0, but Rt is more informative in that it tracks the subsequent evolution of transmission potential 
during the course of an outbreak. The values of Rt can also reveal the time when an outbreak was contained by 
monitoring the epidemic threshold. During the 2014 Ebola outbreak in West Africa, Rt captured a distinct tem-
poral pattern of transmission potential in different countries, signaling the different levels of control measures 
needed14. As the change in transmission potential is highly correlated to control measures, public health practi-
tioners can evaluate the effectiveness of control measures by determining the change in Rt after implementation. 
For example, sudden drops in Rt (from 3 to approximately 0.7) after the issuance of a global alert during the 2003 
SARS outbreak indicated the effectiveness of the alert15.

Time-varying effective reproductive numbers can be estimated by the renewal equation with a weighted ratio 
of infectors and infectees11. The generation interval, defined as the infection time interval between a potential 
infector and an infectee, is the major component of the process of determining the temporal weights of possible 
transmission. A major pitfall of the renewal equation method is that it automatically assumes homogeneous 
mixing of individuals. In effect, the temporal weight assumes that transmission probability is determined only 
by the temporal difference in onset of illness between the infector and infectees, regardless of possible variations 
due to geographical and social proximity. Human mobility and contact patterns are highly structured in the real 
world16–18 and inevitably violate the homogeneous mixing assumption19. Studies have demonstrated spatial het-
erogeneities in the transmission of dengue20, cholera21, influenza22, and foot-and-mouth disease23. Recent studies 
have also shown that spatial distance between cases strongly influences short-term movement24 and, hence, the 
spread of these diseases. Moreover, short-range transmission has served the essential mode of disease transmis-
sion25, i.e., patients typically have a higher chance of infecting others nearby. Although this spatial effect has been 
considered in the aforementioned studies and in the transmission tree reconstruction of some diseases26,27, the 
effect of spatial distance on the estimation of the effective reproductive number has not yet been explored. The 
spatial relationship between individuals can be utilized to calculate the discriminative transmission potential 
for each individual (Fig. 1; see the methods section for details). Neglecting the spatial variation, conversely, may 
smooth out heterogeneities in transmission potential, obscure high-risk spreaders, and hamper the effectiveness 
of control measures. In summary, the effect of spatial proximity or distance should be accounted for in the esti-
mation of effective reproductive numbers.

Therefore, the objective of this study is to propose such method for quantifying spatially adjusted reproductive 
numbers that reflects spatial heterogeneity in exposure risk. It generates individual-level effective reproductive 
numbers (Rj) and a summarized indicator for the whole population (Rt) by the transmission probability estimated 
for all infector-infectee pairs, based on both temporal and spatial characteristics. Temporal weighting functions 
account for the fact that infected cases can only transmit the disease effectively within a certain time window 
(the generation interval). When only temporal weighting is considered, our method is equivalent to the renewal 
equation, assuming homogeneous mixing. The spatial weighting function, on the other hand, accounts for the 
decaying chance of transmission when the distance between individuals increases. The value of spatially adjusted 
Rj can provide more information regarding spatial heterogeneities in transmission potential and can better aid in 
the implementation of control measures. Data from dengue epidemics in southern Taiwan are used to demon-
strate the ability of this method to identify early spreaders contributing to the geographic expansion of dengue 
transmission.

Methods
Study Area.  Taiwan (23.778°N, 120.930°E) is an island country at the border of tropical and subtropical 
climate zones. Due to its geographic proximity to dengue endemic countries in Southeast Asia (Fig. 2A), dengue 
outbreaks in Taiwan are triggered by imported index cases from endemic regions. Large outbreaks have occurred 
in the tropical monsoon regions of southern Taiwan, particularly in the cities of Tainan (TN) and Kaohsiung 
(KH). These two large tropical cities feature high temperatures and high humidity, high population density, and 
highly urbanized landscapes, all of which provide appropriate breeding habitats for Aedes aegypti, the main vec-
tor mosquitoes of dengue virus. Thus, as dengue outbreaks occur frequently in late summer and wane in winter, 
the two cities form natural settings for the repetitive observation of dengue invasion and epidemic propagation.

Dengue data.  Dengue fever is listed as a notifiable infectious disease in Taiwan. This means that physicians 
are mandated to report suspected cases in which the patient lives in or has a history of travel to a dengue-affected 
area and has corresponding symptoms, including fever, rash, eye pain, leukopenia, etc. The reported cases are 
then confirmed by standard laboratory tests, including real-time PCR, ELISA, and antigen detection28. These 
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surveillance data are recorded and provided by Taiwan Centers for Disease Control, Ministry of Health and 
Welfare29. The dengue database starts in 1998, when the electronic reporting system was implemented, and we 
include all records since 1998-01-01. Individual-level information, including date of disease onset and X-Y coor-
dinates of residence, is also provided. Each pair of residence coordinates is listed as the center of a basic statis-
tical area, which is the smallest geographic unit for socioeconomic surveying in Taiwan. There was a total of 
78,749 confirmed dengue cases (4.4% of them were imported cases) in Taiwan from 1998 to 2017, 92.5% of which 
occurred in Tainan and Kaohsiung cities.

Figure 1.  Illustration of how individual reproductive numbers were calculated (panel A) and the difference 
between the spatially adjusted and non-adjusted methods (panel B). The transmission probability from 
individual j to all potential infectees p p p( , , )i j i j i j1 2 3  is estimated first. The sum of these probabilities is, by 
definition, the expected number of infectees caused by individual j, i.e., the individual reproductive number. 
The transmission probability itself is estimated based on solely temporal relationships (non-adjusted) or in 
combination with spatial relationships (spatially adjusted). In the non-adjusted method, p·j is proportional to 
the temporal weight g(a) determined by the generation interval between infector j and its infectees. Cases in the 
same temporal cohort (i.e., with the same onset day, a1 = a2 = a3) share the same transmission probability from 
previous infectors. They also share the same individual reproductive number since their relationship to 
subsequent cases is again identical. For the spatially adjusted method, p·j is proportional to the spatial weights 
f(d), modulated by the distance between the infector and the infectees in space. Therefore, individual 
reproductive numbers of cases in the same cohort can be distinguished.

Figure 2.  Geographic locations of Tainan (TN) city and Kaohsiung (KH) city and their history of dengue 
outbreaks. Panel A shows the location of the cities relative to other dengue endemic countries in Southeast 
Asia. Panel B shows the annual number of indigenous dengue infections recorded in TN and KH. The five most 
severe epidemics selected by the outbreak size were included in this study. The maps are generated by R package 
ggplot2, and sf (version 3.6.1, https://cran.r-project.org).
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Figure 2B shows the historical records of dengue epidemics in Taiwan since 1998; the five most severe out-
breaks were included in this study. Among the five outbreaks, two occurred in Tainan (2007TN, 2015TN), and 
three occurred in Kaohsiung (2002KH, 2014KH, 2015KH). The sizes of the outbreaks ranged from 22,784 cases in 
2015TN to 1,183 cases in 2011KH. Generally, dengue outbreaks start in June, reach their peak around September, 
and end near the end of the year or early the next January. In this study, we analyzed the largest outbreak, 2015TN, 
to demonstrating our method, while detailed results for the other four epidemics are presented in our supple-
mentary results. Of the 22,784 total infections in 2015TN, only 19 cases (<0.1%) were imported from foreign 
countries, suggesting that indigenous transmission was well established. In contrast with Kaohsiung city, very few 
outbreaks occurred in Taiwan before 2015.

Quantifying the temporal transmission dynamics.  The renewal equation specifies the relationship 
between generations of incident cases, as shown in Eq. (1). It can be applied to estimate time-varying effective 
reproductive numbers due to its simplicity and generality regarding the temporal transmission dynamics11,13,30.
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Rt represents the population-level time-varying effective reproductive number at time t. b̂x denotes the number 
of incident cases at time x, and −b̂x a in the denominator denotes the number of potential infectors generated at a 
days (a ≥ 0) prior to time x. The hat notations stand for observed case numbers. g(a) stands for the distribution of 
the generation interval, which is used as a weighting function for representing transmission potential at time 
interval a. It can be specified by the nature of disease transmission process.

Importantly, the generation interval, also known as generation time, is the period between the infection of an 
infector and the infection of its infectees. It is a fundamental parameter reflecting the natural history of patho-
gens. Since the generation interval may vary between individuals, it can be described by a probability distribution, 
g(a), where a is a time interval. Therefore, the function can be regarded as the transmission weight between a 
pair of cases whose observed generation interval equals a (Fig. 1B). The representation of transmission weight 
(also referred to as transmission likelihood15) as g(a) is the basic component of the process of estimating effective 
reproductive numbers in the renewal equation and the following proposed method. The generation interval of 
dengue, in particular, is composed if four periods: host incubation, vector incubation, host infectious period and 
vector infectious period31. Nonetheless, showing compatibility with empirical data and mathematical conveni-
ence, gamma distributions are frequently used to model the generation interval of dengue collectively32. In this 
study, we used a gamma distribution with mean = 20 days and standard deviation = 9 days in our analysis, in 
accordance with a previous study25.

Individual reproductive number.  In order to capture spatial variations among individuals, we adopted 
another method developed by Wallinga and Teunis15 to estimate individual reproductive numbers (Rj). We refer 
to this method as the non-adjusted method (i.e., non-adjusted for spatial effect). The transmission probability 
between pair of cases can be described mathematically as
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where pij is the probability that case j infects case i. Note that we use superscripts to index time-invariant, individ-
ual (or pairwise) attributes (e.g., Rj, pij) and subscripts for time-varying attributes (e.g., Rt). g(·) is the temporal 
weighting function, representing generation interval. Given the onset time interval = − >ˆ ˆ ˆt t t 0ij i j

, ˆg t( )ij  is the 
transmission weight of the case pair (i, j). The pairwise transmission weight is then normalized by all received 
transmission weights of case i (from all potential infectors k ≠ i) to produce consistent estimation of transmission 
probability. The resulting pij is interpreted as the probability of individual i being infected by individual j. 
Therefore, Rj as the average number of secondary cases caused by individual j is the sum of all pij involving j as the 
infector, as shown in Fig. 1A and Eq. (3).
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Spatially adjusted reproductive number.  In this study, we extend a previous method with a spatial 
weighting function, ˆf d( )

ij
, in order to account for the effect of spatial variation on dengue infections. We refer to 

this extended method as the (spatially) adjusted method. The transmission probability for case pair (i, j) becomes
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where d̂ij is the distance between the pair (i, j) and f is a function relating transmission weight to the distance 
between cases. The specifications of the temporal difference t̂ij and g remain the same as in the previous method. 
Likewise, the spatially adjusted individual reproductive number Rj

sp is the sum of those pij
sp involving j as the infec-

tor (Eq. 5).
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The spatial weighting function is also called the transmission kernel and is a monotonically decaying function 
with respect to distance, reflecting neighborhood transmission32. Thus, unlike the generation interval, which 
is typically marked with a temporally lagged effect because of the latency period of infectiousness, the spatial 
weighting function decreases monotonically as distance increases, which means people would be easily get infec-
tions if they live near each other. It reflects people in the nearby neighborhood may share common environmental 
sources of dengue infection. There are several kinds of spatial kernels used in the literature, including exponen-
tial decay25 and power-law decay33. In the context of dengue transmission, we adopted an exponential decaying 
kernel with mean = 125 m27. This approach accounts for both temporal and spatial relationships when estimating 
individual-level reproductive numbers. Apart from the component of the generation interval inherited from the 
previous method, the distance-decayed spatial weighting function captures the spatial risk of dengue infection.

To calculate the population-level effective reproductive number from individual estimates, the Rj values can 
be further aggregated to form the Adjusted Rt given a specified time step τ13:
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which is simply the average of all the values of Adjusted Rj for which tj falls in the time window [t − 0.5τ, t + 0.5τ]. 
As long as the weighting functions are specified, this method allows a quick estimation of population (Adjusted 
Rt) and individual (Adjusted Rj) effective reproductive numbers using observed data where onset dates are 
available.

Individual transmission distance.  We defined individual transmission distance Dj as the average of geo-
graphic distances d̂( )

ij
 from an infector j to all potential infectees i, weighted by their pair-wise transmission 

probabilities (pij), as shown in Eq. (7). Dj could reflect the infection range transmitted by a particular infector j.
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Quantifying the preconditions of spreaders.  To explore the phenomenon of spatial expansion, two 
types of spreaders are of interest: early spreaders and succeeding spreaders. Early spreaders are defined as those 
cases that trigger a new cluster (by introducing the disease into an unaffected area). There are usually few or no 
cases of the disease, and the cluster tendency is low until several early spreaders emerge. Succeeding spreaders 
are defined as those cases that were infected by early cases nearby. Although there is a clear distinction between 
the two spreaders in theory, most individuals lie on a spectrum between these two extremes. We have therefore 
quantified this property according to the clustering tendency at the location and time immediately before the 
emergence of that spreader. In other words, clustering tendency is used as the measure for the precondition of a 
dengue case, and the median clustering tendency is used as the cutoff to classify all dengue cases. If the precondi-
tion clustering tendency is higher than the median, the case is categorized as a succeeding spreader; otherwise, it 
is characterized as an early spreader.

We used kernel density estimation (KDE) to quantify spatial clustering tendency in order to (1) determine the 
preconditions of a specific spreader and (2) compare the distributions of spatially adjusted effective reproductive 
numbers and case clustering patterns. The clustering tendency at the location of case j is defined as34
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where h is called the kernel bandwidth or smoothing parameter (i.e., the parameter controlling the extent of 
smoothness), d̂

ij
 denotes the distance between case i and the locality of case j, and K(·) is a spatial smoothing 

function characterizing the contribution of each individual over the relative distance d̂ h/
ij

.

Results
The incidence of the 2015TN dengue outbreak are shown in Fig. 3A. The outbreak emerged in May with a hand-
ful of sporadic cases and finished the next January with a total of 22,784 cases. We divided the outbreak into six 
stages: emerging (I), growing (II and III), peak plateau (IV), and decaying (V and VI), to depict the spatiotem-
poral evolutions of the outbreak. Figure 3B shows the Adjusted Rt and Non-Adjusted Rt of the outbreak. These Rt 
curves are median or mean estimates of the adjusted and non-adjusted individual reproductive numbers, sum-
marizing the temporal evolution of population-level transmission potential. Adjusted Rt provides further infor-
mation: the shaded area represents the interquartile range (IQR) of adjusted individual reproductive numbers, 
reflecting the spatial individual heterogeneity of the transmission potential. In contrast, individual reproductive 
numbers of incident cases that shared identical dates of illness onset are constants in Non-Adjusted Rt. This indi-
cates that the incident cases during this period were highly geographically heterogeneous in their transmission 
potential. The distributions of Adjusted Rj in these stages are also multimodal and right-skewed, which indicates 
that some incident cases could have higher transmission potential (i.e. super-spreaders).
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Figure 3C shows the spatial distributions of incident cases in these stages. We can identify the linkages between 
time-varying reproductive numbers (Fig. 3B) and spatial-temporal distributions of incident cases (Fig. 3A,C) 
in different stages. In the emerging stage, the irregular growth of Adjusted Rt reflects the initial growth of the 
outbreak with a sporadic distribution of incident cases and a small emerging cluster (Fig. 3C). Subsequently, in 
the growing stages (from stage II to III), the epidemic curve started to show exponential growth (Fig. 3A); the 
larger IQR of the individual reproductive numbers (Fig. 3B) reflects some incident cases with higher transmission 
potential that occurred and resulted in vigorous expansion of disease clustering (Fig. 3C). In the stage of peak 
plateau (stage IV), Adjusted Rt dropped under the epidemic threshold (<1), indicating that the outbreak was 
contained. The spatial distributions of cases also show that the clustering areas remained and stopped expanding. 
In sum, the time-varying reproductive numbers, Adjusted Rt and Non-adjusted Rt, can reflect the timing of the 
outbreak containment according to the epidemic threshold. The Adjusted Rt can further reflect the timing of 
epidemic expansion when the IQR of individual reproductive numbers increases.

In Fig. 4, the distributions of individual transmission distance were compared between the two methods: 
Non-adjusted and Adjusted Rj. Based on the neighborhood transmission setting of Adjusted Rj, the transmission 
distance of an infector is around 200–300 meters and few long-range transmission links (longer than 2 kilome-
ters). Furthermore, we used Adjusted Rj = 10 as a threshold to categorize super- (Adjusted Rj > 10) and normal- 
(Adjusted Rj < 10) spreaders. The figure also shows that long-range transmission links are from super-spreaders. 
The result indicates that dengue cases with high transmissibility have the ability to spread pathogens to geograph-
ically distant areas.

To further explore spatial relationships of super-spreaders and dengue epidemic expansion, we illustrated the 
locations of super-spreaders and clustering tendency of the dengue epidemic during the rapidly growing period 
(stages II and III), as shown in Fig. 5. Except the very beginning of the stage II (June-25–July-6), the figure shows 
that super-spreaders tend to distribute at or outside the edge of the main clusters from July-06 to August-23. In 
addition, the circle size of the super-spreaders in Fig. 5 represent their transmission range. Therefore, the loca-
tions of larger circles would reflect long-rage transmission occurred at the edge of dengue clusters. It implied that 
the role of super-spreaders could be the drivers of geographic expansion of the dengue epidemic.

In order to profile the roles of different spreaders in detailed spatial transmission/expansion process, we classi-
fied the cases into two types, early spreaders and succeeding spreaders. Early spreaders are regarded as the sources 
of new emerging clusters, and succeeding spreaders are those that come after early spreaders. Figure 6 presents 
a succeeding spreader a (panel A) and an early spreader b (panel B). In each panel, we also compared different 
methods (spatially adjusted and non-adjusted) that estimate the transmission probability from a spreader to its 
potential infectees. The time of the incident cases on these maps is the 30th day after the onset day of the given 
spreader. Infectees labeled with darker colors have a higher probability of becoming infected by spreader a or b. 

Figure 3.  (A) Epidemic curve for the 2015TN outbreak, which was divided into six stages as labeled in the 
figure. The y-axis is log-transformed to show more clearly the incidence in in emerging stage (I) and illustrate 
exponential growing pattern in rapidly growing stages (II and III). (B) Estimated time-varying reproductive 
numbers through the course of the 2015TN outbreak. The curves denote the population-level Rt (black for 
spatially adjusted estimates and orange for non-adjusted estimates). The shaded area presents the interquartile 
range (IQR) of individual reproductive numbers (Rj) over time, which only exists for the spatially adjusted 
estimates. The epidemic threshold of R = 1 is marked as a black, horizontal line. (C) Spatial distribution of 
incident dengue cases at the six stages. The maps are generated by R package ggplot2, and sf (version 3.6.1, 
https://cran.r-project.org).
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Figure 4.  The distribution of individual transmission distance of super-spreaders (Rj ≥ 10) or normal spreaders 
(Rj < 10). The estimates by spatially adjusted method are shown in green (dark green for normal spreaders, and 
light green for super-spreaders), while the estimates by non-adjusted method are shown in dark red.

Figure 5.  Spatial distribution of super-spreaders (Rj ≥ 10), compared with the main clusters of the dengue 
outbreak during the rapidly growing stages (II and III). The red area represents the most clustered region, 
the center of the ongoing outbreak, while the light yellow area represents the edge of the outbreak. The green 
circles represent the locations of the super-spreaders, with the radius being proportional to their transmission 
distances. The maps are generated by R package ggplot2, and sf (version 3.6.1, https://cran.r-project.org).
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By the non-adjusted method, the two spreaders have identical transmission probabilities and individual repro-
ductive number because of the homogenous mixing assumption (Non-adjusted Ra = Non-adjusted Rb = 4.15). 
However, they should play different roles in the spatial expansion of the outbreak. Spreader a (the succeeding 
spreader) occurred in an ongoing cluster; thus, this case is unlikely to be the primary source that triggered this 
local outbreak. Spreader b (the early spreader), on the contrary, initiated a new cluster where no case had occurred 
before, and the following cases that emerged were centered on spreader b. Thus, a subsequent local outbreak can 
be logically attributed to spreader b as the primary ancestor. The adjusted method (left-side maps in Fig. 6), which 
takes into account the spatial-temporal relationships of incident cases, differentiates the individual reproductive 
numbers of early and succeeding spreaders (Adjusted Ra = 1.84, Adjusted Rb = 5.74). It also yields more reasona-
ble spatial transmission potential by upweighting the potential infectees proximity to spreader a in Fig. 6A.

To clarify the distinct roles of early and succeeding spreaders in the outbreak expansion process, we com-
pared the distributions of Adjusted Rj between different types of spreaders in Fig. 7A. We found that all the 
super spreaders (Adjusted Rj > 10) are early spreaders and most of succeeding spreaders have low Adjusted Rj. 
To examine the generalization of this pattern, we estimated Adjusted Rj of dengue cases in top five largest dengue 
epidemics since 1990 in Taiwan, including KH2002, TN2007, KH2014, KH2015, TN2015, as shown in Fig. 7B. 
Non-adjusted Rj were used as the baseline to control for the fluctuations across different stages of the outbreak. 
The figure showed consistent patterns among these large-scale dengue outbreaks, which means early spreaders 
with high transmissibility can be generally highlighted by the spatially adjusted method.

Discussion
The effective time-varying reproductive number is a commonly used indicator for measuring disease trans-
missibility. However, the index conventionally does not capture spatial dynamics of disease transmission. We 
proposed a new method of calculating the spatially adjusted effective reproductive number by incorporating a 
spatial-weighting function that captures the nature of heterogeneous mixing. Unlike the averaged time-varying 
reproductive number, this method estimates different individual-level reproductive numbers (Rj) for given onset 

Figure 6.  Comparisons of the transmission likelihood calculation for the two spreader types (panels A and 
B) between two methods. In each map, the potential infectees are shown in dots of different sizes and colors 
corresponding to their transmission probability by the infector (aligned at the center). (A) Illustration of a 
succeeding spreader a (Non-adjusted Ra = 4.15; Adjusted Ra = 1.85). (B) Illustration of an early spreader b 
(Non-adjusted Rb =4.15; Adjusted Rb = 5.74). The maps are generated by R package ggplot2, and sf (version 
3.6.1, https://cran.r-project.org).
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times and locations of dengue infections. Thus, it can reflect spatial heterogeneity in transmission potential 
among individuals and identify the possible super-spreaders35 with high Rj during the rapidly growing period. 
Our results also reveal that dengue cases with high transmission potential and long-transmission distance are 
usually located at the edges of the epidemic foci, which means they could be the drivers of further outbreak 
expansion. Therefore, our proposed method depicts a more detailed spatial-temporal dengue transmission pro-
cess and identifies the significant role of the edges apart from the epidemic foci, which could be the weak spots in 
disease control and prevention. Our spatially adjusted method also could further apply to assess individual-level 
transmission potential of other acute contagious diseases, such as influenza and Zika virus infection, with 
observed generation interval and the context of neighborhood transmission.

The effective reproductive number of dengue as estimated in past studies reflected an averaged overall epi-
demic trend, which did not take into account the spatial heterogeneity of transmissibility. Hsieh36 estimated the 
effective reproductive number at the initial stage of the 2015TN outbreak to be 6.84, which is similar to our 
averaged estimates (Fig. 3B). Hsieh’s study also showed that Kaohsiung consistently possessed lower effective 
reproductive numbers (from 1.29 to 2.87), implying that Tainan city may have epidemiological characteristics, 
such as a lack of herd immunity, that make it more prone to dengue transmission than Kaohsiung. Internationally, 
Guzzetta25 reported that the time-varying reproductive number of non-endemic urban cities in Brazil is much 
smaller than the estimates from Tainan and Kaohsiung cities (maximum Rt is approximately 2.2). Codeco31 and 
Pinho37 also estimated time-varying reproductive numbers in Salvador and Brazil, with a maximum Rt of approx-
imately 4.5. Comparing the values of Rt among different cities may be subject to possible confounding factors, 
such as weather conditions, host immunity and circulating viral strands.

Some studies considered location information to determine reproductive numbers for quantifying transmis-
sibility of foot-and-mouth disease (FMD)38,39. These models considered spatial distribution of farms, however, 
it was difficult to capture FMD disease transmission process among animals. In other words, the time-varying 
reproductive numbers in these models are difficult to reflect nature course of FMD transmission in terms of 
implementing general interval and renewal equation. Furthermore, farm-level models for FMD outbreaks can be 
categorized the farms into infected and susceptible ones to determine relative transmissibility of each farm at a 
specific time. It may be difficult to estimate the amount of susceptible persons living around the infected cases for 
human infectious diseases, such as influenza and dengue fever. Other studies have also explored spatial hetero-
geneity by performing stratified analysis of Rt with respect to different administrative regions and with respect to 
region-to-region transmission40,41. These studies used a spatial weighting function to emphasize the interregional 
transmission process but still assumed a homogeneous-mixing model within each region. Thus, these studies did 
not address the spatial heterogeneous mixing issue when estimating reproductive numbers. Our study considered 
individual-level spatial heterogeneity and used the spatially adjusted reproductive number to measure the trans-
mission potential of each individual.

Like the basic reproductive number, Rj can be regarded as a function of duration of infectiousness, incubation 
period, transmission probability, vector mosquito density, and host-vector contact rate. The adjusted Rj in this 
study could reflect vector mosquito density and host-vector contact rate, which are also highly heterogeneous in 
space42. Meanwhile, the dispersal of vector mosquitoes is largely confined to neighboring areas (average radius 
of 28–199 meters43), providing an effective infectious zone of an infector. An exponential spatial weighting func-
tion herein represents this infectious zone. Guzzetta25 estimated the mean transmission distance of dengue in a 
metropolis area to be approximately 127 m and further indicated that an exponential distribution described the 
data better than a radiation model which is a more dispersed distribution effectively describes human mobility44. 
Kissler, et al.45 also reported the aptness of the exponential distribution when an outbreak is typically dominated 
by short-range transmission. Therefore, the exponential spatial weighting function in this study is an appropriate 
substitute for the effective infectious zone for measuring dengue transmission. The exponential distance-decayed 

Figure 7.  (A) The individual-level spatially adjusted reproductive numbers (Adjusted Rj) of early and 
succeeding spreaders. (B) Paired difference in the estimates of the individual reproductive number (Adjusted 
Rj–Non-Adjusted Rj) by different spreader types and major outbreaks.
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function also avoids overestimating the transmission probabilities of infector-infectee pairs with long geographic 
distances, especially for large-scale dengue epidemics. In sum, areas with high Rj are potential risk areas for high 
dengue transmission; knowledge of such areas is important for spatial targeting during dengue epidemics.

Spatial epidemiological studies focused for many years on developing methods for identifying significant 
disease clustering in time and space, such as space-time scan statistics46 or point pattern analysis47. Hotspot areas 
identified are usually regarded as significant risk areas and as high-priority sites for intervention strategies aimed 
at mitigating an epidemic48,49. The significance of the study is to introduce the perspective of individual-level 
transmission potential to disease risk mapping. We found that locations of individuals with high transmission 
potential are usually located at the edges of growing disease clusters, which can easily be neglected when inter-
vention resources focus on epidemic clusters. A previous study found that urban villages that were originally at 
the edge of the city but are now enclosed by urbanized lands act as transfer stations for dengue outbreaks50. In 
this study, we further provide a better understanding of outbreak expansion by categorizing different types of 
spreaders. Early spreaders with high transmission potential may initiate new source of infection at the edges of 
the main cluster, resulting in geographic expansion at the exponential growing stages of the outbreak. Therefore, 
the edge of the outbreak should be a priority of spatial targeting to contain the outbreak regarding both range 
and magnitude. Succeeding spreaders are indeed still important in tallying morbidity and fatality. However, their 
high-density clustering patterns make them prone to the depletion of local susceptible populations and degener-
ating transmission potential. In summary, the center and edges of epidemic clusters play different roles in devel-
oping epidemic progression in terms of different types of spreaders (succeeding vs. early) and different patterns 
of epidemic growth (intensifying vs. expanding). These findings provide important insights for implementing 
different interventions in the center and on the edges of epidemic clusters.

There are several limitations to this study. First, the method of estimating time-varying effective reproductive 
numbers is a retrospective procedure that uses observed infectee generation to estimate the Rj of the infector gen-
eration. In other words, it cannot be used for predicting future epidemic progression in real time. Nonetheless, 
the method is helpful for understanding the course of an epidemic and studying the possible mechanisms of geo-
graphical expansion. Second, this study considers only geographical distance as a factor in transmission potential. 
Other factors influence the spatial spreading of dengue. Among these, host heterogeneity (including variations in 
density51, mobility52, and susceptibility53) strongly modulates the transmission dynamic42 and should be consid-
ered in further studies. Finally, the spatial weighting function reflects the assumption of distance-decayed prop-
erties (neighborhood transmission). However, the assumption may not reflect long-distance transmission54 and 
complex urban transport and mobility52. The question of how to develop more detailed spatial weighting schemes 
that capture realistic mobility patterns warrants further investigation.

Data availability
The dengue surveillance dataset used in the current study are publicly available in Taiwan CDC Open Data Portal, 
https://data.cdc.gov.tw. The data analysis tutorial is included in Supplementary Information files.
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