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Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning
diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly
related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investi-
gated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the
other hand, in the recent years, many studies have individually focused on the biomarker’s role and therapeutic targeting of
microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs)
which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related
miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been
discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with
obesity-related cancers regarding their role as biomarkers?
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Introduction

Cancer is the second deadly disease all around the world
whose early diagnosis would significantly improve its prog-
nosis and treatment [1]. Around 50% of cancer deaths are
preventable by managing the main risk factors [2]. Obesity
is known as a chronic low-grade inflammatory disease and
is known as a risk factor in many types of cancers. Available
evidence demonstrated that chronic low-grade inflammation

could be one of the major causes in many chronic diseases [3],
for instance, osteoarthritis [4], and obesity [5]. However, it has
been suggested low grade chronic inflammation is beneficial
in coronary heart disease prediction [6]. According to world
health organization (WHO), the world prevalence of obesity
has been increased dramatically in the last decades and in
2016 more than 39% and 13% of adults were overweight
and obese, respectively [7]. Inflammation is believed to play
a double-edged role in the development of cancer. Acute
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inflammation may play essential role in adipose tissue remod-
eling, expansion, and homeostasis [8]. Earlier work indicated
that the acute inflammation may be useful in the inhibition of
cancer development [9]. Inflammation is a major common
factormediating obesity and cancers.More than 1/4 of cancers
are related to chronic infections and inflammation [10].
Inflammation is involved in protective immune response
against various physical, biological, chemical, and psycholog-
ical defects. Some of the main causes of inflammation and
various associated conditions are summarized in Fig. 1.

The inflammatory pathways including Jun N-terminal kinase
1 (JNK1) and IκBα kinase β (IKKβ) can activate adipose tissue
[11, 12]. These signaling pathways are activated by tumor necro-
sis factor alpha (TNF-α), free fatty acids (FFAs), diglyceride
(DAG), ceramide, reactive oxygen species (ROS), and hypoxia
in subjects with obesity. miRNAs are other recently known me-
diators that have been extensively noted in tumor classification,
cancer diagnosis, prognosis, progression, and therapy of cancers
[13, 14]. Also there are several reviews about the association
between obesity, inflammation, and cancer. It has been suggested
that the association between obesity and inflammation may be
responsible for insulin resistance and cancer [15]. The chronic

inflammation is defined as a key mediator of cancer and it has
been associated with obesity [16]. Another review indicated that
obesity-induced metabolic disorder and immune response might
be affected by functional miRNAs [17], and circulatingmiRNAs
could have diagnostic properties and potential application as
metabolic disorders biomarker [18]. Obesity and colorectal
cancer“an obesity-related cancer” have been related to miRNAs
dysregulation [19]. As described above, the important role of
both inflammation and miRNAs in obesity and cancer is clear,
and there are several reviews on the role of miRNAs in cancer or
obesity. However, so far there is no review on the role of inflam-
mation related miRNAs in obesity and cancers, thus we aimed to
comprehensively review this issue. We also aimed to introduce
some specific miRNAs associated with these conditions as po-
tential biomarkers in the future studies.

Common cellular components
between inflammation, obesity, and cancer

Inflammation plays an important role in obesity, fat cells, ad-
ipocytes enlargement, and remodeling [20]. Obesity-related

Biological: Infection, biochemical 
Imbalance, Hormonal Imbalance, 

High blood pressure, Insulin 
resistance, medication, 

hyperglycemia, immunological, 
tissue necrosis

Physical/Mechanical: 
radiation, excess heat/cold 
(burns/Frostbite), foreign 

bodies, trauma, injury

Lifestyle: stress, 
excitement, nutrition

Chemical: poisons, 
alkalis, alcohol, 

toxins 

Inflammation

Diseases: Obesity,Neurological disease like Alzheimer, Autoimmune disease, Type 2 diabetes, Arteritis, Asthma, Pulmonary 
disease, Cardio vascular disease, Ulcerative colitis, Inflammatory bowel disease, Metabolic syndrome

Cancers: Colorectal, Cervical, Pancreatic, Lung, Breast
Other problems: Weight gain, Eye problem, Skin aging, Joint pain, Memory loss, gingivitis

Fig. 1 Main causes and various conditions associated with inflammation
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inflammatory response in adipose tissue plays an important
role in tumorigenesis. The inflammatory response elements in
cells release autocrine and paracrine mediators that promote
cell proliferation, prevent apoptosis, stimulate angiogenesis
[21, 22]. These conditions may induce mutagenesis by stim-
ulating proliferation of mutated cells. About 20% of all causes
of cancers are related to infectious agents and inflammation,
causing around 2.8 million new cancer cases and 1.7 million
deaths [23]. The relationship between inflamed adipose tissue
and cancer is depicted in Fig. 2.

Obesity and overweight are associated with 13 types of
cancers [25]. These cancers are related to inflamed adi-
pose tissues. Adipose tissue is a source of many endocrine
hormones and high metabolically active organs [26].
White adipose tissue (WAT) makes cytokines that can
induce inflammation. Visceral fat is the accumulation of
WAT in the visceral area which includes numerous im-
mune and inflammatory cells [27]. Obesity associated li-
polysis [28] increases saturated fatty acids and induce
macrophage activation [29]. Consequently, they initiate
cytokines and adipokines productions and in turn inflam-
mation. The inflammation is known to play a key role in
progression or promotion of cancers [30]. For instance,
cancer may progress in inflammatory sites such as inflam-
mation of colon and rectum in ulcerative colitis. A pre-
disposing factor of esophageal cancer is Barrett esophagus
which is an inflammatory condition [31]. Cervical inflam-
mation is the result of lesions which may aid HPV infec-
tion to develop to high-grade cervical intraepithelial neo-
plasia and clear cell adenocarcinoma [32]. The cytokines
or chemokines secreted from lymphocytes switch cellular
activities towards neoplasm [33]. The elevated cytokine
levels such as CRP, IL- 6, IL-8, IL-1β, TNF-α, and level
of anti-inflammatory cytokines such as IL-4 and IL-10
have been reported in cancer [34, 35]. In adipose tissue,
changes in the level of adipokines such as leptin are in-
volved in cancer initiation and progression [27].
Furthermore, the accumulation of pro-inflammatory mac-
rophages is a basic characteristic of adipose tissue in obe-
sity linking the adipose inflammation to systemic compli-
cations [36]. Adipose tissue hypoxia may stimulate the
expression of pro-inflammatory cytokines such as
TNF -α , i n t e r l e u k i n ( I L ) 1 , I L - 6 , Mono c y t e
Chemoattractant Protein-1(MCP-1), and plasminogen ac-
tivator inhibitor-1(PAI-1) in the fat tissue and circulation
in obesity. Adipose tissues secrete different proteins sig-
naling as adipokines. Alteration in the expression of these
adipokines leads to the development of chronic inflamma-
tory and metabolic dysfunction [37]. The following figure
(fig. 3) shows the secretion of pro- and anti-inflammatory
adipokines in adipose tissue.

Adipokines are more than 50 polypeptide hormones
which are mainly produced from visceral fat. Some pro-

and anti-inflammatory components such as leptin,
adiponectin, IL-6, TNF-α, IL-1B, TGF-β, IL-10, FFAs
play critical roles in obesity and cancers, as depicted in
Figs. 1 and 2. For instance, Leptin level is higher in
bodies with more fat and in women compared with men
[39, 40]. It has a prominent role in the initiation of
ad ipose pro- in f lammatory pa thway [41] . P ro -
inflammatory cytokines expression is positively correlat-
ed with the plasma levels of leptin. It has various pro-
inflammatory effects including stimulating innate im-
mune cells for producing IL-1, IL-6, IL-12, and
TNF-α, as well as enhancing the production of ROS,
cyclooxygenase 2 (COX2), leukotriene B4, and nitric
oxide [42, 43]. This hormone is responsible for modu-
lating food intake, homeostasis, as well as proliferation
of normal and cancer cells. High level of leptin can
cause cancer initiation and progression, based on its
proinflammatory, pro-angiogenic, mitogenic, anti-apopto-
tic, and oxidative effects [27]. Studies suggest that lep-
tin receptor is also expressed in some cancers like
breast and colon cancers [44, 45]. The long variant of
leptin receptor (LRb) induces MAPK, PI3 kinase, and
STAT signaling pathways which are responsible for pro-
liferation, survival, and differentiation in both normal
and cancer cells [46]. It has been previously demonstrat-
ed that cancer patients have serum leptin values at low
concentrations and leptin is considered to be correlated
with the stage of disease [47]. It has been reported that
leptin is an important factor in signaling pathways ini-
tiation which is activated by estradiol stimulation.
Leptin affects cancer risk by different signaling path-
ways such as JAK-STAT, MAPK, and PI3K Pathways
which regulate cancer cell growth, migration, survival
and cellular apoptosis [48].

Do the main inflammatory miRNAs link
obesity with obesity related cancers
regarding their role as biomarkers?

miRNAs are small noncoding RNAs which regulate
gene expression and RNA silencing by target mRNAs.
While the first miRNA was discovered in 1993, their
regulatory effects were suggested seven years later
[49–51]. Thereafter, they attracted the attention of re-
searchers. A study in 2002 in chronic lymphoid leuke-
mia (CCL) revealed that miR-15 and miR-16 genes are
located in a region which is deleted in a majority of
CCL cases [52]. In 2003, in a review, McManus for
the first time used the terms of miRNA and cancer
together as “microRNAs and cancer”. Based on this
review, miRNAs target and regulate tumor suppressors
such as cell cycle control factors. Any impairments
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concerning miRNAs or their targets site in mRNA gene might
ensue cancer. Concerning the role of miRNAs in obesity, in 2003

Xu et al. indicated that miR-14 in Drosophila is related to fat
metabolism [53]. In 2004. Esau et al. found that miR-143

Fig. 2 The role of obesity in tumorigenesis; Reproduced from reference [24] (obesity and adverse breast cancer risk and outcome: mechanistic insights
and strategies for intervention)
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regulates adipocyte differentiation and may by a target of ERK5
gene [54]. Today, a large number of studies are focusing on the
role of miRNAs in obesity and cancer. There are several new
reviews on relationship between obesity and cancers [19, 55].
Given the importance of inflammation in obesity and cancer
(discussed in the previous section), this section was considered
to represent the main inflammation related miRNAs in obesity,
adipose tissue, lipid metabolism, and adiposeness. The main ef-
fects of these miRNAs and inflammation on obesity related can-
cers are discussed in the following sections.

cmiRNA1s in obesity and their role in inflammation

The role of cmiRNAs as a biomarker was firstly used in lym-
phoma, in 2007 [56]. After those years, many studies have
focused on the role of cmiRNAs in metabolic diseases.
Today, several cmiRNA profiles have been identified in obe-
sity, diabetes, and other inflammation related diseases. For
instance in 2018 a review article explained the role of circu-
lating miRNAs on some inflammatory diseases such as Cystic
Fibrosis, inflammatory bowel disease [57]. In another review
role of circulating miRNAs such as miR-192, miR-375, miR-
15a, miR-21, miR-126, and miR29b were discussed in type 2
diabetes mellitus [58]. Here we aimed to investigate circulat-
ing microRNAs in obesity and investigate their role in
inflammation.

Several cmiRNAs may be dysregulated in obesity. miR-
132 is significantly reduced in the blood of people with obe-
sity [59]. This miRNA plays a critical role in inflammation. Its
expression level is remarkably related to the number of mac-
rophages infiltrating in adipose tissue [60], NF-κB pathway,
as well as production of IL-8 and MCP-1 [61]. miR-132 de-
creases lipopolysaccharide (LPS)-induced inflammation
through targeting acetylcholinesterase (AChE) and enhances
the acetylcholine-mediated cholinergic anti-inflammatory re-
sponse [62]. The circulating levels of miR-140-5p, miR-125b,
miR-15a, and miR-221 are dysregulated in morbid patients
with obesity [63]. These miRNAs play critical roles in inflam-
mation. On example is the regulation of the pro-inflammatory
function of monocyte-derived dendritic cells in SLE [64].
miR-140-5p inhibits secretion of inflammatory cytokines such
as IL-6 and IL-8. This may be related to the role of TLR4 gene
asmiR-140 target gene [65]. In this way, miR-125b is elevated
in chronic inflammation which controls the expression of
genes involved in inflammatory and apoptotic functions such
as IL-6 and MCP-1 [66]. Also, it plays a significant role in
inflammation by controlling mitochondria integrity via BIK
and MTP18 silencing [67]. miR-15a reduces inflammation
[68] and negatively affects the LPS-induced inflammatory
response in neonatal sepsis [69]. miR-221 facilitates inflam-
mation in white adipose tissue and reduces insulin sensitivity
in obesity, through suppressing Sirtuin1 (SIRT1) [70]. Its re-
duced expression in chronic inflammation is associated with
high levels of TNF-α [71].1 Circulating micro RNA

Fig. 3 Reproduced with
permission from reference [38]
(Obesity and its metabolic
complications: the role of
adipokines and the relationship
between obesity, inflammation,
insulin resistance, dyslipidemia,
and nonalcoholic fatty liver
disease)
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cmiRNAs also regulates adipogenic processes for instance
by let-7b and miR-221 as anti-adipogenic and miR-143 as pro-
moting miRNAs [54, 72]. They are involved in inflammatory
pathways and regulated by TNF-α. Existing data demonstrate
that let-7 miRNA family has a key role in regulating inflamma-
tory responses. Let-7b modulates the inflammatory response
[73, 74]. TNF-α could regulate let-7 expression through
Lin28b, an RNA binding protein (RBP) which negatively reg-
ulates let-7 [75]. miR-143 is involved in ERK5 signaling and
works as a positive regulator of human adipocyte differentia-
tion. miR-143 level grows in the mesenteric adipose of high-fat
diet mice. Also, reduction of miR-143 expression by TNF-α
treatment indicates its dysregulation by obesity-associated in-
flammation process. Insulin sensitivity and inflammatory com-
ponents such as FFAs, resistin, and leptin influence its expres-
sion. Therefore, miR-143 may be an important regulator in the
occurrence of obesity-related insulin resistance [76–79].

Some cmiRNAs (miR-146, miR-378, miR-143, miR-145)
are related to obesity through inflammation or other correlated
traits [80]. miR-146b is an inflammatory miRNA involved in
cytokine signaling via the NF-κB pathway, as well as through
cytokine production and inflammatory response. It may be
overexpressed in response to pro-inflammatory cytokines in ad-
ipose tissue inflammation [81–83]. miR-146a/b level rises in
mice models of obesity with increased fat mass [84]. This
miRNAnegatively controls inflammatory response and cytokine
production such as TNF-α plus IL-1β, IL-8, and IL-6 [85, 86].
miR-146a-5p suppresses adipogenesis through targeting insulin
receptor (IR) and plays a role in insulin signaling pathway
through reducing tyrosine phosphorylation of IRS-1 [87]. Also,
this miRNA acts as a negative regulator for the inflammatory
process. It also represses the target gene translation such as IL-1-
receptor-associated kinase-1 (IRAK1) and TRAF6 [88]. miR-
378 is encoded by peroxisome proliferator-activated receptor γ
coactivator 1β (PGC-1β) gene and participates in adipocyte
gene expression, lipogenesis, control of mitochondrial metabo-
lism, and systemic energy homeostasis. This miRNA is induced
by adipokines [89, 90] and regulates adiponectin expression
[91]. Pro-inflammatory cytokines, such as TNF-α, IL-1b, and
IL-6 play crucial roles in adipocyte biology and regulation of
miR-378 expression [89]. Finally, miR-145 decreases Arf6 and
cytokines in macrophages (anti-inflammatory role), which may
be related to NF-κB pathway. Further, the expression of this
miRNA is attenuated in subjects with obesity [92].

In general, it can be concluded that the majority of afore-
mentioned cmiRNAs in obesity play important roles in
inflammation.

Adipose tissue miRNAs related to inflammation

miRNAs secreted by fat cells in the circulation can act as a
biomarker of disturbed adipose tissues [93]. The number of
miRNAs in tissue and blood are different; blood contains 30%

of tissues’miRNAs. For instance, 28.8% of adipocyte miRNAs
are found in the whole blood [94]. Thus, many tissues’ potential
miRNAs may not be detected as a biomarker in blood. miRNAs
originating from adipose tissue can be applied for management
and categorization of obesity. Adipose tissue is the main contrib-
utor to the pathophysiology of obesity and plays a significant
role in the progress of complications associated with obesity
[93]. The main action of white adipose tissue (WAT) is storing
and releasing energy-rich lipids. It is remodeled in obesity by
endothelial cell overactivation, adipocyte hypertrophy, hyperpla-
sia, immune cell infiltration, and extracellular matrix overpro-
duction. Hypoxic and metabolic stress leads to the activation of
multiple inflammatory signaling pathways. Further, the lipolytic
activity of adipose tissue is increased in people with obesity.
miRNAs in adipose tissue stimulate or inhibit differentiation of
adipocytes and regulate metabolic as well as endocrine actions.
Here, the key roles of miRNAs in inflammation mechanisms
related to adipose tissue are discussed in detail.

White and subcutaneous adipose tissue

Some miRNAs are up-regulated or downregulated in human
adipose tissue and influence adipocyte differentiation. miR-
150 [95], and miR-139-5p [96], are downregulated in subcu-
taneous adipose tissue (SAT). On the other hand, miR-143,
miR-378 [97], miR-26a, and miR-145 [98] as biomarkers are
downregulated inWAT. Note that theymay act conversely; for
instance, miR-26a inhibits lipolysis and TNF-α secretion
while miR-145 stimulates them [99]. miR-335 expression is
associated with adipogenesis and is up-regulated in response
to leptin, resistin, TNF-α, and IL-6 in human mature adipo-
cytes [100]. MiR-155 expression in WAT is associated with
the number of macrophages in the fat depot [60], and inhibits
differentiation of brown adipose tissue and enhances WAT
transition [101]. miR-221 and miR-222, which are related to
adipocytokines, are negatively associated with adiponectin
and positively with TNF-α gene expression [102]. miR-99a,
miR-125b, miR-22 [96, 103], and miR-222 [97] are up-
regulated in WAT/SAT. As discussed earlier, these miRNAs
play roles in the level of important obesity related cytokines,
inflammatory response and pathways. Themain association of
these miRNAs with inflammation is summarized in Table 1.

WTA =white adipose tissue, SAT = subcutaneous adipose
tissue.

Visceral adipose tissue (VAT)

SAT and visceral adipose tissue are related to macrophage-
associated inflammation [113]. VAT adipocyte compared to
SAT adipocyte is more metabolically active and sensitive to
lipolysis [114]. Furthermore, VAT is considered as an active
endocrine organ where macrophage infiltration in VAT is con-
sidered as a low-grade inflammatory condition [115].
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Dysregulation of several miRNAs in VAT is related to obesity
[113]. Among them, miR-223 has a major impact on the reg-
ulation of VAT in subjects with obesity. miRNA-223 up-reg-
ulation can cause a suppressive effect on the inflammatory
cascade in VAT macrophages [113]. For instance, it can neg-
atively regulate IL-1β production [116]. Also, miR-223-
FBXW7-TLR4 axis has a significant role in the macrophage
inflammatory phenotype [113]. miR-146b is known as a new
regulator for visceral pre-adipocyte proliferation and differen-
tiation in humans [117], which is also involved in cytokine
signaling via the NF-κB pathway. It is highly expressed in
mature adipocytes while its expression is low in visceral
preadipocytes [117]. Its expression grows by stimulation of
pro-inflammatory cytokines [80]. Circulating levels of miR-
27a are significantly associated with VA and body mass index
[118]. This miRNA is up-regulated by leptin, while the down-
regulation of miR-27a reduces macrophages activation by
TLR2/4 induction and results in elevated IL-10 expression.
miR-27a overexpression enhances the expression of pro-
inflammatory cytokines including IL-6, IL-12, and TNF-α,
and is also related to TNF-α-induced inflammatory damage.
miR-181 family, miR-181a, acts as a new marker for inflam-
matory response, where TLR-4 signaling may play a role in-
creased expression of miR-181a during this response. Further,
miR-181a level is correlated with IL-1b, IL-6, and TNF-α
expression [119]. miR-181a-5p modulates the expression of
PTEN/S6K and prevents TNF-α induced insulin resistance in
subjects with obesity [102]. miR-181a-3p is negatively related
to adiponectin and expression of SIRT1 in VAT [119]. Also,
miR-181a expression declines in monocytes of subjects with
obesity [113], which is regulated in the inflammatory re-
sponses [119]. miR-378 facilitates adipogenesis in SC fat
[120]. Adipokines and cytokines such as leptin, IL-6, and
TNF-α promote its expression via SREBP and C/EBP. This
miRNA may be a target for adipose tissue inflammation [89],
and obesity-associated insulin resistance [90]. Additionally,
the levels of miR-132 and miR-150 from the VAT samples

are negatively correlated with the levels of IL-6 as a pro-
inflammatory cytokines [121]. The role of this miRNA in
inflammation is described in more detail in the following
sections.

Inflammation related microRNAs in lipid metabolism

miRNAs as a new type of posttranscriptional regulators of gene
expression are highly involved in several mechanisms including
regulation of lipid metabolism, fatty acid oxidation, lipoprotein
formation, and secretion [122, 123]. Therefore, they may be a
potential target for treatment of obesity or obesity-related dis-
eases. They also might be regarded as potential biomarkers in
adult or childhood obesity, promote obesity, and increase food
intake [59, 124, 125]. The roles of miRNAs in lipid and lipopro-
tein metabolism are reported in Table 2.

The miRNAs described in Table 2, are involved in inflam-
mation and inflammatory response, as mentioned in the fol-
lowing sentences. miR-9 is known as an LPS-responsive
miRNA in monocytes and polymorphonuclear neutrophils
(PMNs). This miRNA regulates inflammatory responses and
pathways [143]. In this regard, NF-κB pathway may induce
miR-9 in macrophages and control inflammation by feedback
loop [144]. miR-122 has an anti-inflammatory function [145]
and inhibits production of inflammatory cytokines [146].
miR-27b regulates lipid metabolism, modifies dyslipidemia
[131], and inhibits inflammatory response in the NF-κB sig-
naling by targeting PPARγ [147]. It also downregulates
PPARγ and C/EBPα and blocks adipocyte differentiation
[130]. miR-144 suppresses the expression of cytokines in im-
mune cells and promotes inhibition of TNF-α plus IL-1β as
well as secretion of IL-6 via activating ERK signaling [148].
m i R - 3 3 r e g u l a t e s p e r i p h e r a l i n f l a mm a t o r y
Ly6Chighmonocytes [149] and NLRP3 inflammasome path-
ways [150]. The roles of other lipid metabolism miRNAs in
inflammation were described in the previous sections.

Table 1 Major roles of white and subcutaneous adipose tissue miRNAs in inflammation

Adipose tissue
microRNAs

Position Main roles in inflammation Ref

miR-150 SAT Reducing inflammatory cytokines (such as TNF-α and IL-2) by targeting Akt/IKK/NF-κB pathway [104]

miR-139-5p SAT Playing anti- inflammatory effects [105]

MiR-26a WAT Its upregulation/suppression results in reduction/elevation of production of inflammatory cytokines such
as TNFα and IL-6

[106]

miR-335 SAT Upregulated by stimulation of cytokines (leptin, resistin, TNF-α and IL 6),
Involved in adipose tissue inflammation

[100]

miR-155 WAT Involved in the macrophage inflammatory response and progress of chronic inflammation [107–109]

miR-222 WAT Correlated with adipocytokines (TNF-α and adiponectin),
Targeting CXCL12 in macrophages

[102, 110]

miR-99a WAT Blocking the inflammation by targeting mTOR/NF-κB signaling [111]

miR-125a SAT Negative modulator of macrophage-related inflammatory responses [112]
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Inflammatory microRNAs in adipogenesis

Inflammation changes miRNA profiles in adipocytes and
macrophages. Here, we discuss important inflammatory
miRNAs involved in adipogenesis.

Some of the obesity-related miRNAs such as miR-221, miR-
222, and miR-155 are significantly elevated in differentiated ad-
ipocytes during inflammation and obesity. miR-155 inhibits ad-
ipogenesis by targeting CREB and C/EBPβ [151]. Ectopic ex-
pression of miR-155, miR-221, and miR-222 leads to inhibition
of adipogenesis, and play a significant role in adipocyte differ-
entiation [152]. miR-155 upregulation may diminish the expres-
sion levels of lipogenic and adipogenic markers in adipocytes
[153]. miR-21, miR-17-92 cluster, plus miR-378/378* promote
adipogenesis in adipose tissue of subjects with obesity through
over-expression of adipogenic markers and elevated triglycerides
[154]. miR-17-92 cluster increases adipocyte differentiation by
negatively modifying Rb2/p130 [155]. Meanwhile, miR-21is a
key factor in inflammatory response [156]. It may induce T-cells
to produce pro-inflammatory cytokines such as TNF and IFNγ
[157], TGF-β signaling pathway prevents adipogenesis and
miR-21 by inhibiting interaction of this pathway with adipogen-
esis [158]. Let-7 andmiR-27 suppress adipogenic differentiation,
induce down-regulation of adipogenic factors; for instance, miR-
27 targets C/EBPα and PPARγ [159, 160]. Let-7 prevents adi-
pogenesis, which is overexpressed during adipogenesis and sup-
presses 3 T3-L1 differentiation by suppressing HMGA2 [159].
Let-7, as a pro-inflammatory mediator, is involved in regulating
inflammatory responses [73, 161–163], and can be probably
considered as a regulatory marker in NF-κB pathway
[163–165]. On the other hand, hypoxia dysregulates inflamma-
tory adipocytokines and elevates miR-27 in adipose tissues of
micewith obesitywhich is associatedwith deficient adipogenesis
[160, 166]. miR-146a regulates immune functions [144]. TNF-α
and IL-1β in NF-κB pathway induce miR-146a which are

imperative factors in inflammation [167]. This miRNAdecreases
the inflammatory response in adipocytes by targeting IRAK1
and TRAF-6 response [88] and suppresses adipogenesis through
targeting insulin receptor [168]. During human adipogenesis,
miR125b-5p is upregulated which is involved in the regulation
of adipocyte differentiation. Additionally, miR-125b-5p affects
adipogenesis by regulating MMP11 which is an adipogenesis
inhibitor [169]. miR-143 is involved in ERK5 signaling and is
a positive regulator of human adipocyte differentiation. Finally,
miR-375 is correlated to obesity by regulating 3 T3-L1 adipocyte
differentiation through ERK–PPARγ2–aP2 pathway [170]. This
miRNA attenuates inflammatory response [171], inhibits inflam-
matory cytokines, and regulates adipokines in non-alcoholic fatty
liver disease [172]. The above described inflammatory obesity
relatedmiRNAswere listed in fig. 4, based on their role and level
in obesity.

The main roles of the most important inflammatory
obesity miRNAs in cancers

miR-132

The expression of miR-132 differs in various types of cancers
given the role of its target gene. Via targeting SOX-4 [173] and
MUC13 [174], miR-132 inhibit lung and gastric cancer, respec-
tively. By binding to 3UTR of HN1 and ZEB2 transcript, miR-
132 downregulates their expression thereby inhibiting cell inva-
sion and metastasis in breast cancer and colorectal cancers [175,
176]. It has also a negative role in pancreatic cancer by targeting
retinoblastoma protein (pRb) tumor suppressor [177].

miR-9

miR-9 acts as a putative tumor suppressor gene and potential
biomarker in different types of cancers including recurrent

Table 2 Summary of the function of miRNAs in lipid metabolism

miRNAs Target Function Ref

miR-335 – During adipose differentiation, its levels correlate with lipid accumulation
and PPARγ or FAS levels

[126]

miR-9 ACAT1 Regulating formation of foam cells [127]

miR-122 HMGCR Effectiveness on lipid metabolism [128, 129]

miR-27b PPARγ and C/EBPα blocking adipocyte differentiation, regulating lipid metabolism [130, 131]

miR-144 ABCA1 Regulating cholesterol metabolism
Inhibition of HDL formation

[132, 133]

miR-33 and miR-33* NPC1, ABCA1, IRS2, CPT1A
and CROT, HADHB

Cholesterol export, lipid and fatty acid metabolism, fatty acid oxidation [134, 135]

miR-378 CAT, ------- Over-expression of miR-378/378∗ encourages lipogenesis, regulates
cholesterol homeostasis and adipocyte gene expression

[136–138]

miR-155 FAAD Role in lipid metabolism by targeting liver X receptor XLR, lipid uptake [139, 140]

miR-125a ORP9 It is up-regulated in macrophages treated with oxLDL mediating lipid
uptake and inhibits the secretion of inflammatory cytokines

[141]

miR-223 HMGCS1 and SC4MOL Regulating HDL-C uptake, lipoprotein metabolism, and cholesterol biosynthesis [142]
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ovarian cancer [178]. In breast and gastric cancer, aberrant
hypermethylation of miR-9 gene occurs which epigenetically
inactivates miR-9 [179, 180]. This miRNA targets MTHFD2
in breast cancer which is involved in its suppressor effect on
cancer [181]. It is also downregulated in colon cancer which
may promote proliferation and survival [182]. In contrast, the
role of miR-9 on metastatic highly malignant cells has shown
that its inhibition leads reserved metastasis [183].

miR-29

This miRNA has a dual effect on cancer which is downregu-
lated or upregulated in many types of cancers. Its tumor sup-
pressor effect is related to activating tumor suppressor genes.
For instance, the members of miR-29 family upregulate P53
as an important tumor suppressor and also suppress p85α and
CDC42 (two regulators that negatively regulate P53 [184]),
inhibiting cancer cell proliferation and involving apoptosis. In
contrast, it is also observed that this miRNA regulates apopto-
sis by increasing the level of Mcl-1. This anti-apoptotic pro-
tein is increased in cancer whose recurrence and upregulation
in colon and breast cancers have a positive effect on the tumor
metastasis [185].

miR-145

This miRNA acts as a tumor suppressor in different types
of cancers like breast cancer [186], which may be due to
various reasons. For example, this miRNA regulates P53
which negatively controls c-Myc [187]. It also targets
RTKN and decreases its expression inhibiting cell growth
in breast cancer [188]. In bladder cancer, miR-145 targets
FSCN1 mRNA, an oncogene which suppresses tumor pro-
gression [189]. The expression of this miRNA is reduced
in colorectal cancer [190]. miR-145, by targeting p70S6K1
gene, inhibits tumor progress in colorectal cancer [191]. In
contrast, in metastatic colorectal cancer, this miRNA plays
an oncogenic role depending on its effect on target genes
[192].

miR-150

This miRNA promotes cancer progression by targeting differ-
ent genes. For instance, in breast cancer, miR-150 targets
P2X7 mRNA and downregulates the expression of P2X7 re-
ceptor thereby regulating cell growth and apoptosis [193]. In
lung and gastric cancers, this miRNA targets P53 andEGR2

Main
inflammatory
obesity related

miRNAs

cmiRNAs:
Decreased level:
miR-15a, miR-125b, miR-132, miR-
143, miR-145, miR-221

Increased level:
miR-140-5p, miR-146

Level in
obesity

Adipose tissue:
Decreased level:
miR-150, miR-139-5p, miR-143,
miR-378, miR-26a, miR-145, miR-
378, miR-150, miR-132, miR-181a

Increased level:
miR-99a, miR-125b, miR-22, miR-
222, miR-221, miR-335, miR-223,
miR-146b

Adipogenesis:
Negative effect:
miR-221, miR-222, miR-155, Let-7,
miR-27, miR-146a

Positive effect:
miR-21, miR-17-92 cluster, miR-
378/378*, miR-143, miR125b-5p

Lipid metabolism:
Negative effect:
miR-9, miR-155, miR-27b, miR-144,
miR-223

Positive effect:
miR-378, miR-335, miR-122, miR-33,
miR-33*

Role in
obesity

Fig. 4 Main inflammatory-obesity related miRNAs
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mRNA, respectively, and negatively regulates their expression
[194, 195]. In contrast, it targets IGF-1R to induce apoptosis
in prostate cancer [196]. Further, in colorectal cancer, the level
of miR-150 drops with lower levels being associated with to
shorter survival and weaker response to therapy [197].

miR-99a

miR-99a diminishes the inflammation by targeting mTOR/
NF-κB signaling [111]. It is believed that miR-99a plays an
inhibiting role in many cancers. Reduced number of breast
cancer cells is the result of miR-99a over-expression through
induced accumulation of cells at the sub-G1 phase and
inhibiting tumorigenesis. It targets the mTOR/p-4E-BP1/p-
S6K1 pathway [198, 199]. Further, it has a critical role in
regulating the radio-sensitivity of non-small lung cancer by
targeting mTOR signaling pathways [200].

miR-143

miR-143 inhibits inflammatory cytokines which are induced
by IL-13 in nasal epithelial mucosal cells [201]. MiR-143
plays an inhibiting role in gastric cancer. Nevertheless, its
precise mechanism is uncertain. It is believed that up-
regulation of miR-143 is suppressed by proliferation of gastric
cells via targeting DNMT3A. Wu et al. have shown that miR-
143 inhibited gastric cells through COX-2 and induced apo-
ptosis [202]. It has been observed that proliferation of cells,
invasion, and cell cycle-related protein levels including Cyclin
D1, CDK4, and CDK6 in gastric cancer are suppressed by
miR-143 up-regulation. Also, transfection of miR-143 inhib-
itor to gastric cancer cells can boost cell proliferation [202].
He et al. concluded that miR-143 plays an inhibiting role by
targeting QKI-5 in esophageal squamous cell carcinoma
(ESCC). Therefore, it seems that it can be considered as a
potential biomarker for the treatment of ESCC [203].

miR-221/222

miR-221/222 facilitates inflammation in white adipose tissue
and reduces insulin sensitivity in obesity, through suppressing
SIRT1 [204]. miR-221/222 is considered as an oncogene in
various human cancers such as breast cancer. miR-221/222
enhanced growth of breast cancer, migration, and invasion,
which acts through PTEN/Akt pathway. Furthermore, recent
studies have revealed that miR221/222 over-expression leads
to proliferation and cell cycle phase distribution in glioblasto-
mas, thyroid papillary carcinomas, breast cancer, as well as in
hepatocellular and lung cancer [205]. Furthermore, aggressive
prostate cancer tissue outperformed non-aggressive forms in
terms of miR-221/222 expression. Seemingly, there is a strong
correlation between increased miR-221/222 level and poor
overall survival in patients with prostate cancer.

miR-181

Researchers have not reached a consensus regarding the role
of miR-181a in breast cancer [206]. Some studies have re-
vealed that miR-181a expression is associated with anti-
breast cancer effects via inhibiting tumor invasion and metas-
tasis, decreasing the formation of mammosphere, inducing the
death of cancer cells, and increasing sensitivity of drugs. On
the other hand, the Oncomir activity of miR-181a intensifies
metastasis (via Bax targeting), decreases apoptosis (via Bim
targeting), increases tumorigenesis (via ATM targeting).
Furthermore, miR-181a is associated with progression of
ovarian cancer through epithelial-mesenchymal transition reg-
ulation [207] and of gastric cancer [208]. It has been shown
that miR-181a plays an inhibiting role against oral squamous
cell carcinoma cells through downregulation of K-ras [209].
miR-181 family may be involved in vascular inflammation by
targeting NF-κB signaling and other important signaling path-
ways [210]. miR-181b plays a mediating role between inflam-
mation andmalignancy. STAT-3 is a transcription factor which
activates miR181b. It has been shown that chromobox homo-
log 7 (CBX7) and p27 are suppressed by miR-181b induced
cell cycle controls. Further, miR-181b regulates BCL2,
TIMP3, p53, and other important targets and pathways thus
influencing cell proliferation, adhesion, chemosensitivity, and
apoptosis. There was a significant association between miR-
181b levels and pancreatic, head and neck, and bladder cancer.
Furthermore, its downregulation was observed in gastric,
lung, and prostate cancer. It is believed that miR-181b acts
uniquely based on the tumor type and cellular context [211].

Let-7

There are thirteen members in human let-7 family which are
found on 9 different chromosomes. Let-7 is a pro-
inflammatory mediator and is considered as a new regulatory
molecule for the NF-κB pathway via ceRNA crosstalk [163].
Let-7 as a tumor suppressive biomarker can inhibit carcino-
genesis and progression of the tumor. Further, its overexpres-
sion inhibits cancer cell proliferation [212]. Let-7 family ex-
pression changes in different types of cancers including gas-
tric, breast, and ovarian cancer [213].

miR-335

A new role for miR-335 in adipose tissue inflammation has
been observed. Apparently, miR-335 is probably involved in
the pathogenesis of obesity by regulating its transcription
[100]. It has been reported that miR-335 regulates target genes
in several oncogenic signal-pathways like p53, MAPK,
TGF-β, Wnt, ERbB, mTOR, Toll-like receptor, and focal ad-
hesion [214]. However, in breast cancer, miR-335 inhibits
migration of cancer cells via negative regulation of HGF/c-
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Met pathways [215]. Another study reported that miRNA
downregulation in lung cancer facilitated the proliferation of
cells via upregulation of Tra2B, through activating the AKT/
mTOR signaling [216].

miR-26

miR-26 regulates inflammation and tumorigenicity via down-
regulation of IL-6production [217]. Studies suggest that miR-
26 decreases TNF-α-activated expression of some genes in
inflammatory NF-κB pathway [217]. Some studies have
highlighted the suppressing role of miR-26b expression in
cancer [218, 219]. It is reduced in cancers including T-ALL
and colorectal sample. Therefore, miR-26b lowers cell prolif-
eration and increases apoptosis. Further, miR-26b reduction
leads to fibroblast migration and invasion [219].

miR-223

It has been shown that miR-223 acts as a mediator in morbid
obesity adipocyte associated inflammation [220]. Expression
ofmiR-223 is deregulated in several types of cancer. Although
it is not expressed significantly in acute myeloid leukemia
(AML) and several other types of leukemia, its expression is
detected in breast, gastric, hepatocellular cancer via targeting
MEF2C, EPB4IL3, and STMN1 [221]. Further, miR-223 af-
fects ovarian cancer through KRAS, EGF, EGFR2, MMP9,
and SEPTIN6 [178].

miR-125b

It has been shown that the expression of genes involved in
inflammatory and apoptotic functions is regulated by miR-
125b [58, 222–225]. miR-125b has a key role in inflammation
by controlling mitochondria integrity via BIK and MTP18
silencing [226, 227]. In addition, the double role of miR-
125b as a tumor suppressor [228] (for cutaneous and head/
neck squamous cell carcinoma) and an oncomiR) [226] (in
hematopoiesis) has been observed.

miR-21

miR-21 is significantly involved in inflammatory response
[156]. miR-21 is overexpressed in most human cancers.
Studies have confirmed its role as an oncogene [229].
Oncogenic miR-21 reduces FBXO11, as a novel miR-21 tar-
get gene (a tumor suppressor) thereby promoting tumorigen-
esis [229]. miR-21, as an oncogene, is involved in tumor
growth, invasion, and metastasis [230].

miR-155

Studies by Xiaoyi and Ye J have confirmed that miR-155 has
anti-inflammatory and inflammatory features [231, 232].
Over-expression of miR-155 inhibits cell proliferation, in-
duces cell cycle arrest, and enhances apoptosis in colorectal
cancer [233], which could be potentially considered as a tu-
mor suppressor. Note that the oncogenic role of miR-155 in
breast cancer has also been detected [234].

miR-146a

Tumor suppression effect of miR-146a has been reported by
Bleau et al. [235]. miR-146a downregulation was observed in
breast tissues which is probably associated with the develop-
ment and deterioration of breast cancer [236]. Anti-
inflammatory effect of miR-146b has been observed by down-
regulating IL-6 and IL-8 and influencing the HSP10 expres-
sion in the activated endothelium [237]. Furthermore, miR-
146b plays an inhibiting role and suppresses NF-kB depen-
dent production of IL-6 and STAT3 activation.

Further perspectives

According to the important role of inflammatory components
in cancers and obesity, the role of major inflammatory
miRNAs in obesity and obesity-related cancers, as well as
the profiles of miRNAs related to these components,
miRNAs could be considered as noninvasive biomarkers for
pre-clinical diagnosis or prognosis of cancers which are asso-
ciated with obesity and overweight. Consequently, further
studies are required to be performed on the function and
mechanisms of inflammation-related miRNAs in obesity-
related cancers, as well as on miRNAs target genes.

Conclusion

This study aimed to investigate the relationship between
miRNAs and obesity-related cancers based on inflammation.
After comparing the findings for miRNAs involved in inflam-
mations, it was observed that the main pro- and anti-
inflammatory miRNAs such as miR-9, miR-21, miR-26,
miR-29, miR-125b, miR-99a, miR-132, miR-143, miR-145,
miR-146a/b, miR-150, miR-155, miR-181a, miR-221/222,
miR-223, miR-335, and let-7 are involved in obesity or adi-
pose tissues formation. It was also found that obesity linked
miRNAs are also involved in inflammatory pathways through
affecting adipokines.

It seems that miRNAs link obesity with cancer through
inflammation and immune related mechanisms. Overweight
and obesity-related cancers such as colorectal, breast, esoph-
ageal, pancreatic, liver, ovarian, myeloma, gastric, and thyroid
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cancers seem to have a greater association with inflammatory
miRNAs. miR-150, miR-155, mir-181a, miR-125b, and miR-
21 are mentioned in many studies, in which they proved to be
highly involved in cell growth, proliferation, migration, apo-
ptosis, invasion, therapy, and survival in these types of can-
cers. It can be concluded that the main inflammatory obesity
related miRNAs are involved in common types of cancers
which are remarkably caused by obesity and overweight status
in individuals developing certain types of cancer.
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