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Abstract
The object of this study was to establish a new method to predict the content of DE and ME in sorghum fed to growing pigs by 
using near-infrared reflectance spectroscopy (NIRS). A total of 33 sorghum samples from all over China were used in this study. The 
samples were scanned for their spectra in the range of 12,000 to 4,000 cm−1. Based on principal components analysis of the spectra, 
the samples were split into a calibration set (n = 24) and a validation set (n = 9) according to the ratio of 3:1. With animal experiment 
values as calibration reference, the calibration models of DE and ME were established using partial least squares regression 
algorithm. Different spectral pretreatments were applied on the spectra to reduce the noise level. The best wavenumber ranges 
were also investigated. Results showed that DE and ME content in sorghum fed to growing pigs ranged from 14.57 to 16.70 MJ/kg DM 
and 14.31 to 16.35 MJ/kg DM, respectively. The optimal spectral preprocessing method for DE and ME was the combination of first 
derivative and multiplicative scatter correction. The most informative near-infrared spectral regions were 9,403.9 to 6,094.4 cm−1 
and 4,605.5 to 4,242.9 cm−1 for both DE and ME. The best performance for DE and ME calibration models was the coefficient of 
determination of calibration (R2c) of 0.94 and 0.93, coefficient of determination of cross-external validation (R2cv) of 0.88 and 0.86, 
residual predictive deviation of cross-external validation (RPDcv) of 2.86 and 2.64, coefficient of determination of external validation 
(R2v) of 0.90 and 0.81, and residual predictive deviation of external validation (RPDv) of 3.15 and 2.35, respectively. There were no 
significant differences between the measured and NIRS predicted values for DE and ME (P = 0.895 for DE and P = 0.644 for ME). 
As the number of calibration samples increased from 24 to 33, the calibration performance of DE and ME models was improved, 
indicated by increased R2c, R2cv, and RPDcv values. In conclusion, NIRS quantitative models of the available energy in sorghum were 
established in this study. The results demonstrated that the content of DE and ME in sorghum could be predicted with relatively 
high accuracy based on NIRS and NIRS showed the superiority of speediness and practicality when compared with previous 
research methods including animal experiments, regression equations, and computer-controlled simulated digestion system.
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Introduction
Sorghum was first grown in tropical Africa and then gradually 
spread throughout the world (Bouchet et  al., 2017). With the 
increased cost of conventional energetic feed ingredients, it is 
necessary to develop alternative energetic feed ingredients as 
renewable bioenergy feedstocks (Rooney et al., 2010). Sorghum is 
regarded as better substitute considering its advantage on price 
and availability over wheat, barley, and oats (Campher et  al., 
1984). In addition, sorghum is also one of the most important 
cereal crops rich in various phytochemicals compounds, 
contributing to health (Awika and Rooney, 2004). Therefore, the 
use of sorghum as a feed ingredient for growing pigs begins to 
increase in recent years (Pan et al., 2016, 2018a).

Many factors, including variety, planting year, climatic 
environment, planting area, rainfall, storage conditions, 
processing technology, and so forth, can lead to variations in 
nutrient composition and energetic values of feed ingredients. 
For example, the content of DE and ME in sorghum fed to 
growing pigs varied among different production areas and white 
sorghum contains more DE and ME than red sorghum (Pan et al., 
2016, 2018a). Feed cost, a factor driving sustainable development 
of pork production, is influenced by accurate nutritional values 
during diet formulation (Stein et al., 2016). Feed energy usually 
accounts for a high proportion of the total feed cost (De Lange 
and Birkett, 2005). Therefore, it is important to estimate variation 
in the available energy for a specific sorghum before it is used 
for diet formulation (Barneveld et al., 2018).

Traditional animal experiments used to determine the 
available energy of a feedstuff is time consuming, expensive, 
and likely to have the risk of environmental pollution (Zhou 
et al., 2012). For these reasons, more and more methods such as 
prediction equations were developed to estimate the available 
energy in feed ingredients fed to growing pigs (Van Barneveld 
et  al., 1999; Li et  al., 2015, 2016). Pan et  al. (2016) established 
DE and ME prediction equations for sorghum in pigs. However, 
prediction equations need chemical analysis before it can be 
used and the tannin content in sorghum is hard to determine.

Near-infrared reflectance spectroscopy (NIRS) is accepted 
widely for its advantage of fast, nondestructive, and accurate 
analysis with very little sample preparation required (Bart 
et  al., 2007). Functional groups including −CH, −NH, and −OH 
are related to the main absorption bands (Xue et  al., 2011). 
Nowadays, near-infrared technology has been increasingly used 
in quality control of feed ingredients (Montanhini Neto et  al., 
2017). Generation of reference data is indispensable to effective 
NIRS analysis. Moreover, DE and ME content of feed ingredients 
determined in digestion–metabolism experiments compared 
with values calculated by equations brought NIRS calibration 
models better predictive performance (Noblet and Perez, 1993; 
Li et al., 2016).

To our knowledge, no studies have been reported on the use 
of NIRS to predict the available energy of sorghum fed to growing 
pigs. The object of this study was to develop a fast method to 
predict the content of DE and ME in sorghum fed to growing pigs 
and lay the foundation for accurate diet formulation.

Materials and Methods

Sample Collection and Preparation

Sorghum samples (n = 33) used in this study included 24 samples 
used by Pan et al. (2016) and 9 additional samples collected from 
throughout China. Each sorghum sample was ground to flour 

using a universal grinder (Ever Bright Medical Instrument Co., 
company, Beijing, China) and then passed through a 40-mesh 
sieve before NIRS measurements.

Reference Data Determination

Digestible energy and ME content of 24 sorghum samples were 
previously reported by Pan et al. (2016). The DE and ME values of 
the remaining 9 samples were obtained as follows:

Twenty-seven healthy crossbred barrows [Yorkshire × 
Landrace × Duroc] with an initial body weight of 36.8 ± 3.5 kg 
for the first period and 41.3 ± 3.9 kg for the second period were 
assigned to 9 treatments according to a completely randomized 
block design. Each treatment contained 1 sorghum. The 
content of DE and ME of sorghum was determined using the 
total collection method. The experiment was conducted for 2 
consecutive periods, with 3 replicates in each treatment per 
period and 1 pig in each replicate. In the 2 periods, a total of 
6 replicates were used per treatment and each pig received 
different diet. For each period, pigs were allowed a 7-d 
acclimation period followed by a 5-d collection period.

On an as-fed basis, experimental diets contained sorghum 
(96.9%), dicalcium phosphate (1.7%), limestone (0.6%), salt (0.3%), 
mineral, and vitamin premix (0.5%). The only energy-supplying 
component of the diet was sorghum. The mineral and vitamin 
content of the diet exceeded nutritional needs of growing pigs 
published by NRC (2012).

The experiment was carried out in FengNing Swine Research 
Unit of China Agricultural University (Academician Workstation 
in Chengdejiuyun Agricultural and Livestock Co., Ltd). Pigs were 
housed in stainless steel metabolic crates individually. Pigs were 
fed at 4% of their initial body weight every day split into equally 
sized meals offered at 0800 and 1600  h. Pigs had free access 
to drinking water throughout the  experiment. The pig houses 
were routinely disinfected and immunized. The metabolism 
crates were regularly cleaned to observe the health and feeding 
conditions of the experimental pigs. The experiment was 
conducted in accordance with the technical specifications for 
the evaluation of the nutritional value of pig feed issued by 
the Ministry of Agriculture and Rural Feed Efficacy and Safety 
Evaluation Center (Beijing).

During the collection period, orts were collected twice 
daily, dried, weighed, and recorded. Feces that appeared in the 
metabolism crates were collected immediately and placed in 
plastic bags. Fecal samples were stored at −20  °C. After each 
experimental period, all feces collected over the 5 d was mixed 
completely within pig. Fecal samples (700 g) were extracted from 
the mixture and added to 50 mL 6 mol/L HCl to fix nitrogen and 
then were dried at 65 °C for 72 h in a drying oven to a consistent 
weight. Fecal samples were ground to pass a 40-mesh sieve then 
sealed in bag for energy analysis.

All urine was collected daily and volume was recorded. 
Hydrochloric acid (50  mL, 6  mol/L) was added to collection 
buckets containing urine samples. A daily subsample (1/20) of 
total urine excreted was retained and stored at −20  °C. After 
each experimental period, all urine subsamples for 5 d collected 
from each pig were thawed and mixed completely within pig. 
The mixture was filtered through gauze into a 50-mL centrifuge 
tube and stored at −20 °C.

Gross energy of the diet, fecal, and urine samples was 
determined using PARR 1281 calorimeter (Instrument 
Company, Moline, IL). The content of DE and ME were 
calculated based on the following equations described by 
Adeola (2001):
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DE1 = (Q1−Q2)/M1 (1)

DE2 = DE1 / X (2)

where DE1 and DE2 represent the content of DE in each test 
diet and each test sorghum fed to growing pigs, respectively. Q1 
and Q2 are the content of total energy in the test diet and fecal 
sample excreted by each experimental animal, respectively. M1 
represents the weight of each test diet fed to growing pigs. X 
refers to the proportion of sorghum in each test diet.

ME1 = (Q1−Q2−Q3)/M1 (3)

ME2 = ME1 / X (4)

where ME1 and ME2 represent the content of ME in each test diet 
and each sorghum fed to growing pigs, respectively. Q3 refers to 
the content of total energy in the urine sample excreted by each 
experimental animal.

NIRS Spectra Collection

NIRS spectra scanning was performed on the MATRIX I Fourier-
Transform near-infrared instrument (Bruker Company, 
Germany) equipped with a cylindrical rotating sample cup 
with a diameter of 8.7 mm. The instrument was preheated for 
half an hour before use. Each sample was equilibrated to room 
temperature before NIRS measurements. The amount of sample 
in the sample cup was similar to ensure the same homogeneity 
and tightness of the sample every time samples were loaded. 
Shaking of the samples was avoided. For each sorghum sample, 
the average spectra for establishing calibration model was 
obtained by averaging 2 spectra from the same sample in 
the reflectance model to minimize noise in the spectral data. 
Background spectra were measured every half hour to eliminate 
background interference in the analysis. The parameters were 
set as follows: the wavenumber range was in the full spectra 
from 12,000 to 4,000  cm−1, the spectral resolution was 8  cm−1, 
and the scanning times were 64. The experiment has shown 
that 1,062 wavenumber points were recorded as absorbance of 
near-infrared light.

Sample Diversity

Principal components analysis (PCA) was used to reduce the 
dimension of the data set. After the NIRS spectra of 33 sorghum 
samples were obtained, sorghum samples were divided in 

Table 1. Statistics on the available energy of the total set, calibration 
set, and validation set as DM basis

Items

Total set  
(n = 33)

Calibration set 
(n = 24)

Validation set 
(n = 9)

DE ME DE ME DE ME

Mean, MJ/kg 15.52 15.23 15.57 15.29 15.40 15.11 
Max, MJ/kg 16.70 16.35 16.70 16.35 16.45 16.09 
Min, MJ/kg 14.57 14.31 14.57 14.31 14.84 14.55 
SD 0.60 0.58 0.63 0.61 0.54 0.51 
CV, % 3.86 3.82 4.05 3.99 3.51 3.38

Figure 1. Reflectance spectra of sorghum tested in the study using different 

pretreatments, including none pretreatment (A), multiplicative scatter 

correction (B), first derivative (C), first derivative combined with multiplicative 

scatter correction (D), standard normalized variate (E), first derivative combined 

with standard normalized variate (F), and second derivative(G).
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a ratio of 3:1 into a calibration set comprised 24 sorghum 
samples and a validation set comprised 9 sorghum samples 
according to PCA analysis of 33 sorghum average spectra. The 
principal component distribution of the sorghum samples in the 
calibration set was similar to that of the validation set.

To investigate the effect of sample numbers on calibration 
performance of DE and ME, 33 sorghum samples were selected 
as the total set.

Calibration and Cross-external Validation

Calibration and cross-external validation processes were 
performed using OPUS software (Bruker Optics Inc., Billerica, 
MA). The calibration model for determination of the DE 
and ME content for growing pigs in sorghum were built 
based on partial least squares (PLS) regression algorithm, a 
mathematical optimization technique that finds the best 
function matching of a group of data by minimizing the error 
sums of squares.

Generally, if the analytical conditions have been optimized for 
maximum signal intensity, the increase in signal to noise ratio 
can be further achieved through spectral pretreatment which 
can reduce the noise level arising from random noise, baseline 
drift, wavelength shifts, or systematic measurement error, with 

this interference violating the assumptions upon which the 
calibration equations are based. Thus, spectral pretreatments 
including none, first derivative (1st D), multiplicative scatter 
correction (MSC), 1st D + MSC, standard normalized variate 
(SNV), 1st D + SNV, second derivative (2nd D), min max 
normalization (MMN), straight-line subtraction (SLS), 1st D + 
SLS, and constant offset elimination were applied to develop an 
optimal PLS regression model for determination of the content 
of DE and ME of sorghum for growing pigs.

The leave-one-out cross-external validation process removes 
the spectra of each sorghum from the calibration set one by one 
and leaves remnant spectra to establish new calibration models 
to predict the content of DE or ME of the removed sorghum until 
the spectra of each sorghum from the calibration set had been 
regarded as the object of prediction. The outliers in the sorghum 
calibration model were eliminated by calculating the Markov 
distance (MD).

Calibration models were assessed based on the coefficient 
of determination of calibration (R2c), root mean square error 
of calibration (RMSEC), coefficient of determination of cross-
external validation (R2cv), root mean square error of cross-
external validation (RMSECV), and residual predictive deviation 
of cross-external validation (RPDcv).

Table 2. Comparison of DE calibration models for sorghum with different spectral ranges and pretreatment methods

Processing spectra Spectra region Factors R2c1 RMSEC2 R2cv3 RMSECV4 RPDcv5

None6 6,102.1 to 5,446.4 10 0.99 0.10 0.91 0.18 3.35
None 6,102.1 to 5,770.4 7 0.95 0.18 0.86 0.23 2.67
1st D7 9,403.9 to 8,447.3; 6,102.1 to 5,446.4 9 0.98 0.13 0.87 0.22 2.83
1st D 9,403.9 to 7,498.4; 6,102.1 to 5,446.4 9 0.98 0.13 0.86 0.23 2.65
MSC8 6,102.1 to 5,446.4 7 0.97 0.13 0.84 0.24 2.53 
MSC 9,403.9 to 6,094.4; 5,454.1 to 4,597.8 6 0.94 0.18 0.84 0.25 2.51 
MSC 6,102.1 to 5,770.4 5 0.93 0.19 0.84 0.25 2.50
1st D + MSC9 9,403.9 to 6,094.4; 4,605.5 to 4,242.9 4 0.94 0.17 0.88 0.22 2.86 
1st D + MSC 9,403.9 to 5,446.4; 4,605.5 to 4,242.9 7 0.93 0.18 0.84 0.25 2.48 
SNV10 9,403.9 to 6,094.4; 4,605.5 to 4,242.9 5 0.82 0.30 0.70 0.34 1.83
1st D + SNV11 7,506.1 to 4,242.9 3 0.91 0.20 0.82 0.26 2.38 
1st D + SNV 6,102.1 to 4,242.9 3 0.90 0.21 0.82 0.26 2.36 
2nd D12 9,403.9 to 7,498.4; 5,454.1 to 4,242.9 4 0.92 0.20 0.83 0.25 2.41 
2nd D 9,403.9 to 6,094.4; 5,454.1 to 4,242.9 4 0.92 0.20 0.83 0.26 2.40 
MMN13 7,506.1 to 4,597.8 5 0.92 0.20 0.82 0.26 2.39
MMN 7,506.1 to 5,446.4 7 0.94 0.18 0.80 0.27 2.26
SLS14 6,102.1 to 5,770.4 6 0.95 0.16 0.87 0.22 2.82
SLS 6,102.1 to 5,446.4 8 0.97 0.14 0.87 0.22 2.79
1st D + SLS15 6,102.1 to 5,770.4 6 0.94 0.19 0.84 0.24 2.52
1st D + SLS 6,102.1 to 5,446.4 7 0.95 0.18 0.84 0.25 2.47
COE16 6,102.1 to 4,242.9 4 0.88 0.24 0.78 0.29 2.11
COE 6,102.1 to 5,168.6 5 0.90 0.22 0.77 0.29 2.10

1R2c, coefficient of determination of calibration.
2RMSEC, root mean square error of calibration.
3R2cv, coefficient of determination of cross-external validation.
4RMSECV, root mean square error of cross-external validation.
5RPDcv, residual predictive deviation of cross-external validation.
6None, without spectral pretreatment method.
71st D, first derivative.
8MSC, multiplicative scatter correction.
91st D + MSC, first derivative combined with multiplicative scatter correction.
10SNV, standard normalized variate.
111st D + SNV, first derivative combined with standard normalized variate.
122nd D, second derivative.
13MMN, min max normalization.
14SLS, straight-line subduction.
151st D + SLS, first derivative combined with straight-line subduction.
16COE, constant offset elimination.
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Table 3. Comparison of ME calibration models for sorghum with different spectral ranges and pretreatment methods

Processing spectra Spectra region Factors R2c1 RMSEC2 R2cv3 RMSECV4 RPDcv5

None6 6,102.1 to 5,446.4 10 0.98 0.11 0.89 0.20 3.03
None 6,102.1 to 5,770.4 7 0.94 0.17 0.85 0.23 2.62
1st D7 9,403.9 to 8,447.3; 6,102.1 to 5,446.4 9 0.97 0.14 0.84 0.24 2.54
1st D 9,403.9 to 7,498.4; 6,102.1 to 5,446.4 9 0.97 0.14 0.82 0.25 2.40
MSC8 6,102.1 to 5,446.4 7 0.96 0.14 0.82 0.25 2.34 
MSC 9,403.9 to 6,094.4; 5,454.1 to 4,597.8 6 0.93 0.19 0.82 0.26 2.34 
1st D + MSC9 9,403.9 to 6,094.4; 4,605.5 to 4,242.9 4 0.93 0.18 0.86 0.23 2.64 
1st D + MSC 9,403.9 to 7,498.4; 6,102.1 to 5,446.4; 4,605.5 to 4,242.9 4 0.92 0.19 0.81 0.26 2.31 
SNV10 7,506.1 to 6,094.4; 5,029.8 to 4,597.8 9 0.96 0.15 0.88 0.21 2.85
SNV 7,506.1 to 6,094.4; 5,454.1 to 4,597.8 10 0.97 0.14 0.83 0.24 2.46

1st D + SNV11 7,506.1 to 4,242.9 3 0.90 0.21 0.81 0.26 2.28 
1st D + SNV 6,102.1 to 4,242.9 3 0.90 0.21 0.81 0.26 2.27 
2nd D12 9,403.9 to 5,446.4; 4,605.5 to 4,242.9 4 0.91 0.20 0.79 0.27 2.18 
2nd D 7,506.1 to 5,446.4; 4,605.5 to 4,242.9 4 0.90 0.21 0.79 0.27 2.17 
MMN13 7,506.1 to 4,597.8 5 0.91 0.20 0.80 0.27 2.24
MMN 7,506.1 to 5,446.4 7 0.93 0.19 0.79 0.28 2.16
SLS14 6,102.1 to 5,770.4 6 0.95 0.16 0.86 0.22 2.72
SLS 6,102.1 to 5,446.4 8 0.96 0.15 0.84 0.24 2.48
1st D + SLS15 4,428.1 to 4,242.9 5 0.90 0.22 0.83 0.24 2.45
1st D + SLS 4,605.5 to 4,242.9 6 0.92 0.20 0.82 0.25 2.38
COE16 6,102.1 to 4,242.9 4 0.87 0.24 0.76 0.29 2.04
COE 6,102.1 to 4,597.8 4 0.86 0.25 0.75 0.30 1.99

1R2c, coefficient of determination of calibration.
2RMSEC, root mean square error of calibration.
3R2cv, coefficient of determination of cross-external validation.
4RMSECV, root mean square error of cross-external validation.
5RPDcv, residual predictive deviation of cross-external validation.
6None, without spectral pretreatment method.
71st D, first derivative.
8MSC, multiplicative scatter correction.
91st D + MSC, first derivative combined with multiplicative scatter correction.
10SNV, standard normalized variate.
111st D + SNV, first derivative combined with standard normalized variate.
122nd D, second derivative.
13MMN, min max normalization.
14SLS, straight-line subduction.
151st D + SLS, first derivative combined with straight-line subduction.
16COE, constant offset elimination.

Table 4. Calibration models of DE and ME of sorghum fed to growing pigs with the greatest RPDcv values more than 2.50 for each spectral 
pretreatment method

Items Processing spectra Spectra region Factors R2c1 RMSEC2 R2cv3 RMSECV4 RPDcv5

DE None6 6,102.1 to 5,446.4 10 0.99 0.10 0.91 0.18 3.35
DE 1st D7 9,403.9 to 8,447.3; 6,102.1 to 5,446.4 9 0.98 0.13 0.87 0.22 2.83
DE MSC8 6,102.1 to 5,446.4 7 0.97 0.13 0.84 0.24 2.53 
DE 1st D + MSC9 9,403.9 to 6,094.4; 4,605.5 to 4,242.9 4 0.94 0.17 0.88 0.22 2.86 
DE SLS10 6,102.1 to 5,770.4 6 0.95 0.16 0.87 0.22 2.82
DE 1st D + SLS11 6,102.1 to 5,770.4 6 0.94 0.19 0.84 0.24 2.52
ME None 6,102.1 to 5,446.4 10 0.98 0.11 0.89 0.20 3.03
ME 1st D 9,403.9 to 8,447.3; 6,102.1 to 5,446.4 9 0.97 0.14 0.84 0.24 2.54
ME 1st D + MSC 9,403.9 to 6,094.4; 4,605.5 to 4,242.9 4 0.93 0.18 0.86 0.23 2.64 
ME SNV12 7,506.1 to 6,094.4; 5,029.8 to 4,597.8 9 0.96 0.15 0.88 0.21 2.85
ME SLS 6,102.1 to 5,770.4 6 0.95 0.16 0.86 0.22 2.72

1R2c, coefficient of determination of calibration.
2RMSEC, root mean square error of calibration.
3R2cv, coefficient of determination of cross-external validation.
4RMSECV, root mean square error of cross-external validation.
5RPDcv, residual predictive deviation of cross-external validation.
6None, without spectral pretreatment method.
71st D, first derivative.
8MSC, multiplicative scatter correction.
91st D + MSC, first derivative combined with multiplicative scatter correction.
10SLS, straight-line subduction.
111st D + SLS, first derivative combined with straight-line subduction.
12SNV, standard normalized variate.
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External Validation

External validation processes of DE and ME calibration models 
were performed on OPUS software (Bruker Optics Inc., Billerica, 
MA) using 9 sorghum samples from the validation set.

The external validation statistics output included the 
coefficient of determination of external validation (R2v), root 
mean square error of external validation (RMSEP), and residual 
predictive deviation of external validation (RPDv).

The accuracy and precision of the predicted values calculated 
by the best DE and ME models compared with the reference 
values were tested using the paired samples t-test procedure 
with SAS 9.4 (SAS Inst. Inc., Cary, NC) and statistical significance 
was declared at P < 0.05.

Results

Digestible Energy and ME Content of Sorghum Fed 
to Growing Pigs

Digestible energy and ME content of sorghum fed to growing 
pigs used in this study are shown in Table 1. As for the total 

set, the content of DE and ME ranged from 14.57 to 16.70 MJ/
kg DM and 14.31 to 16.35 MJ/kg DM, respectively. The respective 
average content of DE and ME were 15.52 and 15.23 MJ/kg DM, 
respectively. The CV for DE and ME were 3.86% and 3.82%, 
respectively.

Spectral Pretreatment

As shown in Fig. 1, the original and pretreated spectra of sorghum 
were recorded. The original spectra of 33 sorghum samples 
used in this study were Fig. 1A. Due to the influence of random 
noise and other factors, the original NIRS spectra showed some 
phenomena such as baseline drift as well as baseline rotation. 
Broad peaks caused by chemical groups in sorghum were also 
observed. The derivative pretreatments including first derivative 
and second derivative of NIRS spectra eliminated the influence 
of baseline drift and reduced the background interference, 
showing higher resolution and clearer spectral contour changes 
than the original NIRS spectra as shown in Fig. 1C and G. After 
spectral treatment by MSC in Fig. 1B, the effect of sample 
scattering on spectral changes such as baseline shift was clearly 
eliminated. Compositional differences of the samples could be 

Table 5. Results of external validation of DE and ME of sorghum fed to growing pigs

n1 Items Processing spectra R2v2 Bias RMSEP3 RPDv4 Intercept Slope

9 DE None5 −0.11 −0.34 0.53 1.22 −3.41 1.24
DE 1st D6 0.27 −0.25 0.43 1.42 −0.06 1.02
DE MSC7 0.64 −0.16 0.30 1.96 −1.43 1.10
DE 1st D + MSC8 0.90 −0.01 0.16 3.15 1.18 0.92
DE SLS9 0.21 −0.24 0.45 1.33 −3.44 1.24
DE 1st D + SLS10 0.32 −0.18 0.42 1.34 0.57 0.98
ME None −0.38 −0.35 0.57 1.08 −3.48 1.25
ME 1st D 0.04 −0.26 0.47 1.23 0.49 0.99
ME 1st D + MSC 0.81 −0.03 0.21 2.35 1.97 0.87
ME SNV11 0.76 0.07 0.24 2.11 3.86 0.74
ME SLS 0.03 −0.25 0.47 1.19 −3.27 1.23

1n, number of samples.
2R2v, coefficient of determination of external validation.
3RMSEP, root mean square error of external validation.
4RPDv, residual predictive deviation of external validation.
5None, without spectral pretreatment method.
61st D, first derivative.
7MSC, multiplicative scatter correction.
81st D + MSC, first derivative combined with multiplicative scatter correction.
9SLS, straight-line subduction.
101st D + SLS, first derivative combined with straight-line subduction.
11SNV, standard normalized variate.

Table 6. The optimal DE and ME calibration models of sorghum fed to growing pigs

Items Processing spectra Spectra region Factors R2c1 R2cv2 RPDcv3 R2v4 RMSEP5 RPDv6

DE 1st D + MSC7 9,403.9 to 6,094.4 4 0.94 0.88 2.86 0.90 0.16 3.15
4,605.5 to 4,242.9

ME 1st D + MSC 9,403.9 to 6,094.4 4 0.93 0.86 2.64 0.81 0.21 2.35
4,605.5 to 4,242.9

1R2c, coefficient of determination of calibration.
2R2cv, coefficient of determination of cross-external validation.
3RPDcv, residual predictive deviation of cross-external validation.
4R2v, coefficient of determination of external validation.
5RMSEP, root mean square error of external validation.
6RPDv, residual predictive deviation of external validation.
71st D + MSC, first derivative combined with multiplicative scatter correction.
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highlighted when NIRS spectra were pretreated with SNV (Hui 
and Siesler, 2018).

Calibration Process

The calibration models of DE and ME for sorghum fed to growing 
pigs built by NIRS are shown in Tables 2 and 3, respectively. 
As shown in Tables 2 and 3, the parameters for evaluating 
calibration models varied with the combination of different 
spectral preprocessing methods and different spectral ranges. 
No pretreatment had the greatest effect on the performance 
of calibration and cross-external validation for DE and ME. The 

model can be used for routine analysis when the RPDcv and 
RPD values of the NIRS calibration model were both greater 
than 2.5 (AACC, 2000). This study found that the RPDcv values 
of 11 models in the initially established DE models were greater 
than 2.5, whereas 6 of the ME calibration models met this 
condition. After comparison, 11 calibration models of DE and 
ME of sorghum fed to growing pigs with the greatest RPDcv 
values more than 2.50 for each spectral pretreatment method 
were selected and shown in Table 4. These 11 models with 
RPDcv values ranging from 2.52 to 3.35 were subject to external 
validation.

External Validation Process

External validation results are shown in Table 5. The calibration 
models of RPDcv above 2.5 had different external validation 
results. The R2v of DE and ME calibration models were from −0.11 
to 0.90 and −0.38 to 0.81, respectively, and the RPDv ranged from 
1.22 to 3.15 and 1.08 to 2.35, respectively. Compared with other 
spectral pretreatments, no pretreatment weakened predictive 
ability of DE and ME models to the greatest extent with the 
lowest RPDv (1.22 for DE and 1.08 for ME) and R2v values (−0.11 
for DE and −0.38 for ME).

The Best DE and ME Calibration Models

After comparison, the best calibration models are presented 
in Table 6. Good calibration models were obtained for both DE 
and ME, with R2c values greater than 0.90, R2cv values greater 
than 0.85, and RPDcv values greater than 2.50. The 1st D + MSC 
was the most suitable spectral preprocessing method for DE and 
ME. The most informative near-infrared spectral regions were 
9,403.9 to 6,094.4 cm−1 and 4,605.5 to 4,242.9 cm−1 for both DE and 
ME. The R2v for the best DE and ME calibration models were 0.90 
and 0.81, respectively. Figure 2 shows the changes of R2cv and 
RMSECV in different factors for DE and ME models of sorghum, 
the optimal factors showing the dimensionality of spectral data 
were 4 for both DE and ME due to the greatest R2cv and the 
lowest RMSECV value at a factor level of 4.

Comparison of the reference and predicted values of DE and 
ME in sorghum is shown in Table 7. The absolute deviations 
of the predicted values of DE and ME in sorghum from the 
reference values ranged from 0.06 to 0.23 MJ/kg and 0.02 to 0.30 
MJ/kg, respectively. In addition, no samples from DE and ME 
validation set were identified as outliers. From a plot of analyzed 
values through digestion–metabolism experiments vs. predicted 
values using NIRS in Fig. 3, it was expected that NIRS could be a 

Figure 2. The coefficient of determination of cross-external validation (R2cv) 

and root mean square error of cross-external validation (RMSECV) in different 

factors for DE (A) and ME (B) models of sorghum.

Table 7. Comparison of the reference and predicted values of DE and ME of sorghum as DM basis

DE content, MJ/kg ME content, MJ/kg

Sample Reference values1 Predicted values2 Absolute deviation Reference values Predicted values Absolute deviation

1 16.39 16.45 −0.06 16.07 16.09 −0.02
2 14.84 14.98 −0.14 14.56 14.80 −0.24
3 15.00 15.23 −0.23 14.70 15.00 −0.30
4 14.84 15.07 −0.23 14.55 14.81 −0.26
5 15.07 14.90 0.17 14.84 14.64 0.20
6 15.50 15.33 0.17 15.21 15.06 0.15
7 15.32 15.16 0.16 15.10 14.87 0.23
8 15.58 15.44 0.14 15.33 15.21 0.12
9 16.02 16.07 −0.05 15.61 15.80 −0.19

1Values are means of total 6 pigs for each treatment.
2Values are predicted by near-infrared reflectance spectroscopy.
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feasible and reliable method to predict the content of DE and ME 
in sorghum fed to growing pigs, although the ME plot was more 
scattered around the regression line than for DE.

The results of paired samples t-test of the predicted values 
calculated by the best DE and ME models compared with the 
reference values are shown in Table 8. There were no significant 
differences between the measured and NIRS predicted values 
for DE and ME (P = 0.895 for DE and P = 0.644 for ME).

Sample Numbers for NIRS Modeling

Effect of sample numbers of NIRS model on calibration 
performance of DE and ME is shown in Fig. 4. As the number 
of calibration samples increased from 24 to 33, the calibration 
performance of DE and ME models was improved, indicated by 
increased R2c, R2cv, and RPDcv values.

Discussion
The large CV of more than 3.80% in sorghum DE and ME offered 
an advantage to establish reliable and practical calibration 
models (Zijlstra et  al., 2011). The range of DE and ME in the 
calibration set covered the range of DE and ME in the validation 
set, respectively. The similar sample distributions with similar 
mean values, SD, and CV were also observed for the total 
set, calibration set, and validation set, which is essential for 
excellent NIRS models (Shenk and Westerhaus, 1991). Due to 
possible regional differences, the average DE and ME values of 
the sorghum in this study was lower when compared with the 
data published by the NRC and Canadian varieties (Yin et  al., 
2002; NRC, 2012).

Spectral data pretreatment played an important role in 
developing NIRS models (Chu et  al., 2004). Generally, noise 
information contained in the near-infrared spectra can be 
eliminated by different mathematical pretreatment methods 
or by combining methods. Thus, a number of signal processing 
techniques were applied to data on the NIRS spectra. When 
1st D was combined with MSC, functional absorption peaks 
related to the available energy in sorghum was greatly 
enhanced in specific spectral regions. Thereby, the model 
became more robust for routine analysis of the available 
energy in sorghum.

Models for both DE and ME without spectral preprocessing 
had the best calibration results, but the external validation 
results of these models were not ideal. Some studies regarded 
the greatest RPDcv and the lowest RMSECV values as parameters 
to select the best calibration model, and the external validation 
statistics showed satisfactory validation performance for DE 
and ME, with R2v (0.88 to 0.91) and RPDv (2.75 to 3.06) (Zhou 
et al., 2012; Hu et al., 2018). However, the results of this study 
were not consistent with that. It was difficult to select a good 
calibration model based on the principle described above. Our 
study emphasizes the importance of external validation in the 
process of NIRS modeling. Both the calibration and external 
validation performance were essential indicators for evaluating 
NIRS prediction equations.

Near-infrared calibration models with an optimal number 
of factors had better predictive ability than models with an 
unsuitable number of factors which may lead to the problem of 
underfitting or overfitting (Xue et al., 2018). With the increase of 
factors, the value of R2c increased while the RMSEC decreased, 

Table 8. T-test of the predicted values calculated by the best DE and ME models compared with the reference values

Items

Paired differences

Significance (2-tailed)Mean SD SEM 

95% confidence interval 
of the difference

TLower Upper

DE 0.008 0.171 0.057 −0.124 0.139 0.136 0.895
ME 0.034 0.215 0.072 −0.131 0.120 0.480 0.644

Figure 3. Scatter plot of reference values vs. predicted values of DE (A) and ME 

(B) content of sorghum fed to growing pigs.
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and this indicated that the models gradually became robust 
(Xue et al., 2018). The sorghum DE and ME models tend to be 
stable until factor numbers reached 4.  Moreover, no samples 
from DE and ME validation set identified as outliers proved 
that 4 factors were suitable for building applicable NIRS models 
using 24 sorghum.

Zijlstra et  al. (2011) showed that NIRS was a respectable 
method with an R2v value of 0.74 for predicting the content of 
DE in barley fed to growing pigs. Xiccato et al. (1999) who used 
NIRS to predict the DE content in compound rabbit feeds also 
found estimate precision was good. Li et al. (2016) reported the 
calibration model of DE was better than ME. Similarly, in the 
work presented herein, the calibration model of DE with greater 
R2v, and RPDv values and lower RMSEP values showed better 
predictive performance compared with model for ME. This may 
be caused by the steps of collecting urine and measuring energy 
in urine, which could introduce more chances for error in the 
metabolic experiment. The DE model with both RPDcv and 
RPDv values greater than 2.50 established by this study showed 
excellent performance for predicting the content of DE in 
sorghum fed to growing pigs. However, the ME model still needs 
further optimization due to a slightly lower RPDv value of 2.35.

Despite the relatively small number of sorghum samples 
for NIRS modeling used in this study, the calibration models 
still exhibited good calibration performance, especially for DE. 
A DE calibration model for pigs was also established using 33 
wheat brans (CV = 2.53%), and the calibration results were not 
satisfactory with the SEC value of 0.33 and the R2c value of 0.17 
(Garnsworthy et  al., 2000). Compared with Li et  al. (2016), the 
DE model in this study was similar to that built with 88 corn 
samples for pigs, but the ME model was poor with relatively 
low RPDv (2.35 vs 2.64). These observations indicate that feed 
variety is a potential factor affecting the calibration model and 
the variation of samples is related to modeling performance. In 
addition, when the NIRS model was built with fewer samples, 
the influence of the sample numbers on the model performance 
should not be ignored.

Near-infrared technology showed practical prospects for 
predicting the available energy in sorghum fed to growing pigs 
in this work, and the t-test results showed that there was no 
significant difference between the animal experiment and the 
near-infrared method. NIRS could also be used to determine 
the energy value of compound feeds for swine and ruminants 
(Jocelyne Aufrère et  al., 1996). In some situations, the indirect 
methods for rapid and practical determination of DE and ME in 
feed are accepted widely. Although the available energy prediction 
equations based on sorghum’s chemical composition established 
by Pan et al. (2016) showed great accuracy with R2 values of more 
than 0.90, the prediction equation is limited to the accuracy of the 
chemical composition determination. Determination of chemical 
composition is also time consuming. A  computer-controlled 
simulated digestion system was used to predict digestive energy of 
sorghum for growing pigs (Pan et al., 2018b). Differences between 
predicted DE values and determined DE values in that study 
were within 90 kcal/kg of each other, which is still greater than 
the DE maximum absolute deviation in the present study. Losada 
et al. (2010) reported that in vitro organic matter digestibility was 
an inaccurate method with R2c only of 0.756 to predict the AME 
content of oil seeds and oil seed byproducts for poultry. However, 
NIRS showed the best prediction performance compared with 
the other regression methods in that work. Furthermore, near-
infrared technology has been more favored by producers because 
of its fast and nondestructive advantages.

Conclusion
In this study, NIRS quantitative models of the available energy 
in sorghum were established. The results demonstrate that 
the content of DE and ME in sorghum could be predicted 
with relatively high accuracy based on NIRS. NIRS showed the 
superiority of speediness and practicality when compared with 
previous research methods including animal experiments, 
regression equations, and computer-controlled simulated 
digestion system. In addition, we speculate that the large 

Figure 4. Effect of sample numbers of NIRS model on calibration performance of DE (A) and ME (B). R2c = coefficient of determination of calibration, R2cv = coefficient 

of determination of cross-external validation, RMSECV = root mean square error of cross-external validation, RPDcv = residual predictive deviation of cross-external 

validation.
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sample variation was important for the development of robust 
calibration performance, especially for NIRS models established 
with a low number of samples.
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