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The upper-airway microbiota and loss of asthma
control among asthmatic children
Yanjiao Zhou1,2, Daniel Jackson3, Leonard B. Bacharier4, David Mauger5, Homer Boushey6, Mario Castro7,

Juliana Durack6, Yvonne Huang8, Robert F. Lemanske Jr3, Gregory A. Storch4, George M. Weinstock 2,

Kristine Wylie4, Ronina Covar9, Anne M. Fitzpatrick10, Wanda Phipatanakul11, Rachel G. Robison12 &

Avraham Beigelman4,13*

The airway microbiome has an important role in asthma pathophysiology. However, little is

known on the relationships between the airway microbiome of asthmatic children, loss of

asthma control, and severe exacerbations. Here we report that the microbiota’s dynamic

patterns and compositions are related to asthma exacerbations. We collected nasal blow

samples (n= 319) longitudinally during a clinical trial at 2 time-points within one year:

randomization when asthma is under control, and at time of early loss of asthma control

(yellow zone (YZ)). We report that participants whose microbiota was dominated by the

commensal Corynebacterium+ Dolosigranulum cluster at RD experience the lowest rates of

YZs (p= 0.005) and have longer time to develop at least 2 episodes of YZ (p= 0.03). The

airway microbiota have changed from randomization to YZ. A switch from the Cor-

ynebacterium+ Dolosigranulum cluster at randomization to the Moraxella- cluster at YZ poses

the highest risk of severe asthma exacerbation (p= 0.04). Corynebacterium’s relative abun-

dance at YZ is inversely associated with severe exacerbation (p= 0.002).
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Asthma exacerbations have high impact on children, their
families, the health care system, and may lead to sub-
sequent decline in lung function1,2. Early signs of loss of

asthma control, often referred to as the Yellow Zone (YZ), is a
period during which the patient is at risk of symptom progression
to severe exacerbation.

Among preschool children, the airway microbiome is asso-
ciated with respiratory illness severity, future wheezing, and
childhood asthma3–7. However, it is unknown if the airway
microbiome is related to asthma control and risk of exacerbations
among school-age children with mild asthma.

To investigate this question, we utilize a well-characterized
cohort of school-age children with mild-moderate persistent
asthma treated with daily ICS in a clinical trial8. We prospectively
investigate whether the upper-airway microbiota at the time of
respiratory health (randomization) is related to the development
of future YZ episodes, and whether the microbiome at YZ are
related to the likelihood of progression to severe asthma exacer-
bation requiring oral corticosteroids (OCS).

We report that the airway microbiota colonization patterns are
differentially associated with risk of loss of asthma control and
severe exacerbations. Specifically, airway microbiota dominated
by Corynebacterium+Dolosigranulum genera are associated with
favorable clinical outcomes compared to microbiota dominated
by more pathogenic bacteria: Staphylococcus, Streptococcus, and
Moraxella.

Results
Characterization of the airway microbiota at randomization.
To first identify any cohort characteristics that affects airway
microbiota, we performed Permutational multivariate ANOVA
(PERMANOVA) using nasal blow samples collected at time of
randomization (RD) from 214 children participating in a clin-
ical trial (mean age 8.0 +/− 1.8 years, 59% were males, and 57%
were Caucasian). The 214 children are a well representation of
the total clinical trial cohort (n= 254) as demographics and
clinical characteristics were not statistically different between the
254 children participated in the clinical trial and this subset of 214
children.

The overall microbial composition and abundances were
significantly different in age groups (p= 0.02, PERMANOVA).
Differential abundance analysis by DESeq showed that older
children (8–11-year-old) had higher randomization abundance of
Staphylococcus (p= 0.04), while younger children (5–7-year-old)
had higher abundances of Moraxella (p= 0.05) and Streptococcus
(p= 0.03) (Fig. 1a). Younger participants (5–7-year-old) were
more likely to develop YZ (OR= 3.2, 95% CI 1.7–6.8, p= 0.003)
compared to older participants. The presence of a pet in the
house was associated with an increased risk of developing YZ
(OR= 2.8, 95% CI 1.5–5.4, p= 0.006; (Fig. 1c)). 22.9% of the
participants were treated with antibiotics during the 6 months
prior to randomization, but this covariate did not affect the
composition of the microbiota at time of randomization (p=
0.52, PERMANOVA). Other than age or the presence of pets, no
other clinical variables (gender, ethnicity, BMI, total IgE level,
number of asthma-related hospitalizations in the past year,
peripheral eosinophil count, and lung function values (FEV1
percent, FEV1/FVC ratio) were found to be associated with risk
of developing YZ. Based on these findings, all subsequent analyses
that included randomization samples were adjusted for age and
the presence of pets at home.

As it is well known that viral respiratory infections contribute
to asthma exacerbations9, we investigated the effect of respiratory
viruses in our cohort. Respiratory viruses were detected in 33% of
the randomization samples: 64% of these viruses were rhinovirus.

The proportion of virus positive samples was numerically higher
in younger age group (39.3% in young vs. 28.0% in old groups),
but was not significantly different (p= 0.11, Chi-squared test).
Comparing to viral negative samples, the relative abundance of
Moraxella (p= 0.04, by DESeq) were higher while the relative
abundances of Bacillus (p= 0.03, by DESeq) and Staphylococcus
(p= 0.04, by DESeq) were significantly lower in the viral positive
samples, suggesting a possible interaction between viruses and
these bacterial genera (Fig. 1b). However, the presence of
respiratory virus at randomization (while the children did not
have respiratory symptoms) was not associated with the risk of
future YZ development (OR= 1.4, 95% CI 0.72–2.90, p= 0.33),
or the risk of future exacerbations (OR= 1, 95% CI 0.39–2.44,
p= 0.9). The finding that respiratory viruses were not predictive
at baseline for subsequent loss of control and exacerbations may
in part be attributable to the lack of differentiation of rhinovirus
types as in children Rhinovirus C has been shown to be most
strongly associated with asthma exacerbations compared to
Rhinovirus A or B10,11. Nevertheless, all subsequent analyses
that included randomization samples were adjusted for the
presence of respiratory viruses at randomization.

Baseline airway microbiota and future loss of asthma control.
To first evaluate whether the microbiota at time of well-controlled
asthma (randomization) is related to loss of asthma control at YZ,
we perform unsupervised hierarchical clustering analysis using
214 nasal samples from randomization. We identified four clus-
ters dominated by the following genera: Corynebacterium+
Dolosigranulum, Staphylococcus, Streptococcus, and Moraxella
(Fig. 2). During the follow up period (320 days), 75.7% and 43.4%
of the participants experienced at least one and two episodes of
YZ, respectively. The median annualized rate of YZ was sig-
nificantly lower in participants who had the Corynebacterium+
Dolosigranulum dominated cluster at randomization compared to
the aggregate of the 3 other clusters combined together, or any
other cluster (Fig. 3a, b; p= 0.005; Wilcoxon rank-sum test). In
addition, Cox Proportional-Hazards analysis showed that parti-
cipants in the Corynebacterium+Dolosigranulum cluster had
significantly longer time to develop at least 2 episodes of YZ
compared to participants in the combined 3 other clusters
(Fig. 3c, p= 0.03, ward test) and compared to any other cluster
(Fig. 3d, p= 0.05, ward test). Time to the first episode of YZ, was
not statistically different between the groups.

Changes in airway microbiota from randomization to YZ. We
next determined the dynamics of nasal bacterial microbiota from
randomization to YZ utilizing samples from the 102 participants
who contributed samples both at randomizing and at YZ (102
paired samples (total 204 samples)). The bacterial compositions
and their relative abundance in individual patients demonstrated
profound alteration from randomization to YZ (Figs. 4b, 5).
Strikingly, more than half of the patients switched to a different
dominant cluster between these 2 time points, most commonly to
the Streptococcus cluster (Fig. 5). Resultantly, Streptococcus cluster
became the most prevalent cluster at YZ (Fig. 4a). The changes of
microbiota are also evident in bacterial alpha diversity and total
bacterial load. At YZ, total bacterial load (Fig. 4c) and bacterial
richness (Fig. 4d) were significantly higher (p < 0.01 for both,
Wilcoxon rank-sum test) than those at randomization.

Airway microbiota at YZ and asthma exacerbations. To test
whether the microbiome at the time of YZ is associated with
severe exacerbation, we compared the microbiota difference in
participants who progressed to severe exacerbation requiring
OCS therapy (30/105= 28.6%) and those who did not (75/105=
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71.4%) (Fig. 6). We found a numerically lower, but not statisti-
cally significant, proportion of patients who required OCS from
the Corynebacterium+Dolosigranulum cluster at the time of YZ
compared to the other three clusters (Fig. 7a, p= 0.35, Chiseq-
test). Furthermore, analysis of specific bacterial genera revealed
that Corynebacterium was more abundant at YZ in samples
obtained from episodes that did not progress to severe exacer-
bation (Fig. 7b, P= 0.002, DeSeq). In addition, higher relative
abundance of Corynebacterium was associated with a modest
reduction in the risk of progressing to exacerbation (OR= 0.92,
95%CI 0.89–0.94, P= 0.04). The reason that this effect was
not very strong, may be related to the relatively low rate of par-
ticipants who progressed to severe exacerbation, leading to
reduced power for the YZ analyses. We did not find any asso-
ciation between that microbiome at randomization and severe
exacerbations, likely due to the profound changes in the micro-
biome between RD and YZ. Finally, bacterial richness (p= 0.64,
Wilcoxon rank-sum test) or load (p= 0.16, Wilcoxon rank-
sum test) at yellow zone were not associated with asthma
exacerbations.

Dynamic change of the microbiota and asthma exacerbations.
Given the upper airway microbiota of most participants changed
from randomization to YZ(Fig. 5), we next investigated whether
the dynamic change of the microbiota, namely, switching to a
different cluster or maintaining of the same cluster was associated
with exacerbation risk. Switching from Corynebacterium+
Dolosigranulum cluster at randomization to the Moraxella cluster
at YZ was associated with the highest risk of exacerbation com-
pared to the other combinations of cluster changes (P= 0.04,
Chiseq-test).

Respiratory viruses at YZ and asthma exacerbations. We next
evaluated the potential contribution of respiratory viruses at time
of YZ to asthma exacerbations. Respiratory viruses were detected
in 78 (74.3%) of the YZ samples, of these 48 samples were
enterovirus/human rhinovirus (EV/RV) positive. Presence of
virus was not associated with severe exacerbations, likely due to
the very high viral detection rate in these samples and a very few
samples without viruses at the time of YZ, all of which resulting
in a reduced power for this analysis. Samples that belonged to
Moraxella (n= 4) and Haemophilus clusters (n= 6) were all virus
positive (Fig. 8). Interestingly, most of the samples assigned into
Moraxella and Haemophilus dominated microbial clusters at YZ
switched from a non-Moraxella and non-Haemophilus clusters at
RD (Fig. 5), reflecting the emergence of Moraxella and Haemo-
philus communities at the time of YZ.

Discussion
In this prospective, longitudinal study we characterized the
upper-airway bacterial microbiota of school-age children receiv-
ing daily low-dose ICS at time of well-controlled asthma (ran-
domization) and during loss of asthma control (YZ). We found
that the airway microbiota colonization patterns were differen-
tially associated with risk of loss of asthma control and severe
exacerbation. Specifically, the airway microbiota of children
classified as dominated by Corynebacterium+Dolosigranulum
genera during randomization was associated with a lower risk of
developing loss of asthma control compared to those with
microbiota being dominated by more pathogenic bacteria, spe-
cifically Staphylococcus, Streptococcus, and Moraxella. Further-
more, at the time of YZ, Corynebacterium’s relative abundance
was inversely associated with the likelihood of progressing from
YZ to severe exacerbation.
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Previous studies found that colonization of the upper airways
with opportunistic bacterial pathogens including Streptococcus,
Moraxella, and Haemophilus is more common among asthmatics
than healthy individuals12–14. Our findings, that still needs to be
validated in independent cohorts, suggest the potential patho-
genic role of these bacteria in asthma. These finding is in one line
with a recent study15, in children with moderate-severe asthma,
which revealed that a Moraxella dominated upper airway
microbiome was associated with increased exacerbation risk. Our
findings extend the potential pathogenic role of Moraxella to the
large population of children with mild asthma, which are the vast
majority of childhood asthma patients. Further, our study
revealed that Staphylococcus was not protective, but rather, was
associated with highest YZ episodes, which is different from
previous studies3,6,15. This difference may be related to different
age groups, different disease severity, or different Staphylococcus
species3,16. While uncharacterized previously, the vast majority of
Staphylococcus genera in our study were comprised of Staphylo-
coccus aureus, which was previously reported to be associated
with wheeze and asthma among children and young adults17.

Our findings highlight the association between commensal
bacteria such as Corynebacterium and Dolosigranulum and
asthma control. Corynebacterium is the most abundant genus
identified in the nose by the Human Microbiome Project that
characterized the normal microbial composition in healthy
adults18, and was found less frequently as a dominant member of
the nasal microbiome in asthmatic adults13 suggesting that this
bacteria may have a protective effect. Since bacteria colonizing
the upper airways, as those colonizing other niches within the
human body, exist in a competitive state and it is plausible that
competitive colonization may be one of the factors by which
commensal bacterial provide protection against pathogen

colonization and overgrowth19. Indeed, Corynebacterium and
Dolosigranulum can inhibit the growth of Streptococcus by
releasing antibacterial products that may prevent nasal coloni-
zation with Streptococcus20,21. Collectively these observations
indicate that from an ecological perspective, a microbiome at
equilibrium may resist colonization with pathogenic bacteria and
is important for the maintenance of a healthy airway. This
hypothesis is supported by the finding of our study as the com-
position of airway microbiota at time of respiratory health was
associated with loss of asthma control during the following year.
Validation this finding by an independent cohort may lead to
identification of potential microbiome markers at respiratory
health to predict loss of asthma control in future.

The finding of the current study in school-aged children
expand the findings of previous work by Teo et al.3,6 who showed
that among young preschool children, detection of Streptococcus,
Moraxella, and Haemophilus, as a dominant members of the
upper airway microbiota, was more common during viral upper-
respiratory infections compared to times of respiratory health,
and predicted progression to lower respiratory symptoms. In
addition, microbiota characterized by dominant Corynebacter-
ium, Staphylococcus, and Alloiococcus (Dolosigranulum in some
databases) were more common during well-visits supporting the
potentially protective role of Corynebacterium, and Dolosi-
granulum identified in our study.

The airway microbiota composition dramatically changed
between randomization and YZ visits. The directionality of switch
was found to be important, since switching from the microbiota
dominated by Corynebacterium/Dolosigranulum to Moraxella
cluster was associated with higher risk of asthma exacerbation.
This observation indicates that commensal nasal microbiota in
asthmatic children does not appear to prevent overgrowth by all
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pathogenic bacteria, in particular Moraxella, suggesting distinct
intricate microbial interactions between specific members of the
airway microbiota, which remain to be elucidated. In addition,
respiratory viruses, mainly rhinovirus, were detected in most YZ
samples. Although limited by small sample size, an interesting
observation is that samples belonging to the Moraxella or Hae-
mophilus dominated microbiota during YZ were all positive for
respiratory viruses. This finding is consistent with the high rate of
virus-positive samples in children with these microbiota sig-
natures at randomization, and with previous reports linking
rhinovirus infection with the detection of these bacterial genera in
the airway22.

This study highlights some bacteria that were associated with
favorable asthma outcomes, while other bacteria were associated
with asthma morbidity. However, the design of this current
study does not allow to determine causality. It is still unknown if
the microbiome changes drive asthma activity, are consequence
or the trigger of viral infection, or are result of bidirectional
cross-talk between the microbiome and host mucosal and sys-
temic immune response during YZ development and acute
exacerbations. It may also be that the microbiota changes
reflect lack of asthma control and airway inflammation. More
frequent sampling, together with simultaneous host immune
studies, may allow insight into these interactions. In addition,
studies in mice infected with these bacteria may allow to deter-
mine causality.

The advantages of this study are mainly related to its conduct
as a study coupled to a well-designed clinical trial8. Patients were
carefully characterized resulting in a homogenous population of
school-aged children all requiring step 2 asthma care, treated with
an identical dose of ICS. Therefore, we minimized microbiota
differences that may be related to disease severity and/or effects of
different ICS dosing, which are factors known to affect the airway
microbiome23. Prospective data and sample collection as part of a
clinical trial together with tight follow-up visits and calls have
minimized recall and measurement biases. Finally, YZ samples
were collected before applying study intervention (high-dose ICS)
eliminating the effect of high-dose ICS on the microbiome.

This study has some limitations. The parent STICS clinical
trial8 had a relatively low rate of YZ episodes, and as expected
only 30% of YZ episodes progressed to severe exacerbation,
leading to reduced power for the YZ analyses. In addition, a
follow-up nasal sample after the YZ was not obtained, and this
could have provided important information related to the
microbiota composition at the time of resolution of the episode.
One additional factor that may be related to the microbiome
composition is allergen exposure in atopic children. As we do not
have allergen exposure data, we cannot comment on this rela-
tionship in our study.

In this study, we investigated associations between bacterial
clusters, defined by the relative abundance of the bacteria, and
clinical outcomes. Determining the absolute density of different
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bacteria in a metagenomic sample is an emerging concept in
microbiome research, which has showed interesting results in a
stool microbiome study24. We view the relative and absolute
abundances of the microbiome as complementary to each other.
As a low biomass material, bacterial density from nasal wash
warrants thorough investigation in future regarding methodology
including efficiency and robustness and data normalization for
microbiome analysis. In addition, functional level characteriza-
tion of the bacterial microbiome by transcriptome analysis or
IgA-Seq are likely to improve our understanding of the role of
airway microbiome in asthma and its exacerbation.

This study revealed that changes in the upper respiratory tract
are associated with events in the lower respiratory tract. Although
there are similarities between the lung and upper-airway microbiota
compositions, studies have shown that these different compart-
ments have different microbiome composition13,25 Therefore, we
must acknowledge that changes in the nasal microbiota may
represent a secondary phenomenon and are not necessarily related
to asthma control. However, some key bacterial taxa co-exist in the
nasal and bronchial airways, especially in asthmatics13. In addition,
multiple studies have highlighted the relevance of the upper airway
microbiota as a surrogate for the lung microbiota, and have shown
that the upper-airway is a relevant compartment that provides

valuable data on asthma inception3,26, asthma diagnosis14,27, and
asthma exacerbations22,27.

In summary, we demonstrate a relationship between upper-
airway microbiota composition and the risk of both loss of asthma
control and severe exacerbations, among school-aged children with
asthma. A randomization upper airway microbiota dominated by
Corynebacterium+Dolosigranulum was associated with a sig-
nificantly lower rate of YZ development. In addition, upper-airway
microbiota composition was not static, and a shift to a Moraxella-
dominant microbiome at YZ and/or a lower Corynebacterium
abundance at YZ were both associated with increased risk of severe
exacerbations during the following year. These findings still need to
be validated in independent cohorts. Then, there is a need to per-
form animal studies to further investigate the role of the bacteria
identified in this study in asthma exacerbations. If their role are
confirmed, investigation of more advanced strategies that modulate
microbiota composition would be indicated, in an effort to reduce
the risk of asthma exacerbations.

Methods
Study design and participants. This microbiome study was a microbiome study
coupled to the Step Up Yellow Zone Inhaled Corticosteroids to Prevent Exacerbations
(STICS; NCT02066129) clinical trial, conducted by the NHLBI’s AsthmaNet8. The
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STICS clinical trial was approved by the AsthmaNet steering committee, protocol
review committee, and data and safety monitoring board (DSMB). The IRB’s of all
AsthmaNet sites reviewed and approved the study protocol. We have obtained
informed consent from all participants.

The STICS clinical trial investigated whether, in school age children with mild-
moderate persistent asthma who are treated with daily low-dose ICS, quintupling the
dose of ICS in the YZ would reduce the rate of severe asthma exacerbations treated
with oral corticosteroids.
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A detailed description of the STICS clinical trial design, YZ criteria, study
participants characteristics, and its results are detailed elsewhere8. Briefly, 254
children, 5–11 years of age, were treated for 48 weeks with maintenance open-label
low-dose inhaled glucocorticoids (fluticasone propionate, 88 μg twice daily) and
were randomly assigned to receive either the same ICS dose or use a quintupled
dose ICS for 7 days at the early signs of loss of asthma control (YZ). The primary
outcome was the rate of severe asthma exacerbations treated with systemic
glucocorticoids, which were prescribed as a rescue therapy based on pre-specified
protocol criteria. The rate of severe asthma exacerbations was not different between
the groups8. This microbiome study, which was coupled to the STICS clinical trial,
was conducted in compliance with all ethical regulations. The IRBs of all
AsthmaNet clinical sites approved these microbiome investigations as part of the
parent STICS trial, and informed consent was obtained from all study participants.

Nasal blow samples for microbiome studies were obtained8,28, at 2 time points:
(1) At the randomization visit (RD) once the child had no respiratory symptoms.
(2) At the time of the first episode of early signs of loss of asthma control (YZ)
prior to starting the YZ intervention (regular or high-dose ICS). The second sample
was obtained before starting the YZ intervention in order to avoid potential effect
of high-dose ICS on the nasal microbiota. The YZ sample was obtained by the
parents at home based on instructions received at the randomization visit. The
nasal samples were analyzed for common respiratory viruses by multiplex
polymerase chain reaction (respiratory MultiCode assay; EraGen Biosciences,
Madison, WI) as previously reported29

16S rRNA gene sequencing and normalization. Total genomic DNA was
extracted from 200 μl nasal blow samples using the bioMerieux NucliSENS easy-
MAG automated extractor kit following standard protocol. We followed standard
Illumina sequencing protocol30. In brief, to characterize the bacterial microbiota,
the V1 to V3 regions of 16S rRNA gene were amplified (primers 27F and 534R
(27F:5′-AGAGTTTGATCCTGGCTCAG-3′ and 534R: 5′-ATTACCGCGGCTGC
TGG-3′), barcoded, and sequenced on the Illumina Miseq (2 × 300 bp) platform.
Paired-end reads were assembled using Flash V1.2.7. Assembled reads were
assigned to taxonomies using Ribosomal Database Project (RDP) software with
classification confidence at >=0.8. The processed reads were subsampled to 10,000
reads/sample for 16S rRNA gene sequences. We included extraction control, PCR
negative control for DNA extraction and sequencing. Less than five hundred reads
were found in these negative controls, suggesting background noise is less likely to
have significant impact on the data analysis. To minimize the effect of background
noise on data analysis, we additionally removed taxa that are potentially con-
tamination from downstream analysis. These taxa include unclassified_-
Bradyrhizobiaceae, Thermohydrogenium, Aquabacterium,
unclassified_burkholderiales, Brevundimonas, Rhizobium, and Soonwooa.

We used taxa with >=0.1% relative abundance (after removing the
contamination taxa discussed above) to construct the heatmaps at randomization
and yellow zone. These taxa accounts for 99% of total bacterial abundance on
average (the minimal coverage is 82%).

To classify Staphylococcus to species level, we blasted all the reads that mapped
to Staphylococcus genus to 16S rRNA database in NCBI. V13 reads with ~500 bp in
length of Staphyloccus aligned to S. aureus with 100% coverage, 100% identity,
which is distinct from S. epidermidis (97% identity).
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Quantification of bacterial load. Quantification of the bacterial 16S rRNA gene
copy number in nasal blow samples was performed using a modification of the
BactQuant assay31. Briefly, total nucleic acids were extracted from the samples
using the automated BioMerieux NucliSens easyMAG extractor. The BactQuant
quantitative PCR was performed on the extracted DNA as described by Liu et al.31

with the following modifications: total reaction volume was 20 μl, including 3 µl of
extract, and the assay was performed on an Applied Biosystems 7500 Real Time
PCR System instrument. Quantification standards consisted of dilutions of a
plasmid containing the E. coli 16S rRNA gene with results being expressed as
copies of 16S rRNA gene per microliter.

Statistical analysis of the microbiome data. The processed reads were sub-
sampled to 10,000 reads/sample for 16S rRNA gene sequences. The abundance of a
taxon in a sample was represented as the relative abundance, which was calculated
by dividing the number of reads assigned to a taxon by the total read counts,
divided by 10,000, of the sample.

We performed both exploratory multivariable analysis and formal statistical
testing. Exploratory multivariable analysis was done through hierarchical clustering
to identify microbiome distribution patterns. Taxa with the relative abundances
>0.1% was included in hierarchical clustering. Complete linkage was used for
assigning samples to clusters16. R package ComplexHeatmap was used for cluster
visualization and annotation of clinical variables. The names of clusters are defined
based on the dominant bacteria genus in for that cluster. Permutational
multivariate ANOVA (PERMANOVA) was used for formal statistical testing to
investigate whether the bacterial community structure varied between different
clinical parameters. DESeq2 was used to identify differential taxa between samples
at randomization (RD) and YZ. Clinical variables including age, viral infection,
gender and having a pet were first tested individually using PERMANOVA or
DESeq2. The confounding variables were included along with variable of interest
(RD and YZ) in the final model of PERMANOVA or DESeq2. The results from
DESeq2 were further speculated by plotting the raw and relative abundance data.
Results that are likely driven by outliers were removed from final reporting.
Bacterial diversity including Richness and Shannon Diversity was computed using
R package Vegan and statistical significance between groups was determined using
Wilcoxon-rank test. Comparison of patient numbers between clusters was
performed by chi-square or Fisher’s exact test. Exacerbation data was treated as
categorical data (0 and 1), and was applied to a generalized logistic regression
model with binomial distribution to determine whether a given taxon is associated
with exacerbation outcome. Odd-Ratios (ORs) were evaluated using generalized
logistic regression. Multivariate models of Cox Proportional-Hazards analysis was
performed to assess the association between the microbiome clusters at
randomization and the development of >=2 episodes of YZ after adjustment for
age and the presence of pets. Kaplan-Meier survival analysis was also performed to
view the results from Cox Proportional-Hazards analysis. A P value of less than .05
was considered statistically significant in all the analysis. P values were corrected by
false discovery rate when multiple comparisons were involved. All the analyses,
described above, were performed in R (version 3.2.2).

Data availability
Raw sequencing data of 16s rRNA gene are available from the SRA database with
accession number PRJNA448764. The source data from Fig. 1–8 are provided as a Source
Data file. All other data are available from the corresponding author upon reasonable
requests.

Code availability
Computational code from the study is available from the corresponding author upon
request.
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