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Abstract

Background: In many fields of biomedical research, it is important to estimate phylogenetic distances between taxa
based on low-coverage sequencing reads. Major applications are, for example, phylogeny reconstruction, species
identification from small sequencing samples, or bacterial strain typing in medical diagnostics.

Results: We adapted our previously developed software program Filtered Spaced-Word Matches (FSWM) for
alignment-free phylogeny reconstruction to take unassembled reads as input; we call this implementation Read-SpaM.

Conclusions: Test runs on simulated reads from semi-artificial and real-world bacterial genomes show that our
approach can estimate phylogenetic distances with high accuracy, even for large evolutionary distances and for very
low sequencing coverage.
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Background
Phylogeny reconstruction is a basic task in biological
sequence analysis [1]. Traditionally, phylogenetic trees
of species are calculated from carefully selected sets of
marker genes or proteins. With the huge amounts of
sequencing data that are produced by novel sequencing
technologies, genome-based phylogeny reconstruction or
phylogenomics has become a standard approach [2, 3].
Here, the usual workflow is as follows: DNA sequencing
produces a large number of reads, these reads are then
assembled to obtain contigs or complete genomes. From
the assembled sequences, orthologous genes are identi-
fied and multiple alignments of these genes are calculated.
Finally, phylogeny-reconstruction methods such as Max-
imum Likelihood [4] are applied to these alignments to
obtain a phylogenetic tree of the species under study.
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This procedure is time-consuming and error-prone, and it
requires manual input from highly-specialized experts.

In recent years, a large number of alignment-free
approaches to phylogeny reconstruction have been devel-
oped and applied, since these methods are much faster
than traditional, alignment-based phylogenetic methods,
see [5–8] for recent review papers and [9] for a sys-
tematic evaluation of alignment-free software tools. Most
alignment-free approaches are based on k-mer statistics
[10–16], but there are also approaches based on the length
of common substrings [17–22], on word or spaced-word
matches [11, 23–27] or on so-called micro-alignments
[28–31]. As has been mentioned by various authors, an
additional advantage of many alignment-free methods is
that they can be applied not only to assembled genome
sequences, but also to unassembled reads. This way, the
time-consuming and unreliable procedure of genome-
assembly can be skipped. Assembly-free approaches can
be applied, in principle, to low-coverage sequencing data.
While proper genome assembly requires a coverage of
around 30 reads per position, assembly-free approaches
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have been shown to produce good results with far lower
sequencing coverage. This makes the new approach of
genome skimming [32–37] possible, where low-coverage
sequencing data are used to identify species or bacte-
rial strains, for example in biodiversity studies [37] or in
clinical applications [38, 39].

Alignment-free methods, including Co-phylog [28],
Mash [24], Simka [40], AAF [41] and Skmer [37], have
been successfully applied to unassembled reads. Co-
phylog estimates distances using so-called micro align-
ments. In benchmark studies, this program could produce
trees of very high quality, provided the sequencing depth
was 6X and higher. Similarly, the programs Mash and
Simka work on complete genomes as well as on unassem-
bled reads. The required sequencing depth for these pro-
grams is comparable to the depth required by Co-phylog.
The program AAF has been especially developed to work
on unassembled data, it filters single copy k-mers to bal-
ance sequencing errors. This program produces accurate
results and requires a sequencing coverage of ≥ 5X.

In this paper, we introduce an alignment-free and
assembly-free approach to estimate evolutionary dis-
tances, that is based on our previously introduced soft-
ware Filtered Spaced-Word Matches (FSWM) [30]. FSWM
is a fast performing program for phylogeny reconstruc-
tion. It is based on gap-free local micro-alignments,
so-called spaced-word matches. Originally the program
was developed to estimate distances between genome
sequences; there is also an implementation of this
approach called Prot-SpaM that can compare whole-
proteome sequences to each other [31]. In the present
study, we adapted FSWM to take unassembled sequenc-
ing reads as input. Our program can compare either a set
of unassembled reads from one taxon to an assembled
genome of another taxon or two sets of unassembled reads
to each other, each set from one taxon. Using simulated
reads, we show that this method can accurately calculate
distances between a complete genome and a set of reads
for coverages down to 2−9X. If two sets of reads are com-
pared, the method still works for coverages down to to
2−6X.

The paper is organized as follows: In the next section,
we shortly recapitulate how the program FSWM works,
and we explain the modifications that we implemented to
use unassembled reads as input data. In the subsequent
section, the benchmark setup and evaluation procedure
are described. Next, we report on our benchmark results,
and in the “Discussion” section, our results are discussed
and possible future applications are addressed.

Estimating phylogenetic distances with FSWM and
Read-SpaM
For our approach, we first need to specify a binary pattern
P of representing match positions and don’t-care positions

[42, 43]. Let � be the length of the pattern P. A spaced-
word match between two DNA sequences with respect
to P is a pair of length-� segments, one segment from
each of the sequences, such that these segments have
matching nucleotides at the match positions of P. Mis-
matches are allowed at the don’t-care positions, see Fig. 1
for an example. In other words, a spaced-word match is a
gap-free local pairwise alignment of length �, with match-
ing nucleotides at the match positions of P and possible
mismatches elsewhere.

Our previously published program FSWM [30] esti-
mates the Jukes-Cantor distance [44] between two DNA
sequences as follows: first all spaced-word matches
between the sequences are identified with respect to a
pre-defined pattern P. In order to distinguish spaced-
word matches representing true homologies from back-
ground spaced-word matches, a score is calculated for
each spaced-word match by summing up nucleotide sub-
stitution scores for the pairs of nucleotides that are aligned
at the don’t-care positions of P. Here we use a substi-
tution matrix that has been proposed by Chiaromonte
et al. [45]. Spaced-word matches with scores below some
threshold value T are discarded. The remaining (‘filtered’)
spaced-word matches are then used to estimate the dis-
tance between the sequences: The average number of
mismatches per position is calculated for all don’t-care
positions of the non-discarded spaced-word matches, and
the Jukes-Cantor correction is used to estimate the num-
ber of substitutions per position since the sequences have
evolved from their last common ancestor.

In the present study, we adapted FSWM to com-
pare unassembled reads to each other or to assembled
genomes. We call this implementation Read-SpaM (for
Read-based Spaced-Word Matches). There are two ways
in which Read-SpaM can be used: (1) a set of unassem-
bled sequencing reads from one taxon can be compared
to a partially or fully assembled genome from another
taxon; (2) a set of reads from one taxon can be compared
to a set of reads from a second taxon. In both cases, all
spaced-word matches between the reads and the genome
or between the reads from the first taxon and the reads
from the second taxon are identified and used to esti-
mate the Jukes-Cantor distance between the two taxa as
outlined above.

Fig. 1 Spaced-word match. between two DNA sequences S1 and S2

with respect to a binary pattern P = 1100101 of length � = 7,
representing match positions (‘1’) and don’t-care positions (‘0’). The two
segments have matching nucleotides at all match positions of P but
may mismatch at the don’t-care positions
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To run on short sequencing reads, we modified the
length of the underlying binary patterns used in the pro-
gram. While the original FSWM uses by default a pattern
length of 112 and 12 match positions, Read-SpaM uses
by default patterns of length 72, also with 12 match posi-
tions, i.e. with 60 don’t-care positions. A suitable pattern
was calculated with the software Rasbhari [46]. As in the
original FSWM, we are using the nucleotide substitution
matrix by Chiaromonte et al. [45] and a threshold value of
T = 0. That is, we discard all spaced-word matches for
which the sum of the scores of the aligned nucleotides at
the 60 don’t-care positions is smaller than 0. Read-SpaM
takes FASTA-formatted sequence files as input, one file
per input taxon.

If we want to estimate phylogenetic distances from
unassembled reads as described above, we have to take
sequencing errors into account. Studies have shown that
Illumina sequencing systems have error rates of 0.24 ±
0.06% per position [47]. Our software corrects for these
errors before it calculates distances between a set of reads
and a genomes, or between two different sets of reads.

Benchmark Setup
To evaluate Read-SpaM, we used simulated reads for three
types of test scenarios: (1) Pairs of one real and one semi-
artificial genome, respectively, with known phylogenetic
distances, to compare estimated distances to real dis-
tances for a large range of distance values, (2) pairs of
real genomes from different strains of E. coli and (3) sets
of 17 different bacterial taxa, where we used full genome
sequences from 16 taxa and unassembled reads from a
17th taxon. In (1) and (2), we estimated phylogenetic dis-
tances with Read-SpaM and, as a comparison, with the
program Mash [24], and we compared the obtained dis-
tances to the reference distances. Mash was run with
default parameter values. In (3), we reconstructed phy-
logenetic trees based on the Read-SpaM distances and
compared them to trusted reference trees.

In all three cases, we simulated sequencing reads with
the software tool ART [48]. ART can simulate next-
generation sequencing reads from the three main com-
mercial sequencing platforms with technology-specific
read error models, including Illumina. In our test runs,
we used the Illumina HiSeq 2500 sequencing system, as it
is still a widely used system in the field. The length of a
single simulated read in our study is 150 bp, since this is
the standard length of reads produced by Illumina HiSeq
2500.

Further settings were chosen as follows: The highest
sequencing coverage in our study is 1X, and we reduced
the coverage in our test runs down to 2−9X. This way,
we could identify the minimum sequencing coverage for
which one can still obtain reasonable distance estimates,
for a given evolutionary distance. ART randomly selects

positions of the genome sequences from which reads
are simulated. Consequently, the generated sets of reads
can vary considerably. We therefore generated 10 sets of
simulated reads for each pair of genomes and level of
sequencing depth, and we report the average and standard
deviations of the estimated distances over the 10 sets of
reads.

Semi-artificial pairs of genomes
In our first test scenario, semi-artificial genome pairs
were generated as follows: We used one real genome
from E. coli and then generated a second, semi-artificial
genome by simulating nucleotide-acid substitutions, as
well as insertions and deletions (indels). Indels were gen-
erated randomly with a probability of 1% at every posi-
tion in the genome; the length of each indel was chosen
randomly between 1 and 100, with a uniform length dis-
tribution. Various substitution probabilities were used to
generate sequence pairs. We did a first series of test runs
with evolutionary distances between 0 and 1 substitutions
per position, and a second series with distances between 0
and 0.1 substitutions per position.

Real-world genome pairs
In addition to these test runs on semi-artificial genome
sequences, we used pairs of real genomes from differ-
ent strains of E. coli, with evolutionary distances between
0.003 and 0.023 substitutions per position. We com-
pared the distances obtained with Read-SpaM and Mash
based on unassembled reads to the distances calculated
by FSWM from the corresponding assembled genomes.
Again, we first compared one assembled genome to a set
of simulated reads from the respective second genome;
then we compared sets of unassembled reads from both
genomes to each other.

We should mention that there is a certain bias in the
distances estimated by FSWM if real-world genomes are
compared. As explained in [30], FSWM considers all
spaced-word matches between two compared genomes
w.r.t. a given binary pattern, i.e. all local-gapfree align-
ments with matching nucleotides at certain pre-defined
positions, and with scores above some threshold. Dis-
tances are then estimated from the number of mismatches
in these gap-free micro-alignments. Since FSWM will find
more spaced-word matches per position in regions of high
sequence similarity than in regions of lower similarity, the
overall similarity between the sequences is over-estimated
by the program, i.e. the estimated distances are too small.

To mitigate this bias, one can split the first genome into
fragments and compare each fragment individually to the
complete second genome. The overall distance between
the genomes is then estimated as the average distance over
all fragments. In our study, we used both distances as ref-
erence, the uncorrected distance estimated by FSWM as
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well as the distance that is based on fragmenting one of
the compared genomes. For the ‘fragmented’ version of
FSWM, we split one of the two compared genomes into
2000 fragments of equal length. Neighboring fragments

have an overlap of �−1, where � is the length of the binary
pattern, to ensure that at each position of the fragmented
genome, the �-mer at this position is contained in exactly
one of the fragments.

Fig. 2 Estimated vs. reference distances, reads against genomes, for large distance values up to one substitution per sequence position.
Phylogenetic distances between semi-artificial assembled genomes and unassembled reads (see main text), estimated by Read-SpaM and Mash.
Estimated distances are plotted against the real distances for different values of sequencing coverage between 1X and 2−9X . Error bars represent
standard deviations



Lau et al. BMC Bioinformatics 2019, 20(Suppl 20):638 Page 5 of 15

Wolbachia Phylogeny
As a third set of test cases, we used genome sequences
of 13 Wolbachia strains from the lineages (“supergroups”)
A - D; plus 4 strains of closely related Alphaproteobac-
teria that we used as an outgroup. Wolbachia belong to

the Alphaproteobacteria and are intracellular endosym-
bionts of arthropods and nematodes, see [49] for clas-
sification of Wolbachia. As a reference tree, we used
a tree published by [50]. We generated four sequence
data sets, each set consisting of 12 assembled Wolbachia

Fig. 3 Estimated vs. reference distances, reads against genomes, for small distance values. up to 0.1 substitutions per sequence position. Notation as
in Fig. 2
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genome sequences, a set of unassembled reads with cov-
erage 1X from the respective 13th Wolbachia strain, and
the 4 assembled genomes sequences from the outgroup
taxa. We then applied Read-SpaM and FSWM to esti-
mate phylogenetic distances within each data set, and
calculated trees from these distance matrices with the

Neighbor-Joining [51] implementation from the PHYLIP
package [52].

Results
For the semi-artificial sequence pairs – each pair consist-
ing of one real genome and one artificial genome with

Fig. 4 Estimated vs. reference distances, reads against reads, for large distance values up to 1 substitution per sequence position. Notation as in Fig. 2
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known distance to the real genome –, we first applied
Read-SpaM and Mash to estimate distances between one
assembled genome and unassembled reads from the sec-
ond genome. As mentioned above, for each distance and
level of sequencing coverage, we generated 10 sets of
reads. In Fig. 2, the average and standard deviation of
the 10 obtained distance values is plotted against the real

distance of the two genomes for distance values between
0 and 1 substitutions per position. In addition, we did the
same experiments for simulated sequences with smaller
distances. Figure 3 shows the results for distances between
0 and 0.1 substitutions per position. Standard deviations
are represented as error bars in the figures. Next, we
used the same semi-artificial genome pairs as above, but

Fig. 5 Estimated vs. reference distances, reads against reads, for small distance values. up to 0.1 substitutions per position. Notation as in Figure 2
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we generated simulated reads for both genome sequences
from each pair and compared them to each other. The
results for the comparison of unassembled reads from one
genome against unassembled reads from a second genome
are shown in Fig. 4 and Fig. 5. In these test runs, we
used the same sequencing coverage for both compared
genomes. We obtained similar results when we compared
sets of reads with different sequencing coverage for both
compared genomes; two examples are shown in Fig. 6.

Read-SpaM and Mash are based on spaced-word or k-
mer matches. Thus, they can produce meaningful results
only if such matches can be found, given the underly-
ing binary pattern P or word length k, respectively. If the
sequencing coverage is too low and/or the evolutionary
distance between the compared sequences is too large, it
happens that no spaced-word or k-mer matches are found,
and the distance between the sequences cannot be esti-
mated. As mentioned, we generated 10 sets of reads for
each genome pair and level of sequencing coverage in our
test runs and used the average of the estimated distance
values over the 10 test runs. In Fig. 2 to Fig. 5, we report
results only for those test cases, in which the evaluated
program was able to estimate distances for all of the 10
sets of simulated reads. In Fig. 2, for example, this was
the case for all distances up to 1 substitution per posi-
tion, for a sequencing coverage from 1X down to 2−6X.
With a coverage of 2−7X, only distances up to 0.95 could
be estimated for all 10 sets of reads, while for a cover-
age of 2−8X and 2−9X, this was only possible for distances
up to 0.8 substitutions per positions. For larger distances,
no output was produced for at least one of the 10 sets
of simulated reads, so no results are reported for these
parameters in Fig. 2. Mash, by contrast, produced results
for all 10 data sets only for distances up to 0.2 when the
coverage was 1. For a coverage between 2−1X and 2−3X,

distances for all 10 data sets could only be calculated for
sequences with a distance of up to 0.15. For a coverage
of 2−6X and lower, Mash did not produce reliable esti-
mates for any of the strictly positive distance values that
we tested.

The results of Read-SpaM and Mash on two pairs
of real genomes from E. coli are shown in Figs. 7
and 8. As a comparison, the distances calculated by
FSWM on the whole genomes and on the fragmented
genomes, as explained above, are shown as horizontal
lines. As in the previous tests, we compared assem-
bled genomes to sets of simulated reads and sets of
reads from both genomes. Again, these figures show the
average distances and standard deviations over 10 sets
of simulated reads for each level of sequencing cov-
erage. As above, these average values are shown only
if distances could be estimated for all of the 10 sets
of reads.

Finally, Fig. 9 and Fig. 10 show phylogenetic trees recon-
structed from 13 Wolbachia genomes plus 4 outgroup
genomes. For each tree, unassembled reads from one Wol-
bachia genome were used with sequencing coverage 1X
(shown in red in the figures), together with the assembled
genomes from the remaining 16 taxa. The topologies of
the trees that we obtained is exactly the same as for the ref-
erence tree from[50]. We also did the same test runs with
lower sequencing coverage and obtained the same correct
topologies.

As mentioned above, we had to adjust the length of the
patterns and spaced-word matches, respectively, in Read-
SpaM, compared to the original version of FSWM. To
find a suitable pattern length, we evaluated patterns with
length between 52 and 120. If the patterns were too long,
only few spaced-word matches were found, especially for
low sequencing coverage and for sequence pairs with a

Fig. 6 Estimated vs. reference distances, reads against reads as in Fig. 4, but with different sequencing coverage in the compared sequences.
Notation as in Fig. 2
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low degree of similarity. This led to statistically unstable
distance estimates. If the patterns were too short, on the
other hand, we found that the accuracy of the estimated
distances decreased. We found that a pattern length of 72
worked best for Read-SpaM on our semi-artificial genome
sequences, so we are using this value as the default pattern
length.

Runtime
Table 1 shows the the runtimes of Read-SpaM and Mash
for comparing two strains of E. coli. For Read-SpaM, the
runtime is between 0.8 s and 3.4 s, depending on the level

of sequencing coverage. As a comparison, a run of FSWM
on the corresponding assembled genomes takes around 6 s.

Discussion
In this paper, we introduced Read-SpaM, an adap-
tion of our previously published software Filtered
Spaced Word Matches (FSWM) to estimate phylo-
genetic distances based on unassembled sequencing
reads. We evaluated this approach on real and
semi-artificial bacterial genomes with varying phylo-
genetic distances and for varying levels of sequencing
coverage.

Fig. 7 Distances between E. coli strains B4Sb227 and BW2952, estimated by Read-SpaM and Mash using simulated reads from one genome and the
assembled second genome (top) and simulated reads from both genomes (bottom) for different levels of sequencing coverage. Horizontal lines are
reference distances, estimated by FSWM from the assembled full genomes and using fragmented genomes (see main text)
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Fig. 8 Estimated distances between E. coli strains IAI1 and F2a2457T as in Fig. 7, using unassembled reads from one genome and the assembled
second genome (top) and unassembled reads from both genomes (bottom)

Figure 2 shows that, if unassembled reads from
one bacterium are compared to an assembled genome
from a second bacterium, distances predicted by Read-
SpaM are fairly accurate, even for very low levels of
sequencing coverage. For sequencing coverage down
to 2−7X, Read-SpaM produced good results for the
whole range of distances that we tested, i.e. for up
to 1 substitution per position under the Jukes-Cantor
model. For a coverage of 2−8X and 2−9X, our pro-
gram still returned good results, but only for dis-
tances up to 0.8 substitutions per position. For larger
distances it happened, at this low level of sequencing

coverage, that no spaced-word matches between the
sequences were found, so no results could be produced
any more.

As can be expected, the range of sequencing cov-
erage and evolutionary distances where Read-SpaM
works reliably, is smaller if unassembled reads from
both genomes are used as input. As shown in Fig 4,
in this situation distances can be estimated only for
a sequencing coverage down to 2−6X. For this cov-
erage, distances up to 0.4 substitutions per position
can still be estimated, but for lower levels of sequenc-
ing coverage, no meaningful results are produced,



Lau et al. BMC Bioinformatics 2019, 20(Suppl 20):638 Page 11 of 15

Fig. 9 Phylogenetic trees for a set of 13 Wolbachia strains from super groups A − D plus 4 strains from the closely related alphaproteobacterial
genera Anaplasma and Ehrlichia as outgroup. For each tree, we used the full genome sequences from 12 Wolbachia strains and the outgroup
strains. For the 13th Wolbachia strain, we used sets of unassembled sequencing reads with coverage 1X . The strain with the unassembled reads was
wNFa (top) and wNFe (bottom)

since not enough spaced-word matches can be found
any more.

Our results also show that, in general, Read-SpaM
tends to over-estimate phylogenetic distances somewhat,
especially for low levels of sequencing coverage. A pos-
sible explanation is that, for short sequencing reads
and low levels of coverage, only relatively few spaced-
word matches can be found that represent true homolo-
gies. With the cut-off value that we are using to dis-
tinguish between homologous and background spaced-
word matches, it is always possible that some random
spaced-word matches have scores above our threshold.
In situations where only a small number of homologous
spaced-word matches is found, these background matches
can lead to over-estimated distances.

On the pairs of real-world E. coli genomes, distances
estimated by Read-SpaM were again larger than the ref-
erence distances that we calculated, in this case, with

FSWM, applied to the assembled genomes. Here, there
may be another reason for this discrepancy, in addi-
tion to the above mentioned over-estimation of distances
by Read-SpaM caused by random spaced-word matches.
As explained in “Real-world genome pairs” section,
FSWM often under-estimates distances between real-
world genomes, since most spaced-word matches are
found in regions of high sequence similarity, so these
regions dominate the distance estimates. It is therefore
possible that the Read-SpaM distances are more accurate
than the ones estimated by FSMW. In Figs. 7 and Fig. 8,
we also used ‘corrected’ FSWM distances, obtained by
splitting one of the compared genomes into fragments,
see above. It should be clear that this is only a very
rough way of mitigating the bias in FSWM. The ‘refer-
ence distances’ in these figures can, thus, only be seen
as rough approximations to the real distance between
the genomes, to obtain reliable reference distances,
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Fig. 10 Phylogenetic trees for 17 bacterial strains as in Fig. 9. Here, we used unassembled reads from strains wNLeu (top) and wNPa (bottom) as
input sequences, for the respective other strains we used their full genome sequences

one would need alignments of the compared genome
sequences.

In our test runs with reads from real-world genome
sequences, we observed a similar result as with our
semi-artificial sequences. If simulated reads from both
compared genomes are used then, for very low levels
of sequencing coverage, the estimated distances become
not only more noisy, as one would expect, but they
also become larger, compared to the test runs with
higher sequencing coverage. Again, the over-estimation
of phylogenetic distances may be due to the fact that
only few homologous spaced-word matches are found if
the coverage becomes low, so spurious random spaced-
word matches with scores slightly about the thresh-
old, may influence the estimated distances. Experi-
ments with varying threshold values may help to clarify
this point.

Additional benchmark results for Read-SpaM can be
found in the recently published AFproject study [9]. Here,
a large number of alignment-free methods were evaluated
and compared to each other on various test data sets.

Table 1 Runtime of Read-SpaM and Mash (in seconds) to
estimate the distance between two strains of E. coli, by
comparing an assembled genome to unassembled reads and by
comparing unassembled reads from both strains to each other,
for varying levels of sequencing coverage

Coverage Genome vs. Read Read vs. Read

Multi-SpaM Mash Multi-SpaM Mash

1X 3.40 0.35 2.84 0.35

2−1X 2.43 0.27 1.55 0.19

2−2X 2.02 0.24 1.16 0.11

2−3X 1.86 0.22 1.00 0.06

2−4X 1.74 0.19 0.93 0.04

2−5X 1.76 0.20 0.89 0.02

2−6X 1.64 0.20 0.87 0.01

2−7X 1.64 0.22 0.86 0.01

2−8X 1.66 0.19 0.87 0.00

2−9X 1.63 0.19 0.85 0.02
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In our program evaluation, we also ran the program
Mash [24] on the same data sets. Mash is a widely used
and extremely fast program that can accurately estimate
phylogenetic distances between DNA sequences based on
their k-mer content. In our study, we could confirm that
this program can accurately estimate distances between
unassembled reads and assembled genomes. The range of
sequencing coverage and evolutionary distances, however,
where Mash can be applied with its default parameter val-
ues is considerably smaller than for Read-SpaM, as can be
seen in Fig 2 to Fig 5. Even within this range, the distance
estimates by Mash seem to be less accurate, in general,
than the estimates by Read-SpaM. If sets of reads are com-
pared to each other, Mash substantially over-estimates
phylogenetic distances, especially if the sequencing cover-
age is low.

The relative inaccuracy of Mash on sets of reads
with low coverage can be explained by way in which
this program estimates distances. Mash calculates the
Jaccard index of the k-mer sets of the compared
genomes [41, 53], i.e. it compares the number of
k-mers that are found in both genomes simultane-
ously to the total number of k-mers in the genomes.
In other words, it compares the number of k-mer
matches to the length of the compared genomes. This
is a very efficient and accurate way of estimating the
number of mismatches in the (unknown) alignment
of the two genomes, and thereby their phylogenetic
distance.

On the downside, this approach has to assume that the
compared genomes are related to each other over their
entire length. As the authors of Mash put it, the Jaccard
index is a useful measure of global sequence similarity
but is sensitive to genome size [24]. As a consequence,
Mash overestimates phylogenetic distances if the com-
pared sequences share only local homologies [27]. This is
the case if we compare a set of reads with low sequenc-
ing coverage to an assembled genome, or two sets of reads
to each other. It may be possible to obtain results with
Mash on reads with a lower coverage by adapting the
program parameters accordingly. If the sketch size would
be increased and the k-mer length reduced, Mash might
produce distance values for data sets where it did not pro-
duce meaningful output with default values. A systematic
evaluation of different parameter settings in Mash was,
however, beyond the scope of the present study. An alter-
native to Mash could be the recently developed program
Skmer [37] which also works on unassembled reads and
which has been designed to deal with low sequencing
coverage.

While, on our test data, Read-SpaM produced more
accurate phylogenetic distances than Mash and was appli-
cable to more distantly related genomes with much lower
sequencing coverage, an important advantage of Mash is

its high speed. Table 1 shows that, on most test data,
Mash is roughly one order of magnitude faster than Read-
SpaM. This is due to the fact that Mash is based on k-mer
counting, while Read-SpaM evaluates the number of mis-
matches for every space-word match with respect to the
specified pattern P. As expected, read-read comparison is
faster than genome-read comparison for both of the eval-
uated programs, for all levels of sequencing coverage. For
both methods, the runtime decreases heavily in the begin-
ning but only small differences can be found for a coverage
below around 2−4X.

Conclusion
Our program evaluation shows that read-based estima-
tion of phylogenetic distances with Read-SpaM has a high
potential. The developed approach should be particularly
useful for phylogenetic distances below 0.6 substitutions
per position, and if unassembled reads are to be com-
pared to assembled genomes. An important application
is, for example, to search for the position of a previ-
ously unknown species in an existing phylogenetic tree,
the so-called phylogenetic placement problem [54–59]. In
this situation, low-pass sequencing can be an attractive
alternative to phylogenetic barcoding based on selected
marker genes [60, 61] to identify the phylogenetic position
of an unknown species. As read-to-read comparison with
Read-SpaM still produces reliable results for sequencing
coverage down to 2−3X, it is possible to estimate phy-
logenetic distances between strains or species for which
assembled genomes are not available.

Abbreviations
bp: base pair; FSWM: Filtered Spaced Word Matches.

Acknowledgements
We thank Michael Gerth for discussions on the phylogeny of Wolbachia and
Siavash Mirarab for useful comments on the manuscript. Three anonymous
reviewers helped us to improve our manuscript.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 20, 2019: Proceedings of the 17th Annual Research in
Computational Molecular Biology (RECOMB) Comparative Genomics Satellite
Workshop: Bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-20-supplement-20.

Authors’ contributions
AKL adapted the FSWM software to unassembled reads, evaluated the software
and drafted the manuscript, SD evaluated the software and generated the
graphics, CAL designed and implemented the original FSMW software and
co-supervised the study, CB provided the Wolbachia data and analyzed the
results on them, BM conceived and supervised the study and wrote the final
manuscript. All authors have read and approved the final manuscript.

Funding
Funding for the project came from the annual research budget of the last
author’s department at Göttingen University. We acknowledge support by the
Open Access Publication Funds of the Göttingen University.

Availability of data and material
Our software is freely available at: https://github.com/burkhard-morgenstern/
Read-SpaM

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-20
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-20
https://github.com/burkhard-morgenstern/Read-SpaM
https://github.com/burkhard-morgenstern/Read-SpaM


Lau et al. BMC Bioinformatics 2019, 20(Suppl 20):638 Page 14 of 15

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Universität Göttingen, Department of Bioinformatics, Goldschmidtstr. 1,
37073 Göttingen, Germany. 2Universität Göttingen, Department of Animal
Evolution and Biodiversity, Untere Karspüle 2, 37073 Göttingen, Germany.

Published: 17 December 2019

References
1. Felsenstein J. Inferring Phylogenies. Sunderland: Sinauer Associates; 2004.
2. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the

reconstruction of the tree of life. Nature Rev Genet. 2005;6:361–75.
3. Bleidorn C. Phylogenomics. An Introduction. Berlin: Springer; 2017.
4. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models. Bioinformatics.
2006;22:2688–90.

5. Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence
comparison: benefits, applications, and tools. Genome Biol. 2017;18:186.

6. Ren J, Bai X, Lu YY, Tang K, Wang Y, Reinert G, Sun F. Alignment-free
sequence analysis and applications. Ann Rev Biomed Data Sci. 2018;1:
93–114.

7. Bernard G., Chan C. X., Chan Y.-B., Chua X.-Y., Cong Y., Hogan J. M.,
Maetschke S. R., Ragan M. A. Alignment-free inference of hierarchical and
reticulate phylogenomic relationships. Brief Bioinformatics. 2019;22:
426–35.

8. Kucherov G. Evolution of biosequence search algorithms: a brief survey.
Bioinformatics. 2019;35:3547–52.

9. Zielezinski A, Girgis HZ, Bernard G, Leimeister C-A, Tang K, Dencker T,
Lau AK, Röhling S, Choi J, Waterman MS, Comin M, Kim S-H, Vinga S,
Almeida JS, Chan CX, James B, Sun F, Morgenstern B, Karlowski WM.
Benchmarking of alignment-free sequence comparison methods.
Genome Biol. 2019;20:144.

10. Höhl M, Rigoutsos I, Ragan MA. Pattern-based phylogenetic distance
estimation and tree reconstruction. Evol Bioinformatics Online. 2006;2:
359–75.

11. Reinert G, Chew D, Sun F, Waterman MS. Alignment-free sequence
comparison (I): Statistics and power. J Comput Biol. 2009;16:1615–34.

12. Sims GE, Jun S-R, Wu GA, Kim S-H. Alignment-free genome comparison
with feature frequency profiles (FFP) and optimal resolutions. Proc Nat
Acad Sci. 2009;106:2677–82.

13. Chor B, Horn D, Levy Y, Goldman N, Massingham T. Genomic DNA
k-mer spectra: models and modalities. Genome Biol. 2009;10:108.

14. Wan L, Reinert G, Sun F, Waterman MS. Alignment-free sequence
comparison (II): theoretical power of comparison statistics. J Comput Biol.
2010;17:1467–90.

15. Vinga S., Carvalho A. M., Francisco A. P., Russo L. M. S., Almeida J. S.
Pattern matching through Chaos Game Representation: bridging
numerical and discrete data structures for biological sequence analysis.
Algoritm Mol Biol. 2012;7:10.

16. Ferraro-Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. Informational
and linguistic analysis of large genomic sequence collections via efficient
hadoop cluster algorithms. Bioinformatics. 2018;34:1826–33.

17. Ulitsky I, Burstein D, Tuller T, Chor B. The average common substring
approach to phylogenomic reconstruction. J Comput Biol. 2006;13:
336–50.

18. Comin M, Verzotto D. Alignment-free phylogeny of whole genomes
using underlying subwords. Algoritm Mol Biol. 2012;7:34.

19. Leimeister C-., Morgenstern B. kmacs: the k-mismatch average common
substring approach to alignment-free sequence comparison.
Bioinformatics. 2014;30:2000–8.

20. Pizzi C. MissMax: alignment-free sequence comparison with mismatches
through filtering and heuristics. Algoritm Mol Biol. 2016;11:6.

21. Morgenstern B, Schöbel S, Leimeister C-A. Phylogeny reconstruction
based on the length distribution of k-mismatch common substrings.
Algoritm Mol Biol. 2017;12:27.

22. Thankachan SV, Chockalingam SP, Liu Y, Aluru AKS. A greedy
alignment-free distance estimator for phylogenetic inference. BMC
Bioinformatics. 2017;18:238.

23. Morgenstern B, Zhu B, Horwege S, Leimeister C-A. Estimating
evolutionary distances between genomic sequences from spaced-word
matches. Algoritm Mol Biol. 2015;10:5.

24. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. Mash: fast genome and metagenome distance estimation
using minhash. Genome Biol. 2016;17:132.

25. Murray KD, Webers C, Ong CS, Borevitz J, Warthmann N. kWIP: The
k-mer weighted inner product, a de novo estimator of genetic similarity.
PLOS Comput Biol. 2017;13:1005727.

26. Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d∗
2

oligonucleotide frequency dissimilarity measure improves prediction of
hosts from metagenomically-derived viral sequences. Nucleic Acids Res.
2017;45:39–53.

27. Röhling S, Dencker T, Morgenstern B. The number of k-mer matches
between two DNA sequences as a function of k. bioRxiv. 2019. https://
doi.org/doi:10.1101/527515v2.

28. Yi H, Jin L. Co-phylog: an assembly-free phylogenomic approach for
closely related organisms. Nucleic Acids Res. 2013;41:75.

29. Haubold B, Klötzl F, Pfaffelhuber P. andi: Fast and accurate estimation of
evolutionary distances between closely related genomes. Bioinformatics.
2015;31:1169–75.

30. Leimeister C-A, Sohrabi-Jahromi S, Morgenstern B. Fast and accurate
phylogeny reconstruction using filtered spaced-word matches.
Bioinformatics. 2017;33:971–79.

31. Leimeister C-A, Schellhorn J, Dörrer S, Gerth M, Bleidorn C,
Morgenstern B. Prot-SpaM: Fast alignment-free phylogeny reconstruction
based on whole-proteome sequences. GigaScience. 2019;8:giy148.

32. Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell
A, Liston A. Hyb-seq: Combining target enrichment and genome
skimming for plant phylogenomics. Appl Plant Sci. 2014;2:1400042.

33. Dodsworth S. Genome skimming for next-generation biodiversity
analysis. Trends Plant Sci. 2015;20:525–7.

34. Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C. The utility of
genome skimming for phylogenomic analyses as demonstrated for
glycerid relationships (Annelida, Glyceridae). Genome Biol Evol. 2015;7:
3443–62.

35. Denver DR, Brown AMV, Howe DK, Peetz AB, Zasada IA. Genome
Skimming: A rapid approach to gaining diverse biological insights into
multicellular pathogens. PLoS Pathog. 2016;12(8):1005713.

36. Linard B, Arribas P, Andújar C, Crampton-Platt A, Vogler AP. Lessons
from genome skimming of arthropod-preserving ethanol. Mol Ecol
Resour. 2016;16:1365–77.

37. Sarmashghi S, Bohmann K, P. Gilbert MT, Bafna V, Mirarab S. Skmer:
assembly-free and alignment-free sample identification using genome
skims. Genome Biol. 2019;20:34.

38. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M,
García-Cobos S, Kooistra-Smid AMD, Raangs EC, Rosema S, Veloo ACM,
Zhou K, Friedrich AW, Rossen JWA. Application of next generation
sequencing in clinical microbiology and infection prevention. J
Biotechnol. 2017;243:16–24.
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