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The literature about Prediction Interval (PI) and Tolerance Interval (TI) in lin-
ear mixed models is usually developed for specific designs, which is a main
limitation to their use. This paper proposes to reformulate the two-sided PI to
be generalizable under a wide variety of designs (one random factor, nested
and crossed designs for multiple random factors, and balanced or unbalanced
designs). This new methodology is based on the Hessian matrix, namely, the
inverse of (observed) Fisher Information matrix, and is built with a cell mean
model. The degrees of freedom for the total variance are calculated with the gen-
eralized Satterthwaite method and compared to the Kenward-Roger's degrees
of freedom for fixed effects. Construction of two-sided TIs are also detailed
with one random factor, and two nested and two crossed random variables. An
extensive simulation study is carried out to compare the widths and coverage
probabilities of Confidence Intervals (CI), PIs, and TIs to their nominal levels. It
shows excellent coverage whatever the design and the sample size are. Finally,
these CIs, PIs, and TIs are applied to two real data sets: one from orthopedic
surgery study (intralesional resection risk) and the other from assay validation
study during vaccine development.
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1 INTRODUCTION

Throughout medical and pharmaceutical research, linear mixed models are frequently used. When investigating the effect
of new drugs, statistical reports and medical papers usually report the estimated treatment effects with their correspond-
ing Confidence Intervals (CIs). CIs are typically used to assess the uncertainty on an unknown population parameter, eg,
the estimated average response for a given population. During clinical studies, the average difference between population
means in different study arms is of key interest, while random factors may need to be accounted for when observations
are not independent. For release of a pharmaceutical product, on the other hand, suitable analytical release methods for
impurities and the active ingredient need to be developed and qualified. The manufacturer needs to be confident that the
measured release value is within a given percentage of the true (antigen or impurity) concentration. During an analyti-
cal method qualification, the bias (the systematic error, related to the trueness) and the random variability (related to the
precision) are assessed. The accuracy of an analytical method describes the combined effects of trueness and precision
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and contains the effect of bias and variability on individual release values. During analytical method qualification, it is
not only important to investigate the systematic bias of the analytical method but also the ranges within which individ-
ual release values will deviate from their true amount. In an assay qualification study during vaccine development, the
trueness is evaluated using the CIs for the mean method bias at each concentration of the sample. On the other hand, Pre-
diction Intervals (PIs) are very useful to assess the range of values within which a future observation may lie, eg, where a
measurement of concentration is expected to lie in a new batch. Note that a PI can also be named as Tolerance Interval
(TI) type I or 𝛽-expectation TI. Furthermore, a confidence level can be added to a PI, to obtain a TI type II (or beta-gamma
content). TIs are therefore a good extension to PIs especially for small sample sizes, as the uncertainty of estimating the
quantiles with a limited number of observations is taken into account. These intervals are applied in many contexts, espe-
cially in pharmaceutical industries,1,2 and more generally in industrial statistics (see the book from Kenett et al1). TIs can
also be used for process control in both the univariate and multivariate cases, as already proposed by Fuchs and Kenett3

in the eighties. In method comparison studies (also called bridging, eg, for analytical method transfer between laboratory
or reagent bridging of critical reagents), the prediction (or tolerance) intervals are used to assess the range of the differ-
ences between two clinical or analytical measurement methods.4,5 It has been recently shown that PIs and TIs are better
than agreement intervals to compare two clinical measurement methods.4 In transfer of an analytical procedure, individ-
ual future values in a receiving laboratory should be “similar” to those of the reference laboratory. In assay or analytical
method qualification, the accuracy is related to the PI when observed concentrations are compared to their theoretical
known values. The PI or TI for future measures should, ideally, lie completely inside an equivalence margin, eg, the future
measurements will not differ more than 20% from their nominal level.

The concepts of CI, PI, and TI will be here revisited under the framework of linear mixed models, including fixed
effects of any type. The advantages, the coverage probabilities, and convergence of these intervals will be discussed. The
literature usually focuses on one-way random models (see overview by Krishnamoorthy and Mathew6), random effects
models,6-8 or Monte Carlo simulation9 to calculate the TIs. These formulas are no longer appropriate in case of unbalanced
or more complex designs, and this is a main limitation to their use. Furthermore, most of the papers deal with one-sided
intervals (see the introductory overview by Sharma and Mathew10), while two-sided intervals will be the main focus of this
paper. On the other hand, Sharma and Mathew10 proposed a mathematical approach based on small-sample asymptotic
properties to calculate one-sided or two-sided TIs for balanced or unbalanced designs. This methodology will be here
compared to the modified large sample (MLS) approach applied on the expected mean squares (EMS) for balanced or
unbalanced designs.

We propose a novel analytical two-sided PI formula that is generalizable under a wide variety of designs (one random
factor, multiple random factors with nested or crossed structure, and balanced or unbalanced designs). The generalized
Satterthwaite's method, based on the Hessian matrix, calculates the degrees of freedom for the variance of the prediction.
The sum of the variances for fixed effects and variance components is directly used as the variance for the prediction. This
approach is compared to the classical Satterthwaite approximation on the mean squares for the degrees of freedom and
the use of the effective sample size to predict future observations. Additionally, an algebraic proof for the equivalence of
these two methods in case of one-way random effect model is given in the Appendix. An intense simulation study with a
wide variety of designs will be made to compare the different intervals and to assess their coverage probabilities. Two real
data sets will be used to illustrate and compare the different statistical intervals: one from orthopedic surgery to evaluate
the risk of intralesional resection bone tumor (a mixed model with fixed and random variables) and the other from an
assay validation study (a one-way random effect model).

The proposed PI and TI can be useful for a large number of applications in medical research under the linear mixed
model framework. The use of PIs for inferring on a future observation deserves more attention from researchers since it
quantifies the total uncertainty of measurements taking into account the systematic bias (by using common CI) as well as
the precision. The former has been widely accepted and used, while the latter should be equally addressed by researcher
for its use when making interpretation of research results. Moreover, the rarely used TI by in-cooperating the level of
confidence would bring additional information to medical research area when a higher level of assurance is needed.

2 CONFIDENCE, PREDICTION, AND TOLERANCE FOR A
UNIVARIATE MODEL

In this section, we briefly review the classical CI for a mean, the PI for a single future observation and the TI for a propor-
tion of future observations. This will be useful to the understanding on mixed models, to be discussed later. Given that the
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random variable X is normally distributed, it follows X ∼ N(𝜇, 𝜎2), where 𝜇 is the mean and 𝜎2 the variance, both assumed
unknown and estimated, respectively, by X̄ and S2 (the unbiased estimator of the variance). The classical 100(1 − 𝛼)% CI
for the mean is then given by

X̄± t1−𝛼∕2,n−1S∕
√

n, (1)

where t1−𝛼/2,n−1 is the 100(1 − 𝛼∕2)% quantile of the t-distribution with n − 1 degrees of freedom.
To predict a future value, Xn+1, the uncertainty is composed of two parts: the variability of the estimated mean and the

variability of the random variable itself, ie, X̄ ∼ N(𝜇, 𝜎2∕n) and Xn+1 ∼ N(𝜇, 𝜎2). It follows that Xn+1−X̄ ∼ N(0, 𝜎2(1+1∕n)),
where the variance 𝜎2 has been factorized. Then, the classical 100(1 − 𝜓)% PI for a future observation is given by

X̄± t1−𝜓∕2,n−1S
√

1 + 1∕n. (2)

The PI for a single future observation, Xn+1, is also called 𝛽-expectation TI, because a PI will contain, on average,
100(1 − 𝜓)% (eg, 95%) of the future data.

The TI type II, also named beta-gamma content, is an interval in which at least 100(1 − 𝜓)% of the entire population
(future data) will lie with a 100(1 − 𝛼)% confidence level. The exact formula is complex and requires to solve an integral,
but a good approximate formula can be obtained by replacing the t quantile by a z quantile (the standardized normal
distribution) and the standard deviation by the upper bound of its 100(1−𝛼)% CI.11-13 This leads to the following formula:

X̄±z1−𝜓∕2S
√

1 + 1∕n
√

n − 1
𝜒2
𝛼,n−1

, (3)

where z1−𝜓/2 is the 100(1 − 𝜓∕2)% quantile of the standardized normal distribution and 𝜒2
𝛼,n−1 is the 100(𝛼)% quantile

of the 𝜒2 distribution. A detailed comparison between PI and TI is given in the literature with theoretical aspects and
simulation results.4 The left panel of Figure 1 summarizes the relationships between these different intervals and their
convergence. One sample is simulated for sample size n = 5 to 100, and the different intervals are calculated by formulas
(1), (2), and (3). The lower (upper) bounds are connected for each interval and smoothed curves are added for better
visualization. Confidence intervals narrow with increasing sample sizes and collapse to the point estimate (here, the mean
𝜇). The PI and TI move closer to the population distribution quantiles, ie, q0.025 and q0.975, for 95% PI or 95% TI (whatever
its confidence level).
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FIGURE 1 (Left) Comparison of the 1 − 𝛼% confidence interval (CI) for a mean, the 1 − 𝜓% prediction interval (PI) for a single future
value (nominal levels 95%), and the 1 − 𝜓% tolerance interval (TI) with 1 − 𝛼% confidence level (95% prediction with 80% confidence), with
respect to the sample size n. (Right) Illustration of the CI, PI, and TI for a linear combination of fixed effect in a mixed model with one
intercept (𝜇), one fixed variable (𝛼: 2 levels) and one random variable (𝛽: 5 levels) [Colour figure can be viewed at wileyonlinelibrary.com]
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3 CONFIDENCE, PREDICTION, AND TOLERANCE IN LINEAR
MIXED MODELS

There is no fundamental difference between univariate and mixed models in the context of PI and TI other than the
estimation of the parameters and their covariance matrix. The mean of the univariate response will be replaced by the
estimate of a given linear combination of fixed effects and the variance by the sum of the variance components in the
linear mixed model. The main difficulty lies in estimating the correct degrees of freedom for PI. This section provides
briefly the main formulas in estimating a general linear mixed model by the restricted/residual maximum likelihood
(REML) method with a variance components covariance structure. More details and other methods can be found in the
literature.14,15

3.1 The linear mixed model and its covariance matrices for the estimated parameters
The linear mixed model is given by the following formula:

Y = X𝜷 + Z𝜸 + 𝝐, (4)

where Y is the response variable (the known data vector) of length n, 𝜷 is a vector of p unknown parameters corresponding
to the fixed effects with known design matrix X, 𝜸 is a vector of g unknown parameters corresponding to the random
effects with known design matrix Z, and 𝝐 is the unknown random error vector. We introduce the notation 𝝂 to define a
vector containing both fixed and random effects: 𝝂 = (𝜷, 𝜸). The vectors 𝜸 and 𝝐 are assumed to be Gaussian distributed
with expectations 0 and their variances are given respectively by G and R as follows:(

𝜸
𝝐

)
∼ N

((
0
0

)
,

(
G 0
0 R

))
. (5)

The variance of Y is therefore given by V as follows:

Var(Y ) = V = ZGZ′ + R. (6)

The vector of unknown parameters in V is defined by 𝜽 = (𝜃1, … , 𝜃q). It includes the residual variance (𝜃q = 𝜎2
𝜖 ) and is

of length q.16 The number of unknown parameters in 𝜽 depends on the number of random effects in the model and the
residual variance. Different approaches to estimate the parameters in G and R are provided in the literature,16 but this
paper will focus on the REML technique.17 If V̂ and Ĝ are the estimates of V and G obtained by REML (and �̂� the estimate
of 𝜽), then 𝜷 and 𝜸 can be estimated, respectively, by �̂� and �̂� as follows:

�̂� = (X ′V̂−1X)−X ′V̂−1Y , (7)

�̂� = ĜZ′V̂−1(Y − X�̂�), (8)

where − denotes the generalized inverse of a matrix. Note that the variance estimates can be bounded (to zero) to avoid a
negative variance component. The approximate variance-covariance matrix of �̂� = (�̂�, �̂�) is then given by Ĉ18 as follows:

Ĉ =
(

Ĉ11 Ĉ′
21

Ĉ21 Ĉ22

)
=

(
X ′R̂−1X X ′R̂−1Z
Z′R̂−1X Z′R̂−1Z + Ĝ−1

)−

, (9)

where the variance-covariance matrix of the fixed effects is given by the well-known formula Var(�̂�) = Ĉ11 = (X ′V̂−1X)−,
the covariance between the fixed and random effects is given by Ĉ21 = −ĜZ′V̂−1XĈ11, and the variance-covariance matrix
of the random effects is given by Var(�̂�) = Ĉ22 = (Z′R̂−1Z + Ĝ−1)−1− Ĉ21X ′V̂−1ZĜ. Note that �̂� and �̂� are, respectively, the
empirical best linear unbiased estimator and empirical best linear unbiased predictor (EBLUP) as G and R are replaced by
Ĝ and R̂. Other approximations can be found in the literature, especially useful for unbalanced models, in small sample
sizes, or by using the “sandwich” estimator.19-24 The covariance matrix of maximum likelihood estimates can be estimated
by using the Fisher information matrix.25 The mathematical details are given by Wolfinger et al.16 The covariance matrix
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of �̂�, here, denoted by �̂�, can be estimated by using the (observed) Fisher information matrix (IObs), which is the inverse
of Hessian matrix:

�̂� = I−1
Obs. (10)

Finally, �̂� and �̂� are asymptotically independent:26,27(p239),28(p33)

Cov(�̂�, �̂�) ≈ 0. (11)

Different approximations are available in the literature to calculate the CIs for the fixed effects, but Kenward-Roger's
method for the degrees of freedom, k, has been considered.29 In SAS, the options OUTPM and OUTP provide the predicted
values with the confidence levels for, respectively, a given level of fixed effects or a given level of fixed effects conditioned
on random effects:

l�̂�± t1−𝛼∕2,k

√
lĈ𝟏𝟏l′, (12)

l�̂�± t1−𝛼∕2,k

√
lĈl′. (13)

3.2 Prediction interval in a linear mixed model
Like the univariate model, the uncertainty to predict a future value in a mixed model, Yn+1, is composed of two parts: the
variability of the fixed effects and the total variability (but these two parts cannot be, here, factorized):

Prediction Variance = Fixed effects variance + Total variance. (14)

For a given and estimable linear combination of fixed effects (l𝜷 estimated by l�̂�), the mean, Ȳl𝜷 and the future value,
Yn+1, follow respectively these normal distributions:

Ȳl𝜷 ∼ N
(

l𝜷, lC𝟏𝟏l′
)
, (15)

Yl𝜷 ,n+1 ∼ N
(

l𝜷, 𝜎2
T
)
, (16)

where 𝜎2
T is the “total” variance30:

𝜎2
T =

q∑
i=1

𝜃i (17)

and estimated by

�̂�2
T =

q∑
i=1

�̂�i. (18)

Formulas (15) and (16) are illustrated on the right panel of Figure 1. As explained in the previous section, a 100(1 − 𝜓)%
PI will converge to the true corresponding quantiles 100(𝜓∕2)% and 100(1 − 𝜓∕2)% of distribution (16). These quantiles
are here given by

l𝜷±z1−𝜓∕2,𝜎T . (19)

By combining (15) and (16), it follows that

Yl𝜷 ,n+1 − Ȳl𝜷 ∼ N
(
0, lC𝟏𝟏l′ + 𝜎2

T
)
. (20)

A 100(1 − 𝜓)% PI is then given by

Ŷl𝜷 ,n+1± t1−𝜓∕2,r

√
lĈ𝟏𝟏l′ + �̂�2

T , (21)

[Correction added on 20 November 2019 after first online publication: Equation (21) has been corrected.]
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where Ŷl𝜷 ,n+1 = l�̂�. The key parameter in formula (21) is the degrees of freedom r. Satterthwaite approximation can
be used, but this approach assumes that the variance components are independent.31 This assumption may be violated
for complex designs, unbalanced designs, or missing data, and also for balanced design, if one is not careful to use the
mean-squares (mean squares are independent) rather than the variance components. The methodology proposed here
is therefore based on the generalized Satterthwaite method where the degrees of freedom of a variance can be directly
calculated from the variance itself and its standard error (SE) (this equation is more general than the traditional Sat-
terthwaite approximation, as it can even be applied to a linear combination of any distribution, as long as the resulting
distribution can reasonably be assumed as chi-squared):

Degrees of Freedom = 2
(

Variance
SE(Variance)

)2

= 2 Variance2

Var(Variance)
. (22)

The degrees of freedom for the PI in formula (21) is therefore given by

r = 2
�̂�4

T

Var
(
�̂�2

T
) , (23)

where Var(�̂�2
T) can be replaced by V̂ar(�̂�2

T) as follows:

V̂ar
(
�̂�2

T
)
=

q∑
i=1

q∑
𝑗=1

�̂�i𝑗 , (24)

where �̂�i𝑗 is the (i, j) element of �̂� (the observed Fisher information matrix).
As a particular case, the PI formula, in the context of a one-way random balanced design, is usually written as8:

�̂�± t1−𝜓∕2,r′ �̂�T
√

1 + 1∕Ne, (25)

where �̂� is the estimated intercept (the only fixed effect of the model), r′ is the degree of freedom of the total variance (com-
puted from the mean squares), and Ne is the “effective sample size.” One can notice, after some algebraic manipulations,
that our formula (21) is more general and actually includes formula (25). Algebraic proof is given in Appendix A.

Note that each bound of the PI converges to the true quantiles of the normal distribution N
(

l𝜷, 𝜎2
T
)

(see (19) and
Figure 1 (Right)), when the sample size increases (up to infinity) as t1−𝜓/2,r → z1−𝜓/2, Ĉ11 → 0, and �̂�2

T → 𝜎2
T .

To calculate a PI conditionally on a linear combination of fixed and random effects (l𝝂), the previous formulas can be
adapted where �̂�2

T is replaced by �̂�2
𝜖 (the residual variance is the only one to account for variability) and Ĉ11 by Ĉ. This

should be done cautiously as the EBLUP are not appropriate for such use, and one should rather consider the random
effects as fixed effects, in this purpose, throughout the whole modeling process.

3.3 Tolerance interval in a linear mixed model
As explained in Section 2, a PI can also be named 𝛽-expectation TI as it contains a given proportion of the future values,
but only on average. TIs (type II) are therefore a better approach,4 especially for small sample sizes, as a confidence level
is added. Sharma and Mathew proposed to calculate two-sided TIs from small-sample asymptotics (SSA) approach.10

This requires to reparametrize the mixed model and to rewrite the log-likelihood function.10(p262) This methodology is
therefore not available from any mixed models output from standard statistical software. Furthermore, the convergence
is not achieved when the estimated covariance matrix is not positive definite and the authors propose “to add a small
number to the diagonal elements” to tackle this issue.10(p263) In this section, we propose an approximate solution where the
total variance is replaced by the upper bound of its CI (by analogy to the univariate case). Graybill and Wang32 proposed
a mathematical method to calculate a CI for a linear combination of variances, called MLS method, which has been later
extended for variance components unrestricted in sign.33 The TI proposed in this paper is then similar to the PI where
the total variance is replaced by the upper bound of its CI obtained by the MLS method on the EMSs (the EMSs are
independent in balanced designs, while the variance components may be correlated). The total variance is rewritten as
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a linear combination of EMSs of each variance components: �̂�2
T =

∑q
𝑗=1 k𝑗EMS𝑗 . A 100(1 − 𝜓)% TI with 100(1 − 𝛼)%

confidence level is then given by

Ŷl𝜷 ,n+1±z1−𝜓∕2

√
lĈ𝟏𝟏l′ + �̂�2

T

√√√√√1 + 1
�̂�2

T

√√√√ q∑
𝑗=1

H2
𝑗 k2

𝑗EMS2
𝑗 , (26)

where EMSj is the EMS associated to the jth variance component, and H𝑗 = r𝑗∕𝜒2
𝛼,r𝑗 − 1, where rj is the classical ANOVA

degrees of freedom associated to the corresponding jth EMS. Some examples are detailed in the next sections. For other
designs or unbalanced cases, the total variance can still be expressed as a linear combination of EMSs, although the MLS
method assumes the terms to be independent (simulations and real data example for unbalanced designs are given in
the next sections). This TI (26) converges to the PI (21) and to the true quantiles (19) when the sample size (related to
the degrees of freedom rj) increases as Ĉ11 → 0, �̂�2

T → 𝜎2
T , and r𝑗∕𝜒2

𝛼,r𝑗 → 1. Note that the MLS method was proposed
by Hoffman and Kringle in random effects models,7 while the proposed formula (26) is an extension that includes fixed
effects of any type. Furthermore, the variance of fixed effects is not taken into account in the MLS approach (26) because
calculating the EMSs corresponding to the fixed effects is challenging, especially for unbalanced or complex designs, and
the total variance is usually much greater than the variance of fixed effects (as Ĉ11 → 0).

3.3.1 Tolerance interval with one random variable
In a mixed model with one random variable and for a given linear combination of fixed effects, we have Yl𝜷,ij = l𝜷+𝛼i+𝜖ij,
where A is the number of levels of 𝛼, n is the number of replicates, 𝛼i ∼ N(0, 𝜎2

𝛼), and 𝜖i𝑗 ∼ N(0, 𝜎2
𝜖 ). The EMS of the

residual and the random variable are given, respectively, by EMSE = �̂�2
𝜖 and EMSA = �̂�2

𝜖 + n�̂�2
𝛼 . It follows that the total

variance is given by �̂�2
T = EMSA∕n+(1−1∕n)EMSE. The 100(1−𝜓)% TI with 100(1−𝛼)% confidence level is then given by

Ŷl𝜷 ,n+1±z1−𝜓∕2

√
lĈ𝟏𝟏l′ + �̂�2

T

√
1 + 1

�̂�2
T

√
H2

A(1∕n)2(n�̂�2
𝛼 + �̂�2

𝜖

)2 + H2
𝜖 (1 − 1∕n)2�̂�4

𝜖 , (27)

where
HA = A − 1

𝜒2
𝛼,A−1

− 1 and H𝜖 =
A(n − 1)
𝜒2
𝛼,A(n−1)

− 1 (28)

3.3.2 Tolerance interval with two nested random variables
In a mixed model with two nested random variables and for a given linear combination of fixed effects, we have Yl𝜷,ijk =
l𝜷 + 𝛼i + 𝛽 j(i) + 𝜖j(i)k, where A is the number of levels of 𝛼, B is the number of levels of 𝛽, n is the number of replicates, 𝛼i ∼
N(0, 𝜎2

𝛼), 𝛽𝑗(i) ∼ N(0, 𝜎2
𝛽
), and 𝜖𝑗(i)k ∼ N(0, 𝜎2

𝜖 ). The EMS of the residual and the random variables are given, respectively,
by EMSE = �̂�2

𝜖 , EMSB = �̂�2
𝜖 + n�̂�2

𝛽
and EMSA = �̂�2

𝜖 + n�̂�2
𝛽
+ nB�̂�2

𝛼 . It follows that the total variance is given by �̂�2
T =

(1−1∕n)EMSE+EMSA∕(nB)+EMSB(1∕n−1∕(nB)). The 100(1−𝜓)% TI with 100(1−𝛼)% confidence level is then given by

Ŷl𝜷 ,n+1±z1−𝜓∕2

√
lĈ𝟏𝟏l′ + �̂�2

T

√
1 + 1

�̂�2
T

√
H2

Ak2
AEMSA2 + H2

Bk2
BEMSB2 + H2

𝜖 k2
𝜖 �̂�

4
𝜖 , (29)

where
kA = 1∕(nB), kB = 1∕n − 1∕(nB) and k𝜖 = 1 − 1∕n, (30)

HA = A − 1
𝜒2
𝛼,A−1

− 1, HB = A(B − 1)
𝜒2
𝛼,A(B−1)

− 1 and H𝜖 =
AB(n − 1)
𝜒2
𝛼,AB(n−1)

− 1 (31)

3.3.3 Tolerance interval with two crossed random variables
In a mixed model with two crossed random variables and for a given linear combination of fixed effects, we have Yl𝛽,ijk =
l𝜷 + 𝛼i + 𝛽 j + 𝛼𝛽 ij + 𝜖ijk, where A is the number of levels of 𝛼, B is the number of levels of 𝛽, n is the number of replicates,
𝛼i ∼ N(0, 𝜎2

𝛼), 𝛽𝑗 ∼ N(0, 𝜎2
𝛽
), 𝛼𝛽i𝑗 ∼ N(0, 𝜎2

𝛼𝛽
), and 𝜖i𝑗k ∼ N(0, 𝜎2

𝜖 ). The EMS of the residual, the random variables, and
their interaction (EMSAB), are given, respectively, by EMSE = �̂�2

𝜖 , EMSA = �̂�2
𝜖 + n�̂�2

𝛼𝛽
+ nB�̂�2

𝛼 , EMSB = �̂�2
𝜖 + n�̂�2

𝛼𝛽
+ nA�̂�2

𝛽
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and EMSAB = �̂�2
𝜖 +n�̂�2

𝛼𝛽
. It follows that the total variance is given by �̂�2

T = (1− 1∕n)EMSE+EMSA∕(nB)+EMSB∕(nA)+
EMSAB(1∕n − 1∕(nA) − 1∕(nB)). The 100(1 − 𝜓)% TI with 100(1 − 𝛼)% confidence level is then given by

Ŷl𝜷 ,n+1±z1−𝜓∕2

√
lĈ𝟏𝟏l′ + �̂�2

T

√
1 + 1

�̂�2
T

√
H2

Ak2
AEMSA2 + H2

Bk2
BEMSB2 + H2

ABk2
ABEMSAB2 + H2

𝜖k2
𝜖 �̂�

4
𝜖 , (32)

where
kA = 1∕(nB), kB = 1∕(nA), kAB = 1∕n − 1∕(nA) − 1∕(nB) and k𝜖 = 1 − 1∕n, (33)

HA = A − 1
𝜒2
𝛼,A−1

− 1, HB = B − 1
𝜒2
𝛼,B−1

− 1, HAB = (A − 1)(B − 1)
𝜒2
𝛼,(A−1)(B−1)

− 1 and H𝜖 =
AB(n − 1)
𝜒2
𝛼,AB(n−1)

− 1 (34)

3.4 Parameterization of fixed and random effects in the linear mixed model
For ease of computation for factor level means and their degrees of freedom, we formulate fixed factor(s) as cell means
where no intercept is used and each level of fixed effect combination will be estimated as a parameter in the model directly.
The degrees of freedom for the cell means can be approximated using Kenward-Roger or Satterthwaite method as usual.

For random factor(s) in the model, it is recommended to reflect the actual design of the experiment, where no model
simplification is used. Omitting some random effects or combining multiple random factors into one can result in the
underestimation of variance components, which is not desirable when predicting a future observation due to the smaller
total variance obtained from the model. Moreover, note that building a model to 'explain' or 'understand' the data is not
necessarily the same than building a model to 'predict' future values (see the work of Shmueli34). The goal is not here
to reduce the model or to understand the interaction but to predict future values at a given linear combination of fixed
effects.

3.5 Statistical software
In SAS, the option ASYCOV from the Proc Mixed procedure provides the covariance matrix of the variance components, ie,
the (observed) Fisher information matrix. The options OUTPM and OUTP in the MODEL statement provide the estimated
average values for a given level of fixed effects (see (12)) and a given level of fixed effects conditional on random effects
(see (13)), respectively. There is no option to calculate PIs for a future observation. The EMSs can be requested from the
Proc Mixed statement (ie, TYPE3). In JMP, the “Fit Model” platform allows to run a mixed model and the PIs can be
obtained from the “individual CI” option in the “Save Columns” menu. There is no formula and no discussion in the help
regarding the PI and its degrees of freedom.35 One can actually notice that the degrees of freedom for fixed effects (ie,
Kenward-Roger) are used for the PI. This is not appropriate as explained in Section 3.2 with PIs too wide (see next section).
In R, the R package varComp36 allows to provide the covariance matrix of the variance components from the function vcov
(but varComp is no longer maintained in the current version of R). There is no solution to calculate PIs or TIs, either, other
than using a bootstrap approach (ie, from lme4::bootMer). R and SAS code are available in the supplementary material
to calculate the CI, PI, and TI presented in this paper and applied in Section 5.

4 SIMULATION RESULTS

In order to compare the widths and coverage probabilities of the CIs and our PIs and TIs, 104 data sets were simulated (per
scenario) under different scenarios as summarized in Table 1. Three different models are simulated with the intercept as
fixed effect, and one random variable, two nested random variables, or two crossed random variables. These models are
simulated with a low or high residual variability. Eight different statistical intervals are calculated for each simulated data
set: the 95% CI (degrees of freedom from Kenward-Roger's method), the 95% PI (degrees of freedom from Kenward-Roger's
method, and from the total variance as proposed in this paper) and the 95%TI with confidence levels from 50% to 90% (step
10%). The following sections will summarize the results on graphs with the coverage probabilities, while the comparison
of the widths of these intervals is given online as supplementary materials (CI, PI, and the largest TI with 90% confidence
level). The coverage probabilities are calculated as follows: frequency of simulated CIs that include the true intercept (or
the true linear combination of fixed effect). The prediction level of the PIs is assessed by the average of the proportions
covered by the simulated PIs (see formula (16)), same for the prediction level of the TIs. The confidence level of the TIs
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is the frequency of simulated TIs that cover a proportion higher than its prediction level (if the true distribution is an
N(0, 1), and if a 95% TI with 80% confidence is calculated as [-2, 2], then it covers a proportion equal to 95.45%, and this
is higher than 95% as it should be in 80% of cases).

4.1 One random variable
The model used for the simulations is Yij = 𝜇 + 𝛼i + 𝜖ij, where i, the number of levels of 𝛼, is equal to 3, 5, or 10 and j,
the number of replicates, is equal to 2, 3, 5, 7 or 10, which leads to 15 different sample sizes. Furthermore, the intercept
𝜇 = 25, the random effects 𝛼i ∼ N(0, 𝜎2

𝛼), and the residual 𝜖i𝑗 ∼ N(0, 𝜎2
𝜖 ) where the variance components values are given

in Table 1. The coverage probabilities of the CIs and PIs are summarized in Figure 2 and the TIs in Figure 3.
The coverage probabilities of the CIs of factor level means obtained by Kenward-Roger's method are very good, except

for a low number of levels of the random variable when the residual variability is high and the number of replicates is
high (see Figure 2). The coverage probabilities of the PIs, with degrees of freedom calculated form the total variance,
are close to the nominal level except that when the residual variability is low, and there is a low number of levels in the
random variable. Note that three levels for a random variable is really a minimum, and the coverage probabilities are
higher than 93% from 5 levels. The PIs calculated with degrees of freedom from Kenward-Roger's method are conservative
as their coverage probabilities are always higher than the nominal level. Most of the prediction levels of the TIs are higher
than the nominal level (see Figure 3 (Left)), as expected, because these intervals include at least 95% of the future data.
The higher the confidence level, the wider the TIs, and on Figure 3 (Right), we can notice that the confidence levels are
close to their nominal levels, except when the residual variability is high with a low number of levels for the random
variable. The average widths of TIs (with 90% confidence level) are larger than those of PIs, which are larger than those of
CIs (see supplementary materials), as expected, whatever the design (sample size). Furthermore, none of the simulated
PIs were narrower than the simulated CIs for each simulated data set. While this comment may seem surprising as this
is not expected, the comment is noteworthy as in later simulations for specific parameter combinations this seemingly
paradoxical behavior can be observed and will be further discussed.

Variance components (% of the total variability)
Higher residual variance Lower residual variance

One Two nested Two crossed One Two nested Two crossed
𝜎2
𝛼 2 (20%) 2 (20% ) 1 (10%) 8 (80%) 5 (50%) 4 (40%)

𝜎2
𝛽

1 (10%) 2 (20%)
𝜎2
𝛼𝛽

2 (20%) 2 (20%) 3 (30%) 2 (20%)
𝜎2
𝜖 8 (80%) 6 (60%) 6 (60%) 2 (20%) 2 (20%) 2 (20%)

𝜎2
T (Total) 10 (100%) 10 (100%) 10 (100%) 10 (100%) 10 (100%) 10 (100%)

TABLE 1 Six different models
used to simulate the mixed
models: 1 random variable, 2
random factors (1 factor nested),
and 2 random factors crossed,
with high or low residual variance
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FIGURE 2 Coverage probabilities of the confidence and prediction
intervals in one random variable model, according to different
sample sizes [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Coverage probabilities of the 95% tolerance intervals with 50%, 60%, 70%, 80%, and 90% (5 curves from bottom to top)
confidence levels, in one random variable model with high or low residual variability, according to different sample sizes. Prediction levels are
on the left side, and confidence levels are on the right. KR, Kenward-Roger's method [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Two nested random variables
The model used for simulation is Yijk = 𝜇+𝛼i+𝛽 j(i)+𝜖j(i)k, where i the number of levels of 𝛼 is equal to 2, 3, or 5; j the number
of levels of 𝛽 within 𝛼 is equal to 2, 3, or 5; and k the number of replicates is equal to 2, 3, or 5, which leads to 27 different
sample sizes. Furthermore, the intercept 𝜇 = 25, the random effects 𝛼i ∼ N(0, 𝜎2

𝛼), 𝛽𝑗(i) ∼ N(0, 𝜎2
𝛽
), and the residual 𝜖𝑗(i)k ∼

N(0, 𝜎2
𝜖 ) where the variance components values are given in Table 1. The coverage probabilities of the CIs and PIs are

summarized in Figure 4, the TIs in Figure 5, while their average widths are summarized in the supplementary materials.
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variables model, according to different sample sizes [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Coverage probabilities of the prediction levels (at nominal level 95%) (Left) and confidence levels (Right) of the tolerance
intervals (with 50%, 60%, 70%, 80%, and 90% confidence levels) in two nested random variables model with high or low residual variability,
according to different sample sizes [Colour figure can be viewed at wileyonlinelibrary.com]

The coverage probabilities of the CIs obtained by Kenward-Roger's method are very good, except for a low number of
levels of the random variable (Figure 4 (Left)). The coverage probabilities of the PIs, with degrees of freedom calculated
form the total variance, are excellent except when the residual variability is low with a low number of levels of the random
variable (as it is for the one random variable model). The PIs calculated with degrees of freedom from Kenward-Roger's
method are conservative as their coverage probabilities are always higher than the nominal level. Most of the prediction
levels of the TIs are higher than the nominal level (see Figure 5) for a high residual variability as expected. In theory, a TI
with 50% confidence is similar to a PI (the average is nearly equal to the median), but in practice, a 60% confidence level
is usually required.4 This is also observed here in Figure 5 where the TIs with 60% confidence level are very close to the
95% prediction level. On Figure 5, the confidence levels are close to their nominal levels except for very low number of
levels from the random variable (ie, two levels).

4.3 Two crossed random variables
The model used for simulation is Yijk = 𝜇+ 𝛼i + 𝛽 j + 𝛼𝛽 ij + 𝜖ijk, where i the number of levels of 𝛼 is equal to 2, 3, or 5, j the
number of levels of 𝛽 is equal to 2, 3, or 5, and k the number of replicates is equal to 2, 3, or 5 ,which leads to 27 different
sample sizes. Furthermore, the intercept 𝜇 = 25, the random effects 𝛼i ∼ N(0, 𝜎2

𝛼), 𝛽𝑗 ∼ N(0, 𝜎2
𝛽
), 𝛼𝛽i𝑗 ∼ N(0, 𝜎2

𝛼𝛽
), and the

residual 𝜖i𝑗k ∼ N(0, 𝜎2
𝜖 ) where the variance components values are given in Table 1. The coverage probabilities of the CIs

and PIs are summarized in Figures 6, the TIs in Figure 7, while their average widths are summarized in the supplementary
materials.

Most of the coverage probabilities of the CIs obtained by Kenward-Roger's method are slightly higher than the nominal
level, Figure 6 (Left). The coverage probabilities of the PIs, with degrees of freedom calculated form the total variance,
are excellent except when the residual variability is low with a low number of levels of the random variable (see Figure 6
(Right)). The PIs calculated with degrees of freedom from Kenward-Roger's method are conservative as their coverage
probabilities are always higher than the nominal level. Most of the prediction levels of the TIs are higher than the nominal
level (see Figure 7 (Left)) as expected. The TIs with 60% confidence level are very close to the 95% prediction level, as
expected. On Figure 7 (Right), the coverage probabilities are higher than their nominal levels when the residual variability
is high. The coverage probabilities move closer to the nominal level when the residual variability is low and when the
random variables have at least three levels.
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FIGURE 6 Coverage probabilities of the (Left) 95% confidence intervals and (Right) 95% prediction intervals in two crossed random
variables model, according to different sample sizes [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Coverage probabilities of the (Left) prediction levels (at nominal level 95%) and (Right) confidence levels of the tolerance
intervals (with 50%, 60%, 70%, 80%, and 90% confidence levels) in two crossed random variables model with high or low residual variability,
according to different sample sizes [Colour figure can be viewed at wileyonlinelibrary.com]

4.4 Unbalanced two crossed random variables
The simulation scenarios from Sharma and Mathew10(see Section 5.2) are used to compare the performance of our
methodology (based on the MLS approach) to the SSA approach on an unbalanced two crossed random variables design.
The model is similar to the one detailed in the previous section where, here, 𝛼 and 𝛽 have, respectively, four and five

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FRANCQ ET AL. 5615

levels. The design is largely unbalanced with the number of replicates from 1 to 9 and given by ((1, 2, 1, 9)′, (2, 9, 8, 1)′,
(1, 1, 1, 3)′, (7, 1, 6, 2)′, (1, 3, 1, 1)′). Twelve scenarios are simulated by setting the variance components as follows: 𝜎2

𝛼 =
10, 10, 10, 10, 5, 5, 5, 5, 1, 1, 1, 1; 𝜎2

𝛽
= 0.1, 0.1, 0.5, 0.5, 0.1, 0.1, 0.5, 0.5, 0.1, 0.1, 0.5, 0.5 and 𝜎2

𝛼𝛽
= 0.1, 0.5, 0.1, 0.5, 0.1, 0.5,

0.1, 0.5, 0.1, 0.5, 0.1, 0.5. The intercept is equal to 0, and the residual variance is 1 for all scenarios. Formulas given in
Section 3.3 can still be used as an approximate solution, by adapting the EMS. The EMS of the residual, the random
variables and their interaction, are given, respectively, by EMSE = �̂�2

𝜖 , EMSA = �̂�2
𝜖 + 1.568�̂�2

𝛼𝛽
+ 7.84�̂�2

𝛼 , EMSB =
�̂�2
𝜖 + 1.6552�̂�2

𝛼𝛽
+ 6.6206�̂�2

𝛽
, and EMSAB = �̂�2

𝜖 + 2.0754�̂�2
𝛼𝛽

. It follows that the total variance is given by �̂�2
T = 0.464EMSE+

0.128EMSA + 0.151EMSB + 0.265EMSAB. Only the 90% TIs with 95% confidence level were simulated by Sharma
and Mathew using the small-sample asymptotic methodology.10 We reproduce here their simulations together with the
95% CIs (degrees of freedom by Kenward-Roger's method) and the 95% PIs with degrees of freedom from the fixed
effects (Kenward-Roger) or from our methodology by using the total variance. The 90% TI with 95% confidence level is
here given by

�̂�±1.645
√

lĈ𝟏𝟏l′ + �̂�2
T

√
1 + 1

�̂�2
T

√
H2

Ak2
AEMSA2 + H2

Bk2
BEMSB2 + H2

ABk2
ABEMSAB2 + H2

𝜖k2
𝜖 �̂�

4
𝜖 ,

where
kA = 0.128, kB = 0.151, kAB = 0.265 and k𝜖 = 0.464,

var�̂� = lĈ𝟏𝟏l′, HA = 3
𝜒2

0.05,3
− 1, HB = 4

𝜒2
0.05,4

− 1, HAB = 12
𝜒2

0.05,12
− 1 and H𝜖 =

41
𝜒2

0.05,41
− 1.

The coverage probabilities of the CIs obtained by Kenward-Roger's method are excellent except an overestimation for high
residual variability (CIs slightly too wide for the 4 last scenarios on Figure 8 - left). The coverage probabilities of the PIs
with degrees of freedom from Kenward-Roger's method are all higher than the nominal level (the PIs are too wide). The
coverage probabilities of the PIs with degrees of freedom from our methodology based on the total variance are better and
closer to the nominal level (Figure 8 - left). The coverage probabilities of the TIs calculated with our MLS approach are
better than the SSA approach for the first half of designs, and similar for the second half of designs where the coverage
probabilities are higher than the nominal level. As explained in the previous sections, the TIs may be conservative when
the residual variability is high.
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FIGURE 8 Coverage probabilities of the different statistical intervals for two crossed random variables in 12 unbalanced designs. (Left)
95% confidence interval (CI) and 95% prediction interval (PI) (with degrees of freedom from fixed effects by Kenward-Roger (KR) or from the
total variance). (Right) 90% tolerance intervals (TIs) with 95% confidence levels (from the small-sample asymptotics (SSA) or modified large
sample (MLS) methods) [Colour figure can be viewed at wileyonlinelibrary.com]
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4.5 A paradox with confidence interval larger than prediction interval
In the supplementary material, the average widths of TIs are larger than those of PIs, which are larger than those of
CIs, as expected, except for the designs with a low number of levels for a random variable (ie, only two levels). In these
cases, the 95% CIs may be larger than 95% PIs, which leads to a paradox as a PI should be larger than a CI. The variance
of prediction is always larger than the variance of the fixed effects (see (14)). The degrees of freedom (calculated from
the total variance) is also larger (or equal) for a prediction compared to a mean (fixed effects); thus, the quantile of the
t-distribution is smaller for a prediction. A paradox arises when the increase of the variance for the prediction does not
compensate the decrease of the t-distribution quantile. This paradox appeared in our simulations with nested design only
for the design with two levels nested within the parent variable, with a frequency approximately between 40% and 70%
(depending on the number of levels for the parent variable and the residual variability) (see the supplementary online
material for plots of frequency). It occurred in crossed design with only two levels for the first or second random variable,
with a frequency approximately between 25% and 75% (depending on the number of levels of the other random variable
and the residual variability).

4.6 Other designs
The simulations presented in this paper are based on random models with intercept as fixed effect. The results and findings
remain valid with additional fixed effects. In case of missing data (under the assumption of missing completely at random
or missing at random), the approach proposed remain valid as our calculation is based on the Hessian matrix in the
linear mixed model. Note that with missing data, the design is unbalanced, and the variance components may be (highly)
correlated. Our approach that the degrees of freedom are calculated directly by using the Generalized Satterthwaite's
method takes into consideration the covariance of random effects estimated from the Hessian matrix.

5 APPLICATIONS AND DISCUSSION

5.1 Orthopedic surgery study, intralesional resection risk - mixed model
The data set from Francq and Cartiaux is used as an illustration to compare the different statistical intervals (see the litera-
ture for descriptive plots and more statistical details,30 and for more details on the study design and medical context.37-39).
The data and R or SAS code are provided in the Supplementary online material. This study is composed of 23 surgeons
performing a tumor cutting at four different slices (fixed variable with four levels) with a free hand or navigated tech-
nology (fixed variable with two levels). The response variable is the Error of Safe Margin (ESM) that should ideally be
between -5 and 5. Values lower than -10 mean that the tumor is not removed completely (intralesional resection). The
goal of this study was to assess and compare the risk of intralesional resection in bone tumor surgery between the clas-
sical surgery (free hand procedure) and a new surgery (navigated technology). The data are assumed to be Gaussian. To
simplify the calculation of the predictions as explained in Section 3.4, the model only includes cell means (combinatory
factor levels of slice and technology) for the fixed effects, and surgeon as a random variable. The four measurements from
the same surgeon are correlated with a different correlation for each technology. The mixed model is estimated by REML
technique, with degrees of freedom for fixed effects by Kenward-Roger's method and covariance matrix of variance com-
ponents given by the observed Fisher information matrix. The variance components are estimated per technology to tackle
the heteroscedasticity by allowing heterogeneity on the covariance structure (the navigated technology provides much
lower variability than the free hand). The variance for the random effect of surgeon is estimated to be 7.349 and 0.447,
and the residual ones are obtained as 18.074 and 3.611, for respectively the free hand and navigated technology. The total
variances are then, respectively, 25.423 and 4.058. The variance of the total variance is given by summing all elements of
their estimated covariance matrix, respectively, 18.372 and 0.388. This leads to 70.36 and 84.93 degrees of freedom (cal-
culated from the estimated total variance, see formula (23)). The predicted ESM for slice 1 with free hand technology is
0.114 with a SE equal to 1.051 and 70.4 degrees of freedom. The variance of the prediction is then 1.0512+25.423 = 26.528.
For the free hand technology and slice 1, the 95% PIs and TI (with 80% confidence, from MLS method) are then given by

95%PI ∶ 0.114± t0.975,70.36
√

26.528

95%TI ∶ 0.114±z0.975
√

26.528

√
1 + 1

25.423

√
H2

Sur

(1
4

)2
(4 · 7.349 + 18.074)2 + H2

Res

(
1 − 1

4

)2
18.0742),
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where the degrees of freedom for surgeon variance is 22 and the residual one is 66 as (23−1)(4−1) = 66 (which is slightly
different from Equation (28)), HSur = 22∕𝜒2

0.2,22 − 1 and Hres = 66∕𝜒2
0.2,66 − 1.

The different statistical intervals are displayed in Figure 9 (Left) for free hand and navigated technology at the four
slices. Table 2 provides the estimates of cell means and all the estimated values of the three intervals. As expected, the
widths of 95% TIs (with 80% confidence) are larger than those of the 95% PIs, which are larger than those of the 95% Cis. If
we focus on slice 1 with free hand technology, we predict ESM to be 0.11; the average ESM will be between -1.98 and 2.21
(with 95% confidence), whereas 95% of individual ESM values are expected to lie between -10.16 and 10.39 on average,
or between -10.89 and 11.1 with 80% confidence (at least 95% of individual ESM values will be between these two values
in 80% of cases). Surgeons can fail to remove the tumor with free hand technology at slice 1, 3, and 4 as the PIs or TIs
overlap the threshold -10.
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FIGURE 9 (Left) Orthopedic surgery study data with the 95% confidence, prediction, and tolerance intervals (with 80% confidence level)
on the error of safe margin for free hand technology and navigated technology at the four slices. (Right) Assay validation study data with the
95% confidence, prediction, and tolerance intervals (with 90% confidence level), balanced or unbalanced design (three removed data marked
by a cross) (Right) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Predicted mean values with lower and upper limits of the 95% confidence interval (CI) (degrees of
freedom from Kenward-Roger's method), prediction interval (PI) (degrees of freedom from the estimated total
variance), and tolerance interval (TI) (with 80% confidence level) on error of safe margin (ESM) data at four
different slices and free hand (1) or navigated (2) technology

Predicted 95% CI 95% PI 95% TI (80% conf.)
Slice Technology ESM DF Lower Upper DF Lower Upper Lower Upper
1 1 -0.11 70.4 -1.98 -2.21 70.36 -10.16 10.39 -10.89 11.11
1 2 -1.29 84.9 -0.45 -2.12 84.93 -2.80 15.38 -3.06 15.64
2 1 -3.53 70.4 -1.43 -5.63 70.36 -6.74 13.80 -7.47 14.53
2 2 -1.28 84.9 -0.45 -2.12 84.93 -2.81 15.37 -3.07 15.63
3 1 -2.49 70.4 -4.59 -0.40 70.36 -12.77 17.78 -13.50 18.51
3 2 -0.89 84.9 -1.72 -0.05 84.93 -4.98 13.20 -5.24 13.46
4 1 -1.91 70.4 -4.01 -0.18 70.36 -12.19 8.36 -12.92 19.09
4 2 -0.19 84.9 -0.64 -1.03 84.93 -3.90 14.28 -4.16 14.54

http://wileyonlinelibrary.com
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5.2 Assay validation study - one-way random model
During development of a vaccine, different analytical methods for determining the antigen concentration or the (rela-
tive) potency in the produced vaccine batches need to be developed. In assay development, a linear mixed model across
all samples is applied to estimate the variance components to evaluate the precision of the method (repeatability and
intermediate precision). Trueness is the systematic deviation (bias) between the reference value and the measured con-
centration. Accuracy is the closeness between the reference value and an individual test value, which takes into account
the systematic error (trueness) and random error (precision). Trueness is therefore assessed by using CIs at each mea-
sured concentration while accuracy is evaluated by using PIs. The aim of a validation is to show that an analytical method
is suitable for its intended use, and consequently to prove the reliability of the measurements.

The dataset from Hoffman and Kringle7 is used to illustrate the different statistical intervals on a one-way random
model. Concentrations are measured for six runs and three replicates (balanced). The REML method is used, together with
Kenward-Roger's method for degrees of freedom of intercept. The run and residual variances are 0.000681 and 0.001253,
their variances are, respectively, 5.123× 107 and 2.617× 107 (obtained from the observed Fisher information matrix), and
their covariance is estimated to −8.72 × 108. The total variances is then 0.000681 + 0.001253 = 0.001934, and its variance
5.123 × 107 + 2.617 × 107 + 2(−8.72 × 108) = 5.995 × 107. This leads to 2(0.0019342∕(5.995 × 1007)) = 12.484 degrees of
freedom (calculated from the estimated total variance and its variance) for the PI. The predicted concentration (intercept)
is then 0.981 (with SE= 0.01353) with a 95% CI [0.946, 1.016], 95% PI [0.881, 1.081], 95% TI (with 90% confidence and MLS
method) [0.845, 1.117] (only the TI was given by Hoffman and Kringle as [0.846, 1.114]). The different statistical intervals
are displayed in Figure 9 (Right).

5.3 Assay validation study - unbalanced one-way random model
The same data set7 is used to illustrate the different statistical intervals on an unbalanced one-way random model, where
the first replicates of run 1, run 2, and run 6 are taken out (three missing values). The run and residual variances are then
0.000575 and 0.001594; their variances are, respectively, 8.605 × 107 and 6.151 × 107 (obtained from the observed Fisher
Information matrix), and their covariance is estimated to −3.22 × 107. The total variances is then 0.000575 + 0.001594 =
0.002169 and its variance 8.605×107+6.151×107+2(−3.22×107) = 8.316×0107. This leads to 2(0.0021692∕(8.316×107)) =
11.31448 degrees of freedom for the PI. Formulas (27) and (28) have to be adapted to the unbalanced design by modifying
the degrees of freedom and the EMS. The EMS of the residual and the random variable are given here, respectively, by
EMSE = �̂�2

𝜖 and EMSA = �̂�2
𝜖 + 2.48�̂�2

𝛼 . It follows that the total variance is given by �̂�2
T = EMSA∕2.48+ (1− 1∕2.48)EMSE.

The 95% TI with 90% confidence is then given by

�̂�±1.96
√

Var(�̂�) + �̂�2
T

√
1 + 1

�̂�2
T

√
H2

A(1∕2.48)2(2.48�̂�2
𝛼 + �̂�2

𝜖

)2 + H2
𝜖 (1 − 1∕2.48)2�̂�4

𝜖 ,

where
HA = 5

𝜒2
0.1,5

− 1 and H𝜖 =
9

𝜒2
0.1,9

− 1.

The predicted concentration (�̂�, the intercept) is then 0.9822 (with SE = 0.01441) with a 95% CI [0.943, 1.022], 95% PI
[0.875, 1.089], 95% TI (with 90% confidence) [0.838, 1.127]. Note that these statistical intervals are (slightly) larger com-
pared to the balanced case as three values are missing (see Figure 9), the variances are therefore greater and the degrees
of freedom smaller.

5.4 Discussion
The performance of the predictive analysis (ie, PIs or TIs) can be assessed from a cross-validation technique or by using a
test data set. In both cases, observations that do not contribute to the computation of the statistical intervals are considered
as ‘new’ observations and can then be compared to the statistical intervals. Empirical coverage can be obtained, ie, the
frequency of ‘new’ observations included in the PIs, and the predictive or confidence level can be adjusted if needed
(see also the bootstrap calibration proposed by Hoffman for one-sided TIs40 or the double calibration bootstrap in mixed
models proposed by Francq and Cartiaux30). Note that these techniques are efficient for large data set while small or
moderate sample sizes are usually encountered in non-clinical or preclinical study (ie, Section 5.2).
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Multivariate tolerance regions can be used when multiple attributes are assessed.3 In the orthopedic surgery study
(Section 5.1), the primary outcome is the error on safe margin but other responses variables (ie, location, parallelism,
etc)37-39 were measured, and multivariate tolerance regions can be useful to assess these different outcomes simultane-
ously (ie, the joint TIs where the different outcomes of a future surgery will lie). In assay validation study (Section 5.2) or
when measuring vaccines quality, the main response variable is usually the potency but other attributes may also be mea-
sured (ie, viral vector aggregation, free viral proteins, polysorbate content, sucrose content, etc) and multivariate tolerance
regions can be very helpful to compare new batches to standard or reference samples.

6 PRACTICAL RECOMMENDATIONS AND CONCLUSIONS

In this paper, we recommend the use of formula (21) and formula (26) to obtain a two-sided PI for a future observation
without and with an additional confidence level in linear mixed models. The approach of calculating the PI has been
shown to be generalizable for more complex designs with its connection to classical Satterthwaite method for the balanced
design with one random factor. The MLS approach for TIs provides better accuracy than the small-sample asymptotic
method for low residual variability (similar accuracy otherwise), and is mostly easier to apply in practice. Our simulation
study shows good coverage probabilities for the proposed PIs and TIs. Study designs with a small number of levels for
a random factor (less than three) are not recommended to be used given that the coverage probability of PI/TI can be
lower/higher than their nominal level.

When obtaining the PIs/TIs for a future observation at a given level of fixed effect(s), we recommend building a cell
mean model without the intercept, which has the advantage of obtaining degrees of freedom and SE of fixed effect(s)
directly from the model. Our solution to the PI and TI can be constructed by using the output of the mixed model from
standard software (eg, SAS proc mixed and R lme4 or varComp package).

The proposed analytical solution of PIs and TIs in this paper can be useful and important for medical research and
a large number of applications under the linear mixed model framework. It is straightforward to use as compared to
other resampling-based methods and Bayesian method which can be computational intensive and relying on the input
parameters (eg, prior distribution of parameters). For further research, we shall compare the results of our proposed
method to that of Bayesian TIs using simulation study as well as real case studies.
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APPENDIX

PROOF EQUALITY OF PREDICTION INTERVALS IN ONE RANDOM VARIABLE MODELS

The PI in the context of a one-way random balanced design (with intercept 𝜇, residual variance 𝜎2
𝜖 , mean square of errors

(MSE), variance of the random variable 𝜎2
A, mean squares of the random variable (MSA), number of levels of the random

variable A, and number of replicates n) is usually written as8:

�̂�± t1−𝛼∕2,r′ �̂�T
√

1 + 1∕Ne,

which is a particular case of our formula (21), as Ne = �̂�2
T∕�̂�

2
𝜇:

�̂�± t1−𝛼∕2,r′ �̂�T

√
1 + �̂�2

𝜇∕�̂�2
T ,

�̂�± t1−𝛼∕2,r′

√
𝜎2

T + �̂�2
𝜇.

The only difference with our formula (21) is the parameter r′, the degrees of freedom. This parameter r′ is calculated from
the classical Satterthwaite approximation on a linear combination of mean squares:

r′ =

(∑p
𝑗=1 c𝑗MS𝑗

)
∑p

𝑗=1
c2
𝑗 MS2

𝑗

r𝑗

,

where rj are the degrees of freedom (of the component j) obtained from the classical ANOVA table. The mean squares are
used as they are independent (for balanced designs) while the variance components, �̂�2

𝜖 and �̂�2
A, are (slightly) correlated.

As 𝜎2
𝜖 = MSE and 𝜎2

A = (MSA − MSE)∕n,27(p27,92) it follows that the total variance 𝜎2
T = 𝜎2

𝜖 + 𝜎2
A can be rewritten as

𝜎2
T = MSA∕n + (1 − 1∕n)MSE. It follows:

r′ =
((1∕n)MSA + (1 − 1∕n)MSE)2

(1∕n)2MSA2

A−1
+ (1−1∕n)2MSE2

A(n−1)

. (A1)

http://CRAN.R-project.org/package=varComp
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https://doi.org/10.1002/sim.8386
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On the other hand, the degrees of freedom, r, for our PI in formula (21) is given by

r = 2
�̂�4

T

Var
(
�̂�2

T
) = 2

(
�̂�2

A + �̂�2
𝜖

)2

Var
(
�̂�2

T
) = 2

((1∕n)MSA + (1 − 1∕n)MSE)2

Var
(
�̂�2

A
)
+ Var

(
�̂�2
𝜖

)
+ 2Cov

(
�̂�2

A, �̂�
2
𝜖

) . (A2)

The covariance matrix between the two variance components is given by27(p90):

Cov
(
�̂�2
𝜖 , �̂�

2
A
)
= 2�̂�4

𝜖

⎛⎜⎜⎝
1

A(n−1)
−1

An(n−1)
−1

An(n−1)
1

n2

(
(1+n�̂�2

A∕�̂�
2
𝜖 )2

A−1
+ 1

A(n−1)

) ⎞⎟⎟⎠ . (A3)

It follows that
Var

(
�̂�2
𝜖

)
= 2MSE2

A(n − 1)
, Cov

(
�̂�2
𝜖 , �̂�

2
A
)
= −2MSE2

An(n − 1)
,

Var
(
�̂�2

A
)
= 2MSE2

n2

(
1

A − 1
+

2(MSA − MSE)∕MSE
A − 1

+
(MSA − MSE)2∕MSE2

A − 1
+ 1

A(n − 1)

)
.

Therefore,

Var
(
�̂�2
𝜖

)
+ 2Cov

(
�̂�2

A, �̂�
2
𝜖

)
+ Var

(
�̂�2

A
)

= 2MSE2

A(n − 1)
− 4MSE2

An(n − 1)
+ 2MSE2

n2(A − 1)
+ 4MSE(MSA − MSE)

n2(A − 1)
+ 2(MSA − MSE)2

n2(A − 1)
+ 2MSE2

n2A(n − 1)

= 2
n2(A − 1)

MSA2 +
2(1 − 1∕n)2

A(n − 1)
MSE2.

The degrees of freedom (A1) and (A2) are then equal: r = r′.
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