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Which comes first: tissue structure or cell differentiation?
Although different cell types establish distinct structures delin-
eating the inside and outside of an embryo, they progressively
become specified by the blastocyst stage, when two types of cell
lineages are formed: the inner cell mass (ICM) and the trophec-
toderm (TE). This inside– outside aspect can be experimentally
converted by the isolation of the ICM from a blastocyst, leading
to a posteriori externalization of the blastomeres composing the
outermost layer of the ICM. Here, we investigated the totipo-
tency of isolated mouse and bovine ICMs to determine whether
they are competent for TE regeneration. Surprisingly, a calf was
generated from the bovine isolated ICM with re-formed blasto-
coel (re-iICM), but no mouse re-iICMs developed to term. To
further explore the cause of difference in developmental com-
petency between the mouse and bovine re-iICMs, we investi-
gated the SOX17 protein expression that is a representative
molecular marker of primitive endoderm. The localization pat-
tern of SOX17 was totally different between mouse and bovine
embryos. Particularly, the ectopic SOX17 localization in the TE
might be associated with lethality of mouse re-iICMs. Mean-
while, transcriptome sequencing revealed that some of the
bovine re-iICMs showed transcriptional patterns of TE-specific
genes similar to those of whole blastocysts. Our findings suggest
that TE regeneration competency is maintained longer in
bovine ICMs than in mouse ICMs and provide evidence that the
ICM/TE cell fate decision is influenced by structural determi-
nants, including positional information of each blastomere in
mammalian embryos.

Preimplantation development in all eutherians involves the
blastocyst stage with a fluid-filled cavity (blastocoel), in which

the first cell fate decision occurs. This decision is a fork in the
road to either the pluripotent inner cell mass (ICM)2 or an
extra-embryonic tissue, the trophectoderm (TE), during onto-
genesis. Cell lineage asymmetry becomes specified in the blas-
tomeres at different positions: inside and outside. Once blasto-
meres are allocated to the different positions, outer blastomeres
asymmetrically or symmetrically divide, resulting in the gener-
ation of one inner and the other outer daughter blastomeres or
both outer daughter blastomeres, respectively (1, 2). The blas-
tomeres allocated to different positions are restricted to specific
developmental fates. As blastomere allocation with cleavages
proceeds, polarization begins (3, 4). The outer blastomeres
retain the polarized apical features, whereas the inner ones
become morphologically apolar. Positional allocation of blasto-
meres concomitant with polarization has been shown to influ-
ence the election to become either ICM or TE (5, 6), which has
also been confirmed by numerous studies (7–10).

In mice, differences in blastomere position become apparent
at the 16-cell stage; subsequently, lineage-specific transcrip-
tional profiles are simultaneously composed and completed by
the 32-cell stage, embryonic day (E) 3.0 (11). By E4.5 (128-cell
stage), the primitive endoderm (PrE) is specified within the
ICM to give rise to the yolk sac, which is the second cell fate
decision after the first ICM/TE decision. The blastomeres other
than PrE within the ICM are epiblast, which gives rise to the
embryo proper. The PrE layer is arranged in the laminae adja-
cent to the blastocoel. After these blastomere specifications,
three components are generated to construct a whole concep-
tus: epiblast, PrE, and TE. Thus, the different microenviron-
ments provided by the inside and outside blastomeres lead to
and ensure each blastomere specification through the accom-
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modation of key differentiation markers to determine lineage-
specific transcriptional profiles.

These microenvironments can be experimentally redesigned
by isolating the ICM derived from a mouse blastocyst to explore
the plasticity of cell fate decisions (12). The isolation of the ICM
by TE removal leads to a posteriori externalization of the blas-
tomeres composing the outermost layer of the ICM that was
originally allocated to the inside beneath an epithelial TE layer.
The isolated ICM (iICM) from mouse blastocyst has the ability
to regenerate the TE because of the inactivation of Hippo sig-
naling, which is essential for the conversion of information
regarding blastomere position, polarity, and contact into cell
lineage–specific transcriptional commands (12). The Hippo
signaling effector YAP1 is a key regulator of cell lineage speci-
ficity in developing embryos. A nucleocytoplasmic shift in
YAP1 localization characterizes the boundary between the
ICM and TE within a blastocyst. Hippo signaling inactivation
induces the nuclear localization of YAP1, resulting in CDX2
expression through interaction with TEAD4 in the TE (13).
Interestingly, in mouse iICMs, CDX2, which commits cells to
the TE lineage, as well as GATA4, an early marker for the PrE
lineage, are expressed in the outer blastomeres, i.e. the “regen-
erated TE” (12). In contrast, the TE of a normal mouse blasto-
cyst never expresses PrE markers, including SOX17 (14, 15).
However, whether this “regenerated TE” observed in the iICM
is equivalent to the “intrinsic TE” has not yet been determined.

Another important question is whether the iICM expressing
lineage-specific transcription factors for three primary cell lin-
eages is totipotent (defined as the developmental ability to form
an entire individual). Expression of the complete set of lineage-
specific markers does not ascertain totipotency. For example,
although somatic cell nuclear transfer embryos express all the
lineage-specific marker genes (16 –19), the efficiency of normal
birth remains extremely low (20, 21), suggesting that most of
the somatic cell nuclear transfer embryos do not possess toti-
potency. Hence, cell totipotency and the potential for full-term
development can only be determined by transferring embryos
to recipient females, which would provide conclusive evidence
that positional information of blastomeres is essential for cell
fate decision in mammalian embryos.

The microenvironmental events associated with cell fate
specification at the blastocyst stage described above have rarely
been investigated in nonrodent species other than mice. How-
ever, crucial differences exist in the molecular mechanisms that
regulate cell fate specification at the blastocyst stage among
species (22–24). For example, OCT4, a representative basis of
cell pluripotency, is not restricted to the ICM in human and
bovine blastocysts, unlike that in mouse (25, 26), suggesting
that diverse regulatory mechanisms are applied in a species-
specific developmental manner. Comparing cell specifications
through the microenvironment between rodent and nonrodent
species may contribute to our understanding of diverse regula-
tion patterns during preimplantation development across
species.

We determined the TE regeneration competency of the out-
most blastomeres within the iICM by investigating the totipo-
tency of both mouse and bovine iICMs. Mouse iICMs could not
develop to term, but a calf was born from bovine iICM with

regenerated TE. This difference in maintenance of TE regener-
ation competency between the species might be attributed to
species specificity, in part, in the spatiotemporal regulation of
SOX17. The regeneration of TE in bovine as well as mouse
iICM was mediated by Hippo signaling. Some bovine iICMs
exhibited normal expression levels of bovine TE-specific genes,
which was supported by the well-developed placenta of the
newborn cattle derived from the iICM. Our findings suggest
that the TE regeneration competency is maintained in bovine
ICMs for relatively longer than in mouse ICMs, revealing the
remarkable flexibility in cell differentiation during preimplan-
tation development in mammals.

Results

Totipotency of the ICM with regeneration of TE in mice and
cattle

We assessed the competency of the iICMs to re-form a blas-
tocoel (re-cavitation; Fig. 1A). The purity of the iICMs was con-
firmed on the basis of CDX2 fluorescent signals that character-
ize TE, and no TE carryover was noted in both mouse and
bovine iICMs (Fig. 1, B and C). When the iICMs were cultured
in the embryo-cultivation medium for 24 h, the formation of
morphologically clear blastocoels was induced in both mouse
and bovine iICMs (Fig. 1A). However, the size of the blastocoel
in mouse iICMs with re-cavitation (re-iICMs) was markedly
smaller than that in intact whole blastocysts. In contrast, the
blastocoel of bovine re-iICMs was relatively well-developed,
and the blastocoel size of some bovine re-iICMs was similar to
that of intact whole blastocysts. The rate of re-iICMs to all the
cultured iICMs in mice (57.1% � 8.5) was remarkably lower
than that in cattle (97.2% � 2.0; Fig. 1D). For further compari-
son of re-iICMs between mice and cattle, we assessed the total
cell number. Immediately after the isolation of ICMs, the cell
numbers of both mouse and bovine iICMs decreased because of
TE removal. The total cell number in mouse re-iICMs tended to
decrease after 24 h of cultivation compared with that in iICMs
immediately after isolation, both of which were considerably
lower than that of intact whole blastocysts (Whole; Fig. 1E). In
contrast, the total cell number in bovine re-iICM increased by
�1.5-fold relative to that in the iICM immediately after isola-
tion (Fig. 1F), which was equivalent to half of that in Whole.
These results suggest that the competences of re-cavitation and
cell proliferation in bovine re-iICM are relatively higher than
those in mouse re-iICM.

Subsequently, to determine the totipotency of the re-iICMs
in mice and cattle, we evaluated the full-term development
potential after transfer to the uteri of recipient females. First, we
transferred 59 mouse re-iICMs derived from ICR (Institute of
Cancer Research). None of the mouse re-iICMs developed to
term (Fig. 1G). In general, the developmental competence of
mouse embryos from closed colonies, including ICR, is consid-
erably lower than that of embryos from hybrids, such as
B6D2F1 (C57BL/6 � DBA/2). Therefore, we transferred 61
B6D2F1 re-iICMs; nevertheless, none of them showed implan-
tation sites and full-term development. Like in mice, we trans-
ferred four bovine re-iICMs to three recipient cows. We used
oocytes derived from Japanese black beef cattle for producing
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iICMs because Japanese black beef cattle have a distinct black
coat-color phenotype, and neonates derived from them are dis-
tinguishable from recipient Holstein cows. Among the recipi-
ent cows, one was pregnant. Surprisingly, on day 282 (June 24,
2018) of gestation, a female calf with black coat was born vagi-
nally (Fig. 1H). The placenta discharged from the uterus after
birth (afterbirth) was morphologically normal with 92 fetal cot-
yledons. The birth weight was also normal (46 kg). The birth of
the calf provides definitive evidence that some bovine iICMs
can regenerate functional TE to support full-term develop-
ment. In contrast, no mouse iICMs developed to term, indicat-
ing that species-specific differences exist in the maintenance of
totipotency during preimplantation development. However,
mouse iICMs could also regenerate TE with primary differen-
tiation markers such as CDX2, which has been supported by the

findings of one previous study, although whether the regener-
ated TE was functional was not determined (12).

Resemblance and difference in TE regeneration from iICMs
between mice and cattle

To explore how TE regeneration was achieved in mouse and
bovine re-iICMs, we investigated CDX2 activation within the
iICM by precisely observing the dynamics of three proteins:
YAP1, TEAD4, and CDX2. In mouse normal embryos, the
interaction between YAP1 and TEAD4 is believed to be an
upstream mediator of CDX2 expression (13). YAP1 is shuttled
between the nucleus and cytoplasm in a phosphorylation-de-
pendent manner through the Hippo pathway, where the inside–
outside spatial information translates into the transcriptional reg-
ulation of CDX2. We confirmed that YAP1 nuclear translocation
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Figure 1. Totipotency of re-cavitated ICM after isolation from mouse and bovine blastocysts. ICMs isolated from each blastocyst were prepared by
detergent treatment. A, representative images of left panels: Whole, intact whole blastocyst; center panels: iICM, ICM isolated from blastocyst before in vitro
cultivation (0 h); right panels: iICM that re-formed blastocoels after 24 h of cultivation(re-iICM). Bar, 50 �m. B and C, cell numbers with CDX2 fluorescent signals
to characterize TE were counted in Wholes and iICMs in mice (B) and cattle (C). No CDX2-positive blastomeres were detected in iICMs in both species. D,
proportions of re-iICMs with a blastocoel in cultivated iICMs. Dark blue and light red bars denote mean values in mice and cattle, respectively. **, p � 0.01. E, box
plots represent the cell number in mouse whole blastocyst, iICM, and re-iICM: the two quartiles, 25th and 75th percentile, form the box with the media marked
as a line; the maximum and minimum values form the whiskers within the acceptable range defined by the two quartiles. The brown line denotes the mean
values. F, cell number in bovine whole blastocyst, iICM, and re-iICM is represented as box plots shown in G. G, table represents the full-term developmental
ability in mouse iICMs. Donor oocytes were prepared from two strains of ICR and B6D2F1 for producing re-iICMs. Embryo transfer was repeated at least three
times in each mouse strain. No mouse re-iICMs transferred showed implantation sites and developed to term at E19.5. H, viable calf was generated by embryo
transfer of four re-iICMs after a 24-h cultivation (Japanese black beef cattle � Holstein) to three recipient Holstein cows, one of which was pregnant. On
gestation day 282, a female individual with black coat was born vaginally on June 24, 2018 (upper left), and the afterbirth was morphologically normal with 92
cotyledons (lower left; bar, 30 cm). The bottom photograph shows the calf 1 month after birth. We named the calf “Matoryona” as it originated from a
TE-decapsulated iICM resembling a “Matryoshka,” a Russian nesting doll that separates to reveal smaller figures of the same sort inside.
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in the outer blastomeres was coordinated with CDX2 expression
during re-iICM formation in mice (Fig. 2A), which is consistent
with the findings of a previous study (12).

However, little is known about this elegant regulatory
mechanism of ICM/TE cell differentiation through the Hippo
pathway during early bovine embryogenesis. To ensure the
conserved molecular interaction in the Hippo pathway, we
determined the localization patterns of both YAP1 and TEAD4
in intact bovine embryos from D5.0 to D6.5 (Fig. S1, A and B).
Nuclear translocation of YAP1 in the outer cells began from
D5.0 to D5.5 and was completed in the outermost blastomeres
by the early blastocyst stage at D6.0 (Fig. S1A). In addition,
TEAD4 was localized within the nuclei after D5.5 in almost all
blastomeres composing an embryo (Fig. S1B). CDX2 started to
localize within the nuclei in the outer blastomeres at D6.0
(Fig. S1B). To compare the localization patterns of YAP1 and
CDX2 between bovine and mouse re-iICMs, we performed
dual immunostaining (Fig. 2, A and B). In both mouse and
bovine re-iICMs, YAP1 and CDX2 were colocalized within the

nuclei in the outer blastomeres. Next, we double-checked the
restricted localization of YAP1 and CDX2 to the outer blasto-
meres in bovine Whole and re-iICMs by using confocal micro-
scopic images (Fig. S2). Moreover, because direct interaction
between YAP1 and TEAD4 in species other than humans has
not yet been confirmed (27), we performed immunoprecipita-
tion for these proteins by using bovine fetal fibroblasts (Fig. 2C).
We detected YAP1/TEAD4 proteins by using Western blotting
and samples immunoprecipitated with YAP1/TEAD4 antibod-
ies. Moreover, we confirmed the localization patterns of YAP1
and TEAD4 in bovine re-iICMs. YAP1 nuclear localization in
the outermost blastomeres and TEAD4 nuclear localization in
most blastomeres of bovine re-iICMs were similar to those
observed in intact whole blastocysts after D6.0 (Fig. S1, A and B,
and Fig. 2D). The spatiotemporal localization patterns of YAP1,
TEAD4, and CDX2 in bovine embryos largely corresponded to
those in mouse embryos; the interaction between YAP1 and
TEAD4 has also been confirmed by immunoprecipitation
experiments in human HEK293 cells (27). Thus, these results
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confirm that the underlining regulatory mechanism through
the interaction between YAP1 and TEAD4 is conserved in
bovine embryos.

To further explore the differences in the localization patterns
of YAP1 and CDX2 between mouse and bovine re-iICMs, we
assessed the proportion of blastomeres with or without YAP1
and CDX2 fluorescent signals in mouse and bovine re-iICMs
(Fig. 2E). In mice, the proportion of YAP1�/CDX2� and
YAP1�/CDX2� blastomeres was 25.0 � 25.0 and 75.0 � 25.0%,
respectively. Neither YAP1- nor CDX2-positive blastomeres
(YAP1�/CDX2� and YAP1�/CDX2�) was detected in the ana-
lyzed mouse re-iICMs. Conversely, the proportion of YAP1�/
CDX2�, YAP1�/CDX2�, YAP1�/CDX2�, and YAP1�/CDX2�

blastomeres was 44.0 � 11.1, 6.0 � 2.4, 6.0 � 2.8, and 44.0 � 10.5%
in bovine re-iICMs, respectively. Unlike in mouse re-iICMs,
�50% of blastomeres exhibited CDX2 expression to character-
ize the TE. These results indicate that the competence of TE
regeneration through YAP1 expression in bovine iICM is rela-
tively higher than that in mouse iICM.

Species-specific expression of SOX17 in mouse and bovine
embryos

To obtain further insight into the transcriptional factor
responsible for cell-fate decisions leading to the difference in
the competence of TE regeneration among species, we focused
on SOX17 expression during cell differentiation from ICM to
PrE in mouse and bovine re-iICMs. In mouse embryos, SOX17
is a well-known PrE marker. However, because of insufficient
knowledge on SOX17 expression pattern during bovine pre-
implantation development, we first determined the SOX17
dynamics in bovine embryos compared with those in mouse
embryos (Fig. S3, A and B). SOX17 was absent in the mouse
embryos at E3.0 (the late morula stage), and then was expressed
in the ICM nuclei at E3.75 (the blastocyst stage). At E4.75 (the
expanded blastocyst stage), SOX17 was clearly localized in the
PrE nuclei of the ICM blastomeres facing the blastocoel (Fig.
S3A), which is consistent with the findings of previous studies
(14, 15, 28, 29). In contrast, bovine SOX17 was observed in both
ICM and TE nuclei from day 5.5 (the late morula stage) and
remained at D6.5 (the early blastocyst stage; Fig. S3B). SOX17
was localized in the ICM nuclei in the expanded bovine blasto-
cyst at D8.0 as well as in the mouse blastocyst at E3.75.
Although SOX17 is commonly localized in the ICM nuclei spe-
cifically by the late blastocyst stage in both species, it was char-
acteristically expressed in both ICM and TE around the transi-
tion to the blastocyst stage in bovine embryos. These results
indicate that SOX17 localization in the ICM nuclei is regulated
in a species-specific manner.

Based on the SOX17 localization pattern after the morula
stage, we next assessed the localization patterns of both SOX17
and CDX2 by using Whole, iICM, and re-iICM of mice and
cattle (Fig. 3). SOX17 remained localized in the ICM nuclei
after TE removal in both the species. Interestingly, the two pro-
teins were colocalized in the re-iICMs of both species. In par-
ticular, the co-localization of these proteins in mouse re-iICM
was extraordinary because most of the intact mouse embryos
did not show SOX17 expression in TE after the morula stage, as
described above (Fig. S3A). In addition, SOX17 proteins were

expressed in the TE of early bovine blastocysts at D6.5 (Fig.
S3B). To quantitatively assess the SOX17 and CDX2 localiza-
tion patterns, we investigated the proportion of blastomeres
with or without SOX17 and CDX2 fluorescent signals by using
Whole, iICM, and re-iICM of both species (Fig. 3C). In mice,
SOX17�/CDX2�-coexpressing blastomeres were rarely ob-
served in Whole (0.8 � 0.4%), whereas they were markedly
(12.7 � 4.4%) noted in re-iICMs. In cattle, the proportion of
SOX17�/CDX2�-coexpressing blastomeres in Whole and re-
iICMs was 30.6 � 7.6 and 6.9 � 3.1%, respectively. These results
show a species-specific expression pattern of SOX17 in mouse
and bovine embryos, suggesting that the ectopic SOX17 ex-
pression in the TE of mouse re-iICM led to the disruption of TE
function and failure of full-term development.

Gene expression analyses of mouse and bovine iICMs after in
vitro cultivation

To investigate whether the transcriptional profile of the
regenerated TE in bovine re-iICM is similar to that of Whole,
we performed RNA-sequencing (RNA-seq) for bovine Whole
and re-iICMs. Hierarchical clustering was used for all six sam-
ples (Whole 1–3 and re-iICM 1–3), and a dendrogram was con-
structed using the detected 9509 genes (Fig. 4A and Table S1).
In the three re-iICM samples, normalization largely occurred in
all the genes analyzed. Two Whole samples (Whole 2 and 3) and
the three re-iICM samples were closely clustered. Furthermore,
the violin plot showed that the global transcriptional profiles
for Whole and re-iICM samples were obviously approximate,
which was supported by the density plot and comparison of the
Pearson correlation coefficient between samples (Fig. 4, B and
C, and Fig. S4).

Although the global gene expression profiles between
bovine re-iICM and Whole samples were generally similar,
differentially-expressed genes (DEGs) were also noted, in
which 99 and 123 genes were significantly (p � 0.05) up- and
down-regulated in the re-iICMs compared with those in
Whole, respectively (Fig. 5, A and B, and Tables S2 and S3).
Next, we performed Gene Ontology (GO) enrichment anal-
ysis for these DEGs. The genes differentially expressed in the
re-iICM were characterized in biological function, for which
the GO terms associated with metabolism were output (Fig.
5C and Fig. S5). For example, small-molecule metabolic pro-
cess, small-molecule biosynthetic process, single-organism
metabolic process, organic acid metabolic process, and
phosphorous metabolic process regulation were included in
the list of GO terms that characterized the DEGs. In addi-
tion, Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis suggested that many DEGs were characterized in the
metabolic pathways (Fig. S6). These results indicate that the
global transcriptional profile of bovine re-iICM shares ho-
mology with that of Whole, sustaining the competence to
develop to term; however, a portion of low-grade re-iICMs
included in this analysis showed anomalous gene expression
differing from those in intact blastocysts.

To gain a better understanding of the genes that were dis-
turbed in the low-grade re-iICMs, we conducted hierarchical
clustering analysis by focusing on 292 bovine TE-dominant
genes that were determined in our previous study (30). Among
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CDX2� blastomeres; white, SOX17� and CDX2� blastomeres. The values are represented as the percentage of the above four types of blastomeres to the
total number of blastomeres. Note that the bovine whole blastocysts affluently contained blastomeres positive for both proteins (dark gray), but mouse
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than 12.7% of all the blastomeres.
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the 9509 genes shown in Fig. 4A, 158 corresponded to the
bovine TE-dominant genes (Table S4). We constructed a den-
drogram representing the homology of the transcriptional pro-
file among samples (Fig. 6A). The transcriptional profiles of
re-iICM 2 and 3 were similar to those of Whole 1, 2, and 3. The
transcriptional levels of TE-dominant genes in re-iICM 1 were
markedly lower than those in the three Whole samples (Fig.
6A). Furthermore, we selected 12 especially significant TE-
dominant genes related to transcription factors, growth factors,
transporters, transcription activators, and the following onco-
genes: CDX2, GATA3, ZFX, GATA2, ELF3, CCN2, SCUBE2,
PDGFB, ATF3, DLX4, TFAP2A, and IFNT. Their fragments per
kilobase of exon per million reads mapped (FPKM) values in
re-iICMs (re-iICM 1, 2, and 3) were compared with those in
Whole (Whole 1, 2, and 3; Fig. 6B). As shown in the dendro-

gram (Fig. 6A), the FPKM values for re-iICM 1 that did not
include GATA2 and ATF3 were lower than those for each of the
three Whole samples. In particular, the FPKM value for IFNT,
which encodes a protein essential for maternal recognition and
maintenance of pregnancy in ruminants, was not detected in
re-iICM 1, as well as in another re-iICM sample (re-iICM 3). In
contrast, the FPKM values detected in re-iICM 2 were similar to
those in Whole samples, along with IFNT transcription. These
results indicate that a part of bovine iICM is capable of regen-
erating TE normalized at the transcriptional level.

In addition, to explore the cause of insufficient TE regeneration
in mouse embryos, we performed gene expression analysis of 10
primal TE-related genes, Cdx2, Gata2, Gata3, Eomes, Tfap2c,
Fgfr1, Esrr�, Pard6b, Krt8, and Id2, that are critical for TE cell
characterization (11, 31–38) in mouse Whole and re-iICMs using
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quantitative RT-PCR (qPCR; Fig. 7, A and B). Among these genes,
Cdx2, Gata3, Eomes, Krt8, and Id2 were expressed in mouse re-
iICMs (Fig. 7A). In contrast, the relative expression levels of Gata2,
Tfap2c, Fgfr1, Erss�, and Pard6b were below detectable limits in
re-iICMs, although they were stably expressed in whole sam-

ples (Fig. 7B). However, the 10 genes were expressed at sim-
ilar levels in both bovine Whole and re-iICM samples (Fig.
7C). These results clearly showed that TE regeneration in
mouse re-iICMs was grossly deficient at the transcriptional
level, differing from that in bovine re-iICMs.
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Discussion

This study addresses the variable nature of blastomeres after
allocation to the ICM and suggests that the species-specific
molecular basis for ICM/TE cell lineages restricts the TE-re-
generation capacity. We determined the totipotency of ICM
isolated from the blastocyst-stage embryos in mice and cattle.
Our data indicated the following. (i) iICMs form blastocoels
with regenerated TE expressing CDX2 in mice and cattle. (ii)
This TE regeneration observed in mouse and bovine re-iICMs
was commonly mediated through the Hippo pathway in line
with the YAP1–TEAD4 –CDX2 axis to configure blastomeres
to their fate via transcriptional modification. (iii) One bovine
re-iICM showed full-term development, whereas none of the
�100 mouse re-iICMs transferred to recipients developed to
term or showed any implantation sites. (iv) Some bovine re-
iICMs exhibited transcriptional patterns as those in the TE of
bovine blastocysts. We also found that the PrE marker, SOX17,
was ectopically expressed in the regenerated TE of mouse re-
iICMs, although its localization was limited to the ICM nuclei
in mouse normal blastocysts throughout development, provid-
ing one possible explanation for a species-specific molecular
basis to determine and maintain cell-fate specification. Numer-
ous studies have suggested that early ICM has the ability to
differentiate into TE (39, 40). However, embryos are generally
known to begin their ICM/TE cell-fate decision by the 16-cell
stage, and restriction of the ICM to become TE cells is not
observed until the 64-cell blastocyst stage in mice (41, 42). Our
analysis of TE regeneration capacity in bovine blastocysts sug-
gested that the developmental clock to provide such restriction
of ICM to become TE is relatively slower in bovine embryos
than in mouse embryos.

Our observation that blastomeres allocated to bovine ICM
can develop to an individual organism with TE regeneration is,
to our knowledge, the first evidence in mammalian embryos
that the ICM possesses the ability to regenerate functionally-
active TE to support full-term fetal development. Such a toti-
potential state could not be maintained in mouse embryos,

likely because of the difference in the cell-fate decision process
across species. To clarify the resemblance and difference in
ICM/TE cell-fate decision between both the species, first, we
investigated the manner in which the TE is regenerated from
the iICM by analyzing YAP1 expression. In mouse embryos,
YAP1 is an upstream mediator of CDX2 expression (13, 14, 43).
YAP1 proteins localize into the nuclei in the outmost blastom-
eres, generating the TE and triggering the downstream ele-
ments of TEAD4 to induce CDX2 expression, which is essential
for TE fate specification (13). In this study, we found direct
interaction between YAP1 and TEAD4 in cattle (Fig. 2C),
which, to our knowledge, is the first evidence in species other
than human (27). Therefore, our data clearly show that the
regulation of TE differentiation by the YAP1–TEAD4 –CDX2
axis is conserved in bovine embryos. After the originally outer-
positioned TE blastomeres of bovine blastocyst were stripped,
new outer-positioned blastomeres re-expressed YAP1 and
CDX2 in their nuclei; this was also noted in mouse blastocysts.
Therefore, both mouse and bovine iICMs commonly possess
the potency to convert to TE with CDX2 expression through
the YAP1–TEAD4 interaction.

What led to the difference in the totipotential state of ICMs
between both the species? The difference of cell fate determi-
nation via SOX17 might affect the cellular integrity of the
regenerated TE. Interestingly, we found that mouse re-iICMs
showed ectopic expression of SOX17, which was coexpressed
with CDX2 in the regenerated TE (Fig. 3, A and C). SOX17 is a
transcription factor belonging to the family of the sex-deter-
mining region Y–related high-mobility group box, namely
SOX. It acts in various developmental processes (44 –46). In
addition, SOX17 has been proposed to function as a key regu-
lator of endoderm formation and differentiation, a function
that is conserved across vertebrates (29, 47–49). During mouse
development, SOX17 protein localization within a blastocyst is
coherently restricted to the PrE progenitors contained within
the ICM (15, 50). Actually, before blastocyst formation, nuclear
localization of SOX17 is never observed (Fig. S3A), which was
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consistent with the findings of a previous study (50). Mouse
ICM blastomeres at E3.5 exclusively express either epiblast-
or PrE-specific genes in a “salt–and–pepper” mosaic pattern
before the appearance of the PrE layer (51, 52). Thus, the for-
mation of epiblast and PrE is based on an initial mosaic of two
lineage progenitors at E3.5. By E4.5, their sorting and appropri-
ate positionings are established in the ICM. In this study, the
SOX17 localization pattern of mouse iICM was also maintained
in a mosaic pattern. In contrast, after 24 h of cultivation, 12.7%
of blastomeres in the re-iICMs showed coexpression of both
SOX17 and CDX2, which accounted for 20.6% of all CDX2-
positive cells (Fig. 3C). The ectopic expression of SOX17 is
commonly not observed in any developmental stage in mice;
this might have induced disrupted transcription in the regen-
erated TE, leading to the defective TE regeneration and failure
of full-term development in mouse re-iICMs.

As the SOX17 localization pattern in bovine embryos is not
yet known, we investigated the SOX17 dynamics from the
morula to blastocyst stages in cattle, matching the mouse devel-
opmental stages. Interestingly, unlike in mouse embryos, most
of the bovine blastomeres at D5.5 showed nuclear localization
of SOX17 (Fig. S3B). Eventually, nuclear SOX17 localization
was limited to the blastomeres within the bovine ICM at D8.0;
however, unlike the consistent restriction of SOX17 to the ICM
nuclei in mouse embryos, SOX17 was localized to the nuclei in
both the ICM and TE in bovine embryos until D6.5. Therefore,
the nuclear SOX17 in the TE of bovine re-iICM might have
facilitated preimplantation development, which was not
observed in mouse re-iICM. Although which genes and how
many genes are the targets of SOX17 in bovine embryos are not
yet known, the nuclear localization of SOX17 in the TE was
found to not disrupt embryo development in cattle, which is
supported by the birth of a calf derived from the re-iICM. How-
ever, we cannot exclude the possibility that some transcrip-
tional factors other than SOX17 are associated with failure of
full-term development, because some TE-related genes were
repressed in the mouse re-iICMs (Fig. 7, A and B).

To ensure the restoration of bovine re-iICM, we compared
the global gene expression patterns of three re-iICM samples
(re-iICM 1–3) with those of three Whole samples (Whole 1–3)
by using RNA-seq analysis. The global comparisons targeted at
all genes with detectable read counts (9509 genes) revealed that
the gene expression patterns in the re-iICM samples approxi-
mated those in the Whole samples. Furthermore, the DEGs in
the re-iICM samples were compared with the genes expressed
in the Whole samples, and most biological functions were rep-
resented as GO terms associated with metabolism. This might
reflect that some of the re-iICM samples contained regenerated
TE with insufficient restoration because metabolism in TE is
more active than that in the ICM (53); therefore, the disrupted
TE in several re-iICMs might affect the transcription of the
metabolism-associated genes. Therefore, we focused on the 158

TE-specific genes that were detected in our previous study (30),
and we performed hierarchical clustering analysis for those
genes in both the re-iICM and Whole samples. As expected, the
TE-specific genes in one of the re-iICM samples (re-iICM 1)
exhibited broadly lower expression levels than in the other re-
iICM and Whole samples (re-iICM 2 and 3; Whole 1–3; Fig.
6A). Moreover, the expression level of the 12 core TE-specific
genes in re-iICM 1 and 3 was considerably lower than that in
re-iICM 2; furthermore, the IFNT gene was not detected in
re-iICM 1 and 3 (Fig. 6B).

Only re-iICM 2 showed IFNT expression equivalent to that
in Whole samples, indicating that, among the three re-iICM
samples analyzed, re-iICM 2 showed a normal TE transcrip-
tional profile. These results suggested that some bovine iICMs
after TE removal are capable of regenerating TE with a tran-
scriptional profile equivalent to that of the intact whole blasto-
cyst. However, all the re-iICMs, including re-iICM 2, showed
differential expression of genes compared with that in the
Whole embryos (Fig. 5B). Therefore, elucidating which set of
genes is critical for transcriptional restoration in bovine
re-iICMs might further our understanding of the ICM 3 TE
conversion to ensure embryo totipotency.

In conclusion, we found that the newly-externalized blasto-
meres from the originally internalized ones within a blastocyst
could regenerate functional TE to support full-term develop-
ment in cattle, i.e. bovine iICM could equally regenerate TE
from both the side in contact with the original TE and the side
in contact with the original blastocoel. Explaining this observa-
tion by a typical hypothesis, namely the inside– outside model
(6), would be difficult because the microenvironment, includ-
ing the positioning of the blastomeres on the side in contact
with the original blastocoel, i.e. not in contact with the original
TE, was probably not changed before and after TE removal. The
conversion from the ICM to TE in this area would be assumed
to be regulated by another mechanism that recasts the role of
blastomeres allocated to the ICM. Furthermore, no mouse
iICMs with re-cavitation developed to term, which may explain
the diversity in TE lineage commitment of blastomeres allo-
cated to the ICM among species, indicating the differences in
the control of cell specification via key regulators such as
SOX17. Transcription of lineage-specific genes has been shown
to be driven by a developmental clock that is a temporal pro-
gram to dictate correct gene expression patterns with progres-
sive development in early embryos (54). Since the time course
until direct communication with the maternal uterus is sub-
stantially distinct between mouse (around E4.5) and bovine
embryos (around D19), the bovine developmental clock is most
probably slower than that of the mouse. Taken together, the
diversity in the totipotential state of the ICM probably reflects
that developmental courses are continually changed during
evolution and that the regulation of courses, including ICM/TE

Figure 7. Graphical representations of the expression of TE-related genes in Whole and re-iICM samples. The expression of 10 TE-related genes (Cdx2,
Gata2, Gata3, Tfap2c, Eomes, Fgfr1, Erssa, Pard6b, Krt8, and Id2) in the Whole (gray) and re-iICM (black) samples were analyzed. A, genes with detectable
expression levels were exhibited using qPCR data. B, genes with expression levels below detectable limits in the re-iICM samples were exhibited using qPCR
data. The values shown in A and B represent the levels of expression relative to that of the reference gene (Gapdh). C, FPKM values of the genes examined in B
from RNA-seq analysis of bovine re-iICM samples (Fig. 4). The values of single embryo samples are represented by white bars. The means of values are
represented by gray bars (Whole) or black (re-iICM). N.D., not detected.
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lineage specification, requires the momentous adjustability for
these alterations.

Experimental procedures

Ethics approval

All experimental protocols were approved by the Regulatory
Committee for the Care and Use of Laboratory Animals, Hok-
kaido University.

Embryo preparation in mice and cattle

Mouse and bovine preimplantation embryos for analyses in this
study were produced using in vitro fertilization (IVF), as described
in our previous studies (30, 55). In mice, female ICR or BDF1
(C57BL/6N � DBA/2N) mice were superovulated by injections of
5 IU PMSG (ASKA Pharmaceutical Co., Ltd., Tokyo, Japan) and 5
IU equine chorionic gonadotropin (ASKA Pharmaceutical Co.,
Ltd.), administered 48 h apart. Sperm was collected from the cauda
epididymis of mature male ICR mice, suspended in a 200-�l drop
of human tubal fluid (HTF) medium (56) in paraffin oil, and pre-
incubated for 90 min in an atmosphere of 5% CO2 at 37 °C. Subse-
quently, oocytes at metaphase II were collected from the murine
oviducts at 16 h after equine chorionic gonadotropin administra-
tion and transferred to a 100-�l drop of HTF medium in which the
sperm concentration was adjusted to 0.5–1 � 106 cells/ml. At 4–6
h after insemination, the embryos were denuded of cumulus cells,
washed with M2 medium (57), and transferred to a drop of M16
medium (58). The embryos were cultured in M16 until the blasto-
cyst stage and used for subsequent experiments. Embryonic day 0
(E0) is defined as the time when the in vitro culture (IVC) was
started.

Bovine embryos were prepared using in vitro oocyte matura-
tion (IVM), IVF, and subsequent IVC. Briefly, cumulus– oocyte
complexes (COCs) collected from slaughterhouse-derived ova-
ries were matured by culturing in TCM-199 medium (Thermo
Fisher Scientific, Inc., Waltham, MA) at 38.5 °C in a humidified
atmosphere of 5% CO2 in air for 22–24 h. IVM oocytes were
transferred to Brackett and Oliphant (B.O.) medium (59) con-
taining 2.5 mM theophylline (Wako Pure Chemical Industries,
Ltd., Osaka, Japan) and 7.5 �g/ml heparin sodium salt (Nacalai
Tesque, Inc., Kyoto, Japan). Subsequently, frozen-thawed
semen was centrifuged at 600 � g for 7 min in the B.O. medium,
and the spermatozoa were added to the COCs at a final concen-
tration of 5 � 106 cells/ml. After 18 h of incubation, the pre-
sumptive IVF zygotes were denuded by pipetting and cultured
in mSOFai medium (60) at 38.5 °C in a humidified atmosphere
of 5% CO2 and 5% O2 in air. The start of insemination was
regarded as day 0 after IVC.

Isolation of ICM from mouse and bovine blastocysts

The ICM from blastocysts in both species was isolated as
described previously (30). Briefly, the zona pellucida of the early
blastocyst stage embryos was removed using acidic Tyrode’s
solution (pH 2.5) (61) or 0.05% (w/v) proteinase K (Wako Pure
Chemical Industries, Ltd.) at E3.75 in mice and at D6.5 in cattle.
The mouse and bovine blastocyst embryos were treated with
PBS containing 0.1– 0.125% (v/v) or 0.2% (v/v) Triton X-100
(Wako Pure Chemical Industries, Ltd.) and 0.2% (v/w) polyvinyl

alcohol (Sigma) at room temperature (typically at 20 –22 °C) for
3–10 s. The embryos were carefully washed, followed by gentle
pipetting to collect pure ICMs without the TE cells. These
iICMs were collected in the embryo culture medium corre-
sponding to each species and cultured for another 24 h. The
iICMs with an obvious cavity were defined as “re-cavitated
iICM” (re-iICM).

Transfer of re-iICMs to recipient females in mice and cattle

The competence of full-term development in mouse and bovine
re-iICMs was determined by transferring re-iICMs to recipient
females, according to general embryo transfer techniques. Mouse
re-iICMs were transferred to the uterine horns of recipient female
ICR mice at 2.5 days of pseudo-pregnancy, as described previously
(62). In cattle, a recipient cow was synchronized by CIDR synch
(63) with a slight modification. The cow at the Hokkaido Univer-
sity was treated using an intravaginal progesterone-releasing
device (CIDR; InterAg, Hamilton, New Zealand) for 7 days with 2
mg of estradiol benzoate and 25 mg of dinoprost at the times of
insertion and withdrawal of the device, respectively. After the
CIDR was withdrawn, we confirmed ovulation by ultrasonography
daily (5 MHz, HS101V; Honda Electronics, Tokyo, Japan). Two
bovine re-iICMs were transferred transcervically into a recipient
cow synchronized at D6 after ovulation; this was repeated twice.
Next, we inserted CIDR for 2 weeks from the day of re-iICM trans-
fer, and pregnancy was diagnosed at the day of CIDR removal
(�26 days after ovulation).

Immunostaining

Immunofluorescence staining for embryos was performed as
described previously (64). The re-iICMs were stained using the
procedures identical to those for embryos. Briefly, zona
pellucida–removed embryos were fixed and permeabilized.
Subsequently, the embryos were blocked for 45 min with PBS
containing 20% (v/v) Blocking One (Nacalai Tesque, Inc.) and
0.01% (v/v) Tween 20 (Wako Pure Chemical Industries, Ltd.).
The following primary antibodies were used for analyses: anti-
CDX2 (ab76541, rabbit monoclonal, 1:300; Abcam, Cambridge,
UK); anti-SOX17 (AF1924, goat polyclonal, 1:1500; R&D Sys-
tems, Minneapolis); two types of anti-YAP1 (H00010413-M01,
mouse monoclonal, 1:100; Novus Biologicals, Littleton, CO,
and 4912S, rabbit polyclonal, 1:100; Cell Signaling Technol-
ogy, Danvers, MA); and anti-TEAD4 (ab58310, mouse
monoclonal, 1:1500; Abcam). The two types of anti-YAP1
were used properly according to species to avoid cross-stain-
ing for dual immunostaining. Temperature and incubation
time for the primary antibody reaction varied depending on the
target protein, i.e. overnight at 37 °C for CDX2, overnight at
4 °C for SOX17, overnight at room temperature for YAP1, and
2 h at room temperature for TEAD4. The following secondary
antibodies were used: Alexa Fluor 488 donkey anti-rabbit IgG
(A21206, polyclonal, 1:400; Invitrogen, Tokyo, Japan); Alexa
Fluor 488 goat anti-mouse IgG (A11001, polyclonal, 1:400;
Invitrogen); Alexa Fluor 488 donkey anti-goat IgG (ab150129,
polyclonal, 1:400; Abcam); and Alexa Fluor 555 goat anti-rabbit
IgG (A21428, polyclonal, 1:400; Invitrogen). All the antibodies
were diluted in PBS containing 5% (v/v) Blocking One and
0.01% (v/v) Tween 20. For reaction with the secondary antibod-
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ies, the embryos were incubated for 30 min at room tempera-
ture. DNA was counterstained with 25 �g/ml Hoechst 33342
(Sigma) for 5 min at room temperature. Fluorescence signals
were visualized using a TCS SP5 confocal laser-scanning
microscope (Leica, Tokyo, Japan) or a LAS X with DMi8 fluo-
rescence microscope (Leica). The proportion of marker protein
(CDX2, YAP1, or SOX17)-positive blastomeres to all the blas-
tomeres within an embryo was analyzed by manually counting
the blastomeres from immunofluorescence images. For each
protein, blastomeres in which nuclear fluorescence signals
were obviously stronger than those within the cytoplasm were
regarded as positive fluorescence signals. The total cell number
was determined using Hoechst staining as described above.

Coimmunoprecipitation

Immunoprecipitation (IP) was performed using the Pierce
coimmunoprecipitation kit (26149; Thermo Fisher Scientific)
according to the manufacturer’s instructions. Briefly, bovine
fetal fibroblast cells were cultured in Dulbecco’s modified
Eagle’s medium (Sigma) containing 10% (v/v) fetal bovine
serum (PAA, The Cell Culture Co., Pasching, Austria) in an
atmosphere of 5% CO2 at 38.5 °C until the cells became 80%
confluent. Next, the cells were detached and centrifuged to
obtain a pellet. Subsequently, 50 mg of cell pellet was lysed in
500 �l of IP Lysis/Wash Buffer. For immunoprecipitation,
45–50 mg of pre-cleared lysate was used. Incubations with 10
�g of anti-YAP (H00010413-M01) and 7 �g of anti-TEAD4
(ab58310) antibodies were performed initially at 37 °C for 2 h
and subsequently at room temperature overnight. Immunopre-
cipitated samples were washed seven times in IP Lysis/Wash
Buffer and eluted in sample buffer containing 62.5 mM Tris-
HCl, 10% (v/v) glycerol, 5% (v/v) 2-mercaptoethanol, 2.5% (w/v)
SDS, and 0.005% (w/v) bromphenol blue. The samples were
treated at 70 °C for 15 min before electrophoresis. For Western
blot analysis, 6 �l of precipitated sample per lane was run on an
8% (w/v) polyacrylamide gel and transferred to a polyvinylidene
difluoride membrane (Bio-Rad). The membrane was blocked
with PBS containing 4% (w/v) skim milk (Nacalai Tesque) and
0.1% (v/v) Tween 20 and incubated overnight with the follow-
ing antibodies: anti-YAP1 (H00010413-M01, 1:500) at room
temperature and anti-TEAD4 (ab58310, 1:500) at 4 °C. Subse-
quently, the membrane was incubated for 50 min at room tem-
perature with horseradish peroxidase– conjugated donkey
anti-rabbit IgG (NA934, monoclonal, 1:5000; GE Healthcare,
UK) and horseradish peroxidase– conjugated sheep anti-
mouse IgG (NA931, monoclonal, 1:5000; GE Healthcare). The
images of the protein bands were obtained using a Bio-Rad
ChemiDocTM EQ densitometer (Bio-Rad).

RNA-seq library construction

Total RNA from zona pellucida–removed whole blastocysts
and re-iICMs after 24 h culture was extracted using ReliaPrep
RNA Cell Miniprep System (Promega, Madison, WI). In each rep-
lication, 15 embryos and re-iICMs each were used per sample. The
cDNA was then synthesized and amplified using SMART-Seq
version 4 Ultra Low Input RNA kit for sequencing (Takara
Bio, Shiga, Japan) and purified using Agencourt AMPure XP
Kit (Beckman Coulter). RNA integrity was checked using

Agilent 2100 Bioanalyzer (Agilent, Tokyo, Japan). Libraries
were constructed using Nextera DNA Library Preparation Kit
(Illumina, Tokyo, Japan). Sequencing was performed in 150-bp
paired-end format on an Illumina HiSeq 2500 system
(Illumina).

RNA-seq data analysis

Sequencing reads were mapped to the July, 2018, assembly
of the bovine genome (UMD3.1) by using TopHat2 software.
The FPKM values were calculated for each gene and used in
the subsequent analyses. The logarithm of the �0 raw FPKM
value was considered for graphical representation. Genes whose
FPKM of �1 were considered as expressed. DEG analysis was
performed using DESeq package by normalizing the expression
values to Trimmed mean of M. Hierarchical clustering analysis
was performed using Euclidean distance for similarity between
samples, and Ward’s method was used for distance measure-
ment among clusters. The “TE-specific genes” (Fig. 6A) were
the expressed (whose FPKM �1) genes included in the list of
those predominantly expressed in the TE in our previously pub-
lished microarray data (30). GO (http://www.geneontology.
org/)3 analyses were performed using R package GOseq (66,
67). The enrichment of each GO term was determined using the
hypergeometric distribution test, and the statistical index value
was represented as the p value. In GO enrichment analysis (Fig.
S5), the background denotes whole genes annotated by any
term. Pathway enrichment analysis was performed based on
the KEGG pathway database (https://www.genome.jp/kegg/
pathway.html).3

Quantitative RT-PCR

qPCR for mouse embryos was performed using a LightCy-
cler� 96 (Roche Diagnostics, Basel, Switzerland) as described
previously (64). Total RNA from zona pellucida–removed sin-
gle whole blastocysts and re-iICMs after 24 h culture was
extracted using Arcturus� PicoPure� RNA isolation kit
(Thermo Fisher Scientific). cDNA synthesis was conducted
using ReverTra Ace qPCR RT Master Mix (Toyobo, Osaka,
Japan). Quantitative PCR was performed after preparing the
reaction mixtures in THUNDERBIRD SYBR qPCR Mix
(Toyobo). The primer sets used for qPCR analysis are listed in
Table S5. Thermal cycling conditions consisted of one cycle at
95 °C for 30 s (denaturation), followed by 50 cycles at 95 °C for
10 s (denaturation), and annealing temperature corresponded
to each primer set for 15 s (primer annealing) and 72 °C for 30 s
(extension). Five independent embryo samples were used for
each experiment. Relative mRNA abundance was determined
three times and calculated using the 

Ct method, with Gapdh
as the reference gene (65) in each sample.

Statistical analysis

Statistical significance was analyzed using Student’s t test or
analysis of variance, followed by the Tukey’s post hoc tests. The
data are presented as mean � S.E. The percentage data were
subjected to an arcsin transformation. R software (Comprehen-

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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sive R Archive Network) was used for statistical analysis. p �
0.05 was considered statistically significant.
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