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Ribosome biogenesis is critical for proliferating cells and
requires the coordinated activities of three eukaryotic RNA po-
lymerases. We recently showed that the small ubiquitin-like
modifier (SUMO) system controls the global level of RNA poly-
merase II (Pol II)– controlled transcription in mammalian cells
by regulating cyclin-dependent kinase 9 activity. Here, we pres-
ent evidence that the SUMO system also plays a critical role in
the control of Pol I transcription. Using an siRNA-based knock-
down approach, we found that multiple SUMO E3 ligases of the
PIAS (protein inhibitor of activated STAT) family are involved
in SUMO-mediated repression of ribosomal DNA (rDNA) gene
transcription. We demonstrate that endogenous SUMO re-
presses rDNA transcription primarily by repressing upstream-
binding factor and proto-oncogene c-Myc expression and that
ectopic overexpression of SUMO-associated enzymes addition-
ally represses rDNA transcription via c-Myc SUMOylation and
its subsequent degradation. The results of our study reveal a
critical role of SUMOylation in the control of rDNA transcrip-
tion, uncover the underlying mechanisms involved, and indicate
that the SUMO system coordinates Pol I– and Pol II–mediated
transcription in mammalian cells.

Ribosome biogenesis is a major cellular process that occurs
in specific nuclear compartments, the nucleoli. A rate-limiting
step in this process is ribosomal DNA (rDNA)5 transcription by

RNA polymerase (Pol) I, which accounts for up to 60% of cel-
lular RNA synthesis in proliferating cells (1–3). Pol I transcrip-
tion is initiated by binding of upstream-binding factor (UBF)
and selectivity factor 1 (SL1) complex to the rDNA promoter.
The UBF–SL1 complex in turn promotes the recruitment of a
subpopulation of RRN3 (also known as TIF-1A)–associated Pol
I to form a Pol I preinitiation complex at the rDNA promoter (4,
5). In mouse and human cells, �200 rDNA gene copies per
haploid genome are distributed in 5 clusters on different chro-
mosomes. Despite the need for a high level of rDNA transcrip-
tion, typically only a fraction of the rDNA genes is transcrip-
tionally active, and the remaining genes are epigenetically
silenced (6, 7). Although much progress has been made in
study of regulation of Pol I transcription by signaling path-
ways and epigenetic mechanisms (7–12), the less well-un-
derstood is the molecular mechanism(s) that coordinates the
transcription by Pol I and transcription by Pol II. In this
regard, transcription factor c-Myc has been shown to
enhance Pol I transcription directly by binding to the rDNA
promoter region (13, 14), and in a model of granulocyte dif-
ferentiation, c-Myc also stimulates Pol II– dependent tran-
scription of a cohort of factors associated with Pol I tran-
scription (termed “Pol I regulon”) (15, 16).

Reversible post-translational modification with the small
ubiquitin-related modifier SUMO (SUMOylation) is in-
volved in essentially all fundamental cellular processes in
eukaryotic cells (17, 18). SUMOylation is governed by a con-
served cascade consisting of an E1-activating enzyme, an
E2-conjugating enzyme UBC9, and multiple E3 ligases. By
modification of a large number of transcription factors and regu-
latory proteins, SUMO has a broad role in regulation of transcrip-
tion by Pol II (19–22). Furthermore, we recently reported that
SUMO has a novel role in regulating the global level of Pol II tran-
scription via inhibiting transcription elongation through CDK9
SUMOylation (23). SUMO has also been shown to regulate the
stability of rDNA repeats in Saccharomyces cerevisiae (24) and
rRNA processing and ribosome maturation in metazoan (25–28).
However, it is surprisingly not known whether SUMO also regu-
lates Pol I transcription.

In this study we investigated whether and how SUMO reg-
ulates Pol I transcription in mammalian cells. We show that
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similar to its role in repressing global Pol II transcription,
SUMO also represses Pol I transcription. Furthermore, we
present evidence that SUMO represses Pol I transcription
indirectly, primarily through control of UBF and c-Myc
expression.

Results

SUMO represses Pol I transcription

We recently showed that SUMO represses the global Pol II
transcription by SUMOylation of CDK9 and consequently pre-
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vents the formation of P-TEFb complex (23) that is required for
efficient transcriptional elongation of Pol II–transcribed genes.
To determine whether SUMO also represses Pol I transcrip-
tion, we knocked down UBC9, the sole SUMO E2-conjugating
enzyme in HEK293T and HeLa cells by two distinct shRNAs
(Fig. 1, A and B, left panel). Subsequent analysis of newly tran-
scribed rDNA products, the 47S rRNA precursor, by quantita-
tive RT-PCR (RT-qPCR) as reported (11, 12) showed that
knockdown of UBC9 led to substantially increased levels of the
rRNA precursor in both cell lines (Fig. 1, A and B, right panel).
This observation was further confirmed by knockdown of
UBC9 in these cells using a synthetic siRNA (Fig. 1, C and D).
Thus, knockdown of UBC9 elevated the level of rDNA tran-
scription, suggesting that the Pol I–mediated rDNA transcrip-
tion is repressed by the endogenous SUMO system. In support
of a repressive role of SUMO on Pol I transcription, we found
that ectopic overexpression of FLAG-tagged SUMO E2 enzyme
UBC9 inhibited rDNA transcription in HeLa cells, and this
inhibition is further enhanced by co-expression of a GFP-
tagged SUMO1 (Fig. 1E). However, no inhibition of rDNA tran-
scription was observed when a SUMO E2-inactive UBC9
mutant (C93S) was expressed alone or together with GFP–
SUMO1. Thus, UBC9 suppresses rDNA transcription in a
SUMOylation-dependent manner.

To further evaluate the effect of SUMO on rDNA transcrip-
tion, we used an assay based on incorporation of the uridine
analog 5-ethynyluridine (EU) into newly synthesized RNAs
(29). Because rRNA synthesis accounts for �60% of total tran-
scription and is restricted in the nucleolus, imaging detection of
incorporated EU after a 30-min pulse labeling reaction using a
click chemistry (29) revealed unique bright EU spots that
showed a perfect co-localization with a nucleolus resident pro-
tein NCL (nucleolin), thus reflecting the levels of rDNA tran-
scription (Fig. 1F). Using this assay, we found that knockdown
of UBC9 led to increased size and intensity of EU foci (Fig. 1G).
In contrast, ectopic overexpression of UBC9 markedly dimin-
ished the size and intensity of EU foci, and this effect was fur-
ther enhanced by co-expression of GFP–SUMO1 (Fig. 1H).
Although increased Pol II transcription activity may also partially
contribute to increased EU incorporation in UBC9-knockdown
cells, marked reduction of EU foci in FLAG–UBC9 – expressing
or FLAG–UBC9 plus GFP–SUMO1– expressing cells (Fig. 1H)
provided clear evidence that SUMO plays a role in repression of
rDNA transcription.

Multiple PIAS family E3 ligases are involved in repression of
rDNA transcription

To further confirm a role of SUMO in repression of rDNA
transcription, we tested whether the PIAS (protein inhibitor of
activated STAT) family proteins, the major SUMO E3 ligases
(30), are involved in this repression. We used smart pools of
siRNAs against various PIAS mRNAs to treat HeLa cells for 2
days and measured the efficacy of knockdown by RT-qPCR
analysis (Fig. S1A). Subsequent RT-qPCR analysis of 47S rRNA
precursor showed that knockdown of PIAS1, PIAS2, and PIAS4
resulted in variously increased levels of rDNA transcription
(Fig. 2A). To substantiate the siRNA-based observation, we
designed two different shRNAs targeting PIAS1 and PIAS4,
respectively. We validated by RT-qPCR analysis that transfec-
tion of HeLa cells with these shRNAs but not shVector (shVec)
was able to down-regulate the levels of corresponding PIAS1
and PIAS4 mRNAs (Fig. S1B). Importantly, we found that
knockdown of PIAS1 or PIAS4 by their specific shRNAs led to
elevated levels of rDNA transcription in HeLa cells (Fig. 2B).
Furthermore, by EU incorporation assay, we observed elevated
levels of rDNA transcription in shPIAS1- or shPIAS4-trans-
fected but not control shVect-transfected cells (Fig. 2C).
Together, these loss-of-function assays suggest that multiple
PIAS E3 ligases are likely involved in repression of rDNA genes
by SUMO.

In agreement with the loss-of-function results by siRNA/
shRNA knockdown, we found that ectopic overexpression of
PIAS1, PIAS2�, and PIAS4 repressed rDNA transcription as
revealed by EU incorporation assay, whereas ectopic overex-
pression of PIAS2� and PIAS3 failed to do so (Fig. 2D). Repres-
sion of rDNA transcription by PIAS1 depended on its SUMO
E3 ligase activity, because a mutant PIAS1 defective in E3 ligase
activity failed to repress rDNA transcription in EU incorpora-
tion assay (Fig. 2E). Furthermore, we confirmed by RT-qPCR
that ectopic overexpression of PIAS1, but not its E3 ligase
mutant, repressed rDNA transcription in HeLa cells (Fig. 2F)
and HEK293T cells (Fig. S1C), and this repression was further
enhanced by co-expression of GFP–SUMO1. Taken together,
both loss- and gain-of-function assays provide evidence that
multiple PIAS family E3 ligases are involved in repression of
rDNA transcription, and experiments with PIAS1 indicate that
PIASs are likely to repress rDNA transcription in a SUMO E3
activity-dependent manner.

Figure 1. rDNA transcription is repressed by endogenous SUMO system. A and B, HEK293T cells (A) or HeLa cells (B) were transfected with two different
shRNAs targeting UBC9, and Western blotting and RT-qPCR analyses were performed to detect the levels of UBC9 proteins (left panel) and the relative levels of
47S rRNA precursor (right panel), respectively. C and D, HEK293T cells (C) and HeLa cells (D) were treated with siRNA targeting UBC9, and Western blotting and
RT-qPCR analyses were performed to detect the levels of UBC9 proteins (left panel) and the relative levels of 47S rRNA precursor (right panel), respectively. Note
that the level of pre-rRNA in scramble control siRNA (NC)-transfected cells was set as 1. E, ectopic overexpression of UBC9 and SUMO1 repressed rDNA
transcription. HeLa cells were transfected with or without FLAG–UBC9 and/or GFP–SUMO1 as indicated. Expression of UBC9 and SUMO1 was confirmed by
Western blotting analysis (upper panel). The levels of rDNA transcription were determined by RT-qPCR. Note that Western blotting with anti-GFP antibody
revealed that co-transfection of FLAG–UBC9 but not FLAG–UBC9m(C93S) promoted global SUMOylation. F, fluorescent imaging showing complete co-local-
ization of EU staining with nucleolin. HeLa cells were pulse-labeled with ethyneluridine for 30 min and processed for detection of RNA-incorporated EU by click
chemistry and nucleolin by immunostaining. Scale bar, 20 �m. G, the EU incorporation assay showing a significantly increased EU incorporation in shUBC9-
transfected cells (marked by arrowheads) compared with untransfected control cells. HeLa cells were transfected with two different shRNAs against UBC9 as
indicated. Two days after transfection, the cells were pulse-labeled with EU for 30 min and then processed for imaging of EU. Scale bar, 20 �m. H, EU
incorporation assay showing the effect of ectopic overexpression of UBC9 and/or SUMO1 on rDNA transcription. Note that the EU incorporation was drastically
repressed in UBC9 and UBC9 plus SUMO1-transfected HeLa cells (marked by arrowheads). Scale bar, 20 �m. All Western blots were performed at least three
times, and the data were highly reproducible. The immunofluorescent staining experiments were also repeated at least three times, with the rate of transfected
cells with increased or reduced levels of EU incorporation counted from all three or more representative experiments (means � S.D.). DAPI,
4�,6�-diamino-2-phenylindole.
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Repression of rDNA by SUMO correlates with reduced levels of
UBF and C-Myc proteins

Thus far, we have demonstrated that the SUMO system
represses rDNA transcription. To define the mechanisms
underlying SUMO-mediated rDNA transcriptional repression,
we first examined whether key transcription factors required
for Pol I transcription are sumoylated. Intriguingly, our exten-
sive effort failed to detect significant SUMOylation of endoge-
nous NCL, UBF, c-Myc, RRN3, and TAF1B, a subunit of the SL1
complex, even under the conditions with ectopically overex-
pressed UBC9 plus SUMO1 (Fig. S2A) or PIAS1 plus SUMO1
(Fig. S2B), with which rDNA transcription was markedly sup-
pressed (Fig. 1E and Fig. 2F and Fig. S1C). In addition, we also
failed to detect SUMOylation of RPA194, the large subunit of
RNA Pol I (Fig. S2, A and B). The failure in detecting
SUMOylation on these proteins was unlikely caused by techni-
cal problems, because an increase in SUMOylation was
detected for endogenous HDAC1 and HDAC2 under the same
condition (Fig. S2A).

Although we could not detect SUMOylation on aforemen-
tioned Pol I regulatory proteins, we consistently observed a
reduced level of UBF and c-Myc proteins upon overexpression
of PIAS1 plus SUMO1 (Fig. 3A). Furthermore, the reduction of
UBF and c-Myc proteins upon overexpression of PIAS1 plus
SUMO1 depended on the E3 ligase activity of PIAS1 (Fig. 3A).
On the other hand, ectopic overexpression of PIAS1 and
SUMO1 did not significantly affect the levels of NCL, RRN3,
TAF1B, and RPA194 proteins (Fig. 3A). Quantitative RT-PCR
analysis revealed that ectopic overexpression of PIAS1 and
SUMO1 also led to a substantial reduction of UBF and c-Myc
mRNAs, but not that of NCL and TAF1B (Fig. 3B), suggesting
that the reduction of UBF and c-Myc proteins upon overex-
pression of PIAS1 plus SUMO1 is likely due to repression of
their transcription. Similarly, we found that ectopic overex-
pression of PIAS1 plus SUMO1 also reduced the levels of
endogenous UBF and c-Myc proteins (Fig. S3A) and the levels
of UBF and c-Myc mRNAs (Fig. S3B) in an E3 activity-depen-
dent manner in HEK293T cells. Thus, repression of rDNA tran-
scription by ectopically expressed UBC9 or PIAS1 plus SUMO1
correlates with repression of UBF and c-Myc expression. In
contrast, we found that knockdown of UBC9 in HeLa cells led
to an elevated level of UBF and c-Myc proteins (Fig. 3C) and
elevated UBF and c-Myc mRNAs (Fig. 3D). Similarly, we found
that knockdown of UBC9 in HEK293T cells by either shRNA or
siRNA also led to an elevated level of UBF and c-Myc proteins

(Fig. S3C). Thus, these data reveal a role of SUMO in repression
of UBF and c-Myc expression.

We also used immunofluorescence assay to examine whether
SUMO represses UBF and c-Myc expression. First, we observed
that ectopic co-expression of PIAS1 and SUMO1, but not
PIAS1m and SUMO1, substantially reduced the levels of c-Myc
(Fig. 3E) and UBF proteins (Fig. S4A), but not NCL and RPA194
proteins in HeLa cells (Fig. S4B). In contrast, knockdown of
UBC9 by shRNAs resulted in elevated levels of UBF and c-Myc
proteins, but not NCL in shUBC9-transfected cells (Fig. 3F).
Together, these data suggest that SUMO may repress rDNA
transcription through its ability to repress UBF and c-Myc
expression. In support of this, we found that UBF and c-Myc are
both important for rDNA transcription, because knockdown of
either UBF (Fig. S5A) or c-Myc (Fig. S5C) led to reduced rDNA
transcription in HeLa cells (Fig. S5, B and D), consistent with
previous reports that UBF and c-Myc are essential for rDNA
transcription (13, 14, 31, 32).

Endogenous SUMO represses rDNA transcription indirectly
and mainly through repression of UBF and c-Myc expression

We recently showed that SUMO globally represses Pol II
transcription through SUMOylation of CDK9 (23). SUMOyla-
tion of CDK9 blocks its interaction with cyclin T1/T2 and for-
mation of a functionally active P-TEFb complex, thus control-
ling global Pol II transcriptional elongation and gene expression
(23). Because repression of rDNA transcription correlates with
reduced expression of UBF and c-Myc, we wished to test
whether SUMO represses rDNA transcription through repres-
sion of UBF and c-Myc expression. To this end, we made use of
two engineered HEK293T cell lines that were deleted of endog-
enous CDK9 genes by CRISPR-Cas9 and stably expressed
either a Myc-tagged WT CDK9 (CDK9WT) or a SUMO-defi-
cient CDK9 mutant (CDK9K/R) with all lysine residues
mutated to arginine (Fig. 4A and Ref. 23). We showed previ-
ously that the CDK9K/R cell line was viable, whereas straight
knockout of CDK9 in HEK293 cells was lethal (23). We found
that although knockdown of UBC9 by either shRNA or siRNA
in control CDK9WT cells led to elevated transcription of UBF
and c-Myc, this was not observed in the CDK9K/R cell line (Fig.
4, B and C). We found by Western blotting analysis that
although knockdown of UBC9 by either shRNA or siRNA led to
elevated levels of UBF and c-Myc proteins, it failed to alter the
levels of UBF and c-Myc proteins in the CDK9K/R cells (Fig. 4,
D and E). We further confirmed by immunofluorescent stain-

Figure 2. Multiple PIAS family proteins are involved in repression of rDNA transcription. A, effect of knockdown of PIAS family proteins on rDNA
transcription. HeLa cells were transfected with siRNA against each of the PIAS family proteins, and 2 days after transfection the relative levels of 47S rRNA
precursor were measured by RT-qPCR. B, effect of knockdown of PIAS1 and PIAS4 by specific shRNAs on rDNA transcription. HeLa cells were transfected with
either control shVec or two different PIAS1 or PIAS4-specific shRNAs. Two days after transfection, the relative levels of 47S rRNA precursor were measured by
RT-qPCR. C, the EU incorporation assay showing that knockdown of PIAS1 or PIAS4 in HeLa cells all led to increased rRNA synthesis. The shRNA-transfected cells
are marked by arrowheads. Also shown on the right are the rates of transfected cells with increased levels of EU incorporation counted from three or more
representative experiments (means � S.D.). D, the EU incorporation assay showing the effect of ectopic overexpression of various PIAS proteins with or without
SUMO1 on rDNA transcription in HeLa cells. Transfected cells are marked by arrowheads. Note that PIAS1, PIAS2b, and PIAS4 were able to repress rDNA
transcription when they were ectopically overexpressed. Also shown on the right are the rates of transfected cells with decreased levels of EU incorporation
counted from three or more representative experiments (means � S.D.). Scale bar, 20 �m. E, the EU incorporation assay showing that ectopically expressed
PIAS1 repressed rDNA transcription in HeLa cells in an E3 ligase activity-dependent manner. Transfected cells are marked by arrowheads. Also shown on the
right are the rates of transfected cells with decreased levels of EU incorporation counted from three or more representative experiments (means � S.D.). Scale
bar, 20 �m. F, RT-qPCR analyses showing that ectopically expressed PIAS1 repressed rDNA transcription in HeLa cells in an E3 activity-dependent manner, and
the repression was augmented by co-expressed SUMO1. DAPI, 4�,6�-diamino-2-phenylindole.
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ing assay that knockdown of UBC9 resulted in elevated levels of
UBF and c-Myc in CDK9WT but not CDK9K/R cells (Fig. S6).
Together, these data indicate that in the CDK9K/R cells the
transcription of UBF and c-Myc genes and consequently their
levels of proteins are not repressed by endogenous SUMO
system.

We next examined whether rDNA transcription is repressed
by SUMO in CDK9K/R cells. Importantly, we found that
although knockdown of UBC9 by either shRNA or siRNA led to
an elevated level of rDNA transcription in the CDK9WT cells, it
failed to elevate rDNA transcription in the CDK9K/R cells (Fig.
4, F and G). By EU incorporation assay, we confirmed that
knockdown of UBC9 led to an elevated level of rDNA transcrip-
tion in CDK9WT but not in CDK9K/R cells (Fig. 4H). Together,
these data indicate that the rDNA transcription in CDK9K/R
cells is not repressed by endogenous SUMO, indicating that
endogenous SUMO represses rDNA transcription primarily
through its ability to repress transcription of UBF and c-Myc via
CDK9 SUMOylation.

Ectopic overexpression of SUMO system components represses
rDNA transcription through SUMOylation-induced c-Myc
degradation

The above results suggest that endogenous SUMO represses
rDNA transcription primarily in a CDK9 SUMOylation-depen-
dent manner. To explore additional mechanisms that SUMO
may repress rDNA transcription, we tested whether ectopic
overexpression of the SUMO system is able to repress rDNA
transcription in the CDK9K/R cells. RT-qPCR analysis revealed
that overexpression of PIAS1 and SUMO1 was able to repress
rDNA transcription in the CDK9K/R cells, albeit to a lesser
extent compared with that in the CDK9WT cells (Fig. 5A, upper
panel). We confirmed by EU incorporation assay that overex-
pression of PIAS1 and SUMO1 was able to repress rDNA tran-
scription in both CDK9WT and CDK9K/R cells (Fig. S7A).
However, overexpression of PIAS1 and SUMO1 did not signif-
icantly affect the transcription of c-Myc (Fig. 5A, lower panel)
and UBF in the CDK9K/R cells (Fig. S7B), in agreement
with their repression by SUMO being dependent on CDK9
SUMOylation.

To understand how overexpression of PIAS1 and SUMO1
repressed rDNA transcription in the CDK9K/R cells, we per-
formed Western blotting analysis of Pol I regulatory proteins.
We found that, similar to the CDK9WT cells, ectopic overex-
pression of PIAS1 plus SUMO1 in CDK9K/R cells resulted in
down-regulation of c-Myc, whereas UBF was down-regulated
only in the CDK9WT but not CDK9K/R cells (Fig. 5B). Consist-
ent with the previous results, no change in NCL, RRN3, TAFIB,

and RPA194 was observed (Fig. 5B). We confirmed by immu-
nostaining assay that ectopic overexpression of PIAS1 and
SUMO led to a reduced level of c-Myc proteins not only in the
CDK9WT cells but also in CDK9K/R cells (Fig. 5C), whereas
down-regulation of UBF was only observed in the CDK9WT
cells (Fig. S6C). Thus, ectopic overexpression of SUMO system
components is able to repress rDNA transcription in the CDK9
SUMOylation-resistant cells, possibly through down-regula-
tion of c-Myc proteins.

It was reported that SUMOylation of c-Myc can lead to sub-
sequent ubiquitination and proteasome degradation (33, 34).
We detected c-Myc SUMOylation when HeLa cells were over-
expressed with PIAS1 and SUMO1, and ubiquitin-dependent
protein degradation was blocked by MG132 (Fig. 5D). Thus,
consistent with previous studies (33, 34), ectopically expressed
SUMO is likely to reduce the level of c-Myc proteins through
SUMOylation-induced, ubiquitin-dependent degradation. In
support of this, we found that ectopic overexpression of PIAS1
and SUMO1 reduced the half-life of c-Myc proteins in
CDK9K/R cells (Fig. S8).

To test whether reduced c-Myc proteins were responsible for
reduced rDNA transcription in the CDK9K/R cells, we tested
whether ectopic overexpression of c-Myc could relieve PIAS1
and SUMO1-induced rDNA repression. We observed that
ectopic overexpression of Myc-tagged c-Myc proteins (Fig. 5E,
left panel) was able to abrogate rDNA repression instigated by
ectopically overexpressed PIAS1 and SUMO1 in the CDK9K/R
cells (Fig. 5E, right panel). Thus, ectopic overexpression of the
SUMO system components can additionally repress rDNA
transcription through a SUMOylation-mediated degradation
of c-Myc proteins.

Discussion

In this study we unravel a critical role for SUMO in regula-
tion of rDNA transcription. Knockdown of SUMO E2 enzyme
UBC9 or E3 PIAS proteins in various cells significantly elevated
rDNA transcription, whereas ectopic overexpression of SUMO
system markedly repressed rDNA transcription. We present
evidence that the endogenous SUMO system represses rDNA
transcription primarily through regulating the expression of
transcription factors UBF and c-Myc, whereas ectopic overex-
pression of the SUMO system components can additionally
repress rDNA transcription via SUMOylation-induced c-Myc
degradation.

In principle, SUMO is a dynamic modification and regulates
substrate proteins through its effect on protein–protein inter-
action, subcellular localization, activity, and stability (17, 18).
Because transcription factors and co-regulators are among the

Figure 3. Repression of rDNA transcription by SUMO correlates with transcriptional repression of UBF and c-Myc. A, Western blotting analysis showing
the effect of ectopically overexpressed PIAS1 and/or SUMO on a panel of Pol I core transcription factors, regulators, and subunit RPA194. B, RT-qPCR analyses
showing the effect of ectopically overexpressed PIAS1 and/or SUMO on the relative levels of mRNAs encoding Pol I core transcription factors and regulators.
C, Western blotting analyses showing the effect of knockdown of UBC9 in HeLa cells by using either shRNA or siRNA on a panel of Pol I core transcription factors,
regulators, and subunit RPA194. D, RT-qPCR analyses showing the effect of knockdown of UBC9 on the relative levels of mRNAs encoding Pol I core transcrip-
tion factors and regulators. The level of each mRNA in shVec-transfected cells was set as 1. E, immunofluorescent staining assay showing that ectopically
expressed PIAS1 proteins down-regulated the levels of c-Myc proteins in an E3 activity-dependent manner in HeLa cells. Also shown on the right are the rates
of transfected cells with decreased levels of c-Myc proteins based on three or more representative experiments (means � S.D.). Scale bar, 20 �m. F, immuno-
fluorescent staining assay showing elevated levels of UBF and c-Myc proteins, but not NCL, in shUBC9-transfected HeLa cells. The rates of shUBC9-transfected
cells with increased levels of UBF, NCL, or c-Myc are shown on the right, based on three representative experiments. Scale bar, 20 �m. All Western blots were
performed at least three times, and the data were highly reproducible. DAPI, 4�,6�-diamino-2-phenylindole; WCL, whole cell lysate.
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most frequently identified and characterized SUMO substrates,
it is not surprising that SUMO has been shown to play a broad
role in regulation of transcription by Pol II (20, 21, 35, 36).
Interestingly, SUMO in general is involved in transcriptional
repression, and multiple mechanisms have been proposed to
explain the roles of SUMOylation in transcriptional repression
(21, 37). We recently uncovered a novel role of SUMO in
repression of the global level of transcription via control of
P-TEFb complex formation by SUMOylation of CDK9 (23).
This finding provides a novel mechanism for transcriptional
repression by SUMO. In contrast to the well-recognized role of
SUMO in regulation of Pol II transcription and to the best of
our knowledge, it is surprisingly not known prior to this study
whether SUMO regulates rDNA transcription by Pol I. Because
knockdown of UBC9 or multiple PIAS proteins all led to
increased transcription of rDNA genes (Figs. 1 and 2), SUMO
has a role in repression of Pol I transcription. In this regard, the
EU incorporation assay, although not entirely quantitative, pro-
vides a sensitive measurement for the levels of newly synthe-
sized rRNAs in nucleoli. Because rDNA transcription accounts
for up to 60% RNA synthesis and is restricted to nucleoli com-
partments, our findings that knockdown or overexpression of
SUMO system components led to elevated or diminished EU
foci staining in nucleoli (Figs. 1 and 2) provide compelling evi-
dence for repression of rDNA transcription by SUMO.

In search of the potential mechanisms by which SUMO
represses rDNA transcription, we initially focused our atten-
tion on SUMOylation of key transcription factors required for
rDNA transcription. However, no significant SUMOylation of
endogenous UBF, NCL, RRN3, TAF1B, and c-Myc was
observed under the regular culture condition, despite the pre-
vious reports on SUMOylation of nucleolin (38) and c-Myc
proteins (33), both required for efficient rDNA transcription
(13, 14, 39). Even with overexpression of UBC9 or PIAS1 and
SUMO1, we could not observe significant SUMOylation on
these proteins (Fig. S1). Instead, we observed elevated or
reduced levels of UBF and c-Myc proteins and mRNAs upon
UBC9 knockdown or overexpression of the SUMO system
components, respectively (Figs. 1–3). These observations point
to an alternative mechanism that SUMO represses rDNA tran-
scription indirectly through regulation of UBF and c-Myc tran-
scription. In support of this idea, we find that rDNA transcrip-
tion is no longer repressed by the endogenous SUMO system in
the CDK9K/R cell line in which SUMO does not repress UBF
and c-Myc transcription (Fig. 4). Thus, endogenous SUMO
most likely represses rDNA transcription through repression of

UBF and c-Myc transcription, although we could not exclude
the possibility that SUMOylation of the Pol I regulatory pro-
teins may also partially contribute to repression of rDNA
transcription.

Although our study suggests that endogenous SUMO
represses rDNA transcription via repression of UBF and c-Myc
expression, we show that ectopic overexpression of the SUMO
system components can repress rDNA transcription through
SUMOylation-induced degradation of c-Myc proteins (Fig. 5),
in agreement with previous studies (33, 34). Indeed, c-Myc
SUMOylation can be detected upon overexpression of PIAS1
and SUMO1 and in the presence of the proteasome inhibitor
MG132 (Fig. 5D).

In sum, our study demonstrates that, similar to transcription
by Pol II, rDNA transcription by Pol I is also repressed by
SUMO. We uncover two mechanisms for SUMO-mediated
transcriptional repression of rDNA genes, an indirect one
by repression of UBF and c-Myc transcription via CDK9
SUMOylation that appears to be the major repression force by
the endogenous SUMO system and the other one by SUMO-
mediated c-Myc degradation that may dominate under an over-
expression condition. However, these two mechanisms are not
mutually exclusive and may act together to control rDNA tran-
scription and cell proliferation. Furthermore, both mechanisms
converge on the control of c-Myc protein levels, in good agree-
ment with c-Myc as a master regulator of rDNA transcription
and cell proliferation. Given the critical role of c-Myc in regu-
lating global as well as specific programs of Pol II transcription
(15, 40, 41), our study suggests that SUMO can coordinate Pol I
and Pol II transcription by controlling c-Myc expression. In
light of reported regulation of Pol III transcription by SUMO
(42, 43), it is tempting to propose that SUMO has a role in
coordinating transcription by all three RNA polymerases.

Experimental procedures

Cell lines, plasmids, and antibodies

HeLa and HEK293T cells were cultured in Dulbecco’s mod-
ified Eagle’s Medium (Gibco, Thermo Fisher) with 10% fetal
bovine serum (Gibco) in a humidified incubator at 37 °C with
5% CO2. Plasmids encoding UBC9, UBC9m (C93S), SUMO1,
CDK9, and CDK9K/R mutant were constructed as previ-
ously described (23). The CDK9 knockout cell lines with
expression of Myc-CDK9 or Myc-CDK9K/R mutant were gen-
erated as described (23). The plasmids for pCDNA3.0-HA-
PIAS1m(C346SC351SC356S) was derived from pCDNA3.0-

Figure 4. rDNA transcription is not repressed by endogenous SUMO in cells deficient in CDK9 SUMOylation. A, characterization of CDK9WT and CDK9K/R
mutant cell lines. These HEK293T cell lines, with both endogenous CDK9 genes disrupted by CRISPR-Cas9, expressed either Myc-tagged WT CDK9 (CDK9WT) or
a mutant CDK9 with all lysine residues converted to arginines (CDK9K/R). B, RT-qPCR analysis showing the effect of knockdown of UBC9 by shRNAs on the
relative levels of UBF, c-Myc, and NCL mRNAs in both CDK9WT and CDK9K/R cells. Note that the level of mRNA for each protein in shVec-transfected cells was
set as 1. C, RT-qPCR analysis showing the effect of knockdown of UBC9 by siRNA on the relative levels of UBF, c-Myc, and NCL mRNAs in both CDK9WT and
CDK9K/R cells. Note that the level of mRNA for each protein in scramble control siRNA-transfected cells was set as 1. D, Western blotting analysis showing the
effect of knockdown of UBC9 by shRNAs on the levels of c-Myc, UBF, and NCL proteins in both CDK9WT and CDK9K/R cells. E, Western blotting analyses showing
the effect of knockdown of UBC9 by siRNA on the levels of c-Myc, UBF, and NCL in both CDK9WT and CDK9K/R cells. F, Western blotting and RT-qPCR analyses
showing that knockdown of UBC9 by shRNAs led to elevated Pol I transcription in CDK9WT but not in CDK9K/R cells. Note that the level of pre-RNA in
shVec-transfected cells was set as 1. G, Western blotting and RT-qPCR analyses showing that knockdown of UBC9 by siRNAs led to elevated Pol I transcription
in CDK9WT but not in CDK9K/R cells. Note the level of pre-RNA in control scramble siRNA-transfected cells was set as 1. H, the EU incorporation assay showing
that knockdown of UBC9 by transfected shRNAs elevated the level of rDNA transcription in CDK9WT but not in CDK9K/R cells. Transfected cells are marked by
arrowheads. The rates of cells with increased EU incorporation versus counted transfected cells are shown on the right, based on three representative
experiments. Scale bar, 20 �m. DAPI, 4�,6�-diamino-2-phenylindole.
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HA-PIAS1 by site-directed mutagenesis. Various PIAS expres-
sion constructs were generated by subcloning the correspond-
ing coding sequences into the pCDNA3.0-HA vector. The
antibodies used in this study were listed as follows: rabbit anti-
UBC9 (CST catalog no. 4918, dilution 1:5000 for WB), rabbit

anti– c-Myc (Abcam catalog no. ab32072, dilution 1:5000 for
WB and 1:1000 for IF, 0.5 �g for immunoprecipitation), mouse
anti-UBF (Santa Cruz catalog no. sc-13125, dilution 1:1000 for
WB and 1:100 for IF), rabbit anti-NCL (homemade polyclonal
antibody, dilution 1:10000 for WB and 1:2000 for IF), anti-

Figure 5. Ectopic overexpression of SUMO system components can repress rDNA transcription by down-regulation of c-Myc through SUMO-induced
c-Myc degradation. A, RT-qPCR analysis showing that ectopic overexpression of PIAS1 and SUMO1 was able to repress rDNA transcription in both CDK9WT
and CDK9K/R cells. Note that ectopic overexpression of PIAS1 and SUMO1 repressed c-Myc expression in CDK9WT but not in CDK9K/R cells. B, Western blotting
analysis showing that ectopic overexpression of PIAS1 and SUMO1 down-regulated the levels of c-Myc proteins in both CDK9WT and CDK9K/R cells. Note that
the levels of UBF proteins were down-regulated in CDK9WT but not in CDK9K/R cells. C, immunofluorescent staining assay showing that ectopic overexpres-
sion of PIAS1 and SUMO1 down-regulated the levels of c-Myc proteins in both CDK9WT and CDK9K/R cells. The rates of cells with reduced c-Myc versus counted
transfected cells are shown on the right, based on analysis of three representative results. Scale bar, 20 �m. D, Western blotting analysis showing that addition
of MG132 was able to block c-Myc down-regulation induced by ectopic co-expression of PIAS1 and SUMO1 and allowed the detection of sumoylated/
ubiquitinated c-Myc proteins. E, ectopic overexpression of c-Myc abrogated PIAS1 and SUMO1-induced rDNA repression in CDK9K/R cells. The CDK9K/R cells
were transfected with PIAS1/SUMO1, together with or without Myc-tagged c-Myc, as indicated. Two days after transfection, the cells were collected for
Western blotting analysis (left panel) or RT-qPCR analysis of the 47S rRNA precursor (right panel). DAPI, 4�,6�-diamino-2-phenylindole; IP, immunoprecipitation.
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RRN3 (Abcam catalog no. ab112052, dilution 1:5000 for WB),
rabbit anti-TAF1B (Absci catalog no. AB44736, dilution 1:1000
for WB), mouse anti-RPA194 (Santa Cruz catalog no. sc-48385,
dilution 1:1000 for WB and 1:100 for IF), rabbit anti-CDK9
(Abclonal catalog no. A1564 dilution 1:1000 for WB), rabbit
anti-HDAC1 (Abclonal catalog no. A0238, dilution 1:5000 for
WB), rabbit anti-HDAC2 (Abclonal catalog no. A2084, dilution
1:5000 for WB), mouse anti-HA (Abmart catalog no. M2003,
dilution 1:5000 for WB and 1:1000 for IF), rabbit anti-HA
(Santa Cruz catalog no. sc-805 dilution 1:1000 for WB and
1:200 for IF), mouse anti-GFP (Abmart catalog no. M2004L
dilution 1:5000 for WB and 1:1000 for IF), mouse anti-FLAG
(Sigma catalog no. F7425 dilution 1:5000 for WB and 1:1000 for
IF), and mouse anti–�-actin (Sigma catalog no. A5316, dilution
1:5000 for WB).

Transfections, Western blotting analysis,
immunoprecipitation, and immunofluorescence staining

DNA and siRNA transient transfection were performed
using Lipofectamine 2000 (Invitrogen) according to the man-
ufacturer’s instructions. Western blotting, immunoprecipita-
tion, and immunofluorescence staining were performed essen-
tially as described (23), using the antibodies as indicated.
Images were obtained at 40� magnification using Olympus
IX73P2F microscope and processed using ImageJ. Images in
Figs. 1F and 2 (B and C) were taken with a Leica DM4000BLED
microscope and processed using ImageJ.

Knockdown with siRNAs or shRNAs and quantitative RT-PCR

The sequence information for siRNAs targeting human
UBC9, PIAS1, PIAS2, PIAS3, and PIAS4 were provided in
Table S1. All siRNAs were synthesized by Genepharma. The
sequences for shRNA targeting human UBC9, c-Myc, and UBF
are also listed in Table S1. The vector for shRNAs was pLKO.1.
For RT-qPCR analysis, an equal number of cells for each sample
was collected, and preparation of total RNA was carried out
using the RNAiso Plus kit (Takara catalog no. D9108A). All
cDNAs were prepared using the TransScript one-step gDNA
removal and cDNA synthesis SuperMix (TransGen Biotech
catalog no. AT311) according to the manufacturer’s instruc-
tions. Quantitative PCR analysis was performed using CFX96
touch real-time PCR detection system (Bio-Rad). The following
cycle conditions were applied for PCR analysis: initial denatur-
ation at 94 °C for 10 min, followed by 40 cycles at 94 °C for 20 s,
60 °C for 20 s, and 72 °C for 20 s. The �Ct obtained was used to
find the relative expression of genes according to the formula:
relative expression n � 2���Ct, where ��Ct � (�Ct of
respective genes in experimental groups) � (�Ct of the same
genes in control group). GAPDH was used as an internal con-
trol. GraphPad Prism 8 software was used for plotting. The
primer sequences used in the RT-qPCR are listed in Table S1.

EU labeling assay

The EU incorporation assay was carried out essentially as
described (29). Briefly, 48 h after initial transfection, EU was
added to the complete culture medium at a final concentration
of 1 mM, and cells were incubated at 37 °C for 30 min. After EU
labeling, the cells were washed with PBS and fixed in 125 mM

Pipes, pH 6.8, 10 mM EGTA, 1 mM magnesium chloride, 0.2%
Triton X-100, and 3.7% formaldehyde for 30 min at room tem-
perature. The cells were then washed with TBS and stained with
10 �M Alexa 594 –azide.

Data analysis

Statistical analyses were performed using IBM SPSS statistics
23. The data are presented as mean of two or three independent
experiments. Statistical relevance was determined using the
unpaired Student’s test for RT-qPCR. The error bars repre-
sent � S.D. Differences of p 	 0.05 were considered significant.
*, 0.01 	 p 	 0.05; **, p 	 0.01.
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