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The recently proposed idea of “urocrine signaling” hypoth-
esizes that small secreted extracellular vesicles (EVs) contain
proteins that transmit signals to distant cells. However, the
role of renal primary cilia in EV production and content is
unclear. We previously showed that the exocyst, a highly con-
served trafficking complex, is necessary for ciliogenesis; that
it is present in human urinary EVs; that knockdown (KD) of
exocyst complex component 5 (EXOC5), a central exocyst
component, results in very short or absent cilia; and that
human EXOC5 overexpression results in longer cilia. Here,
we show that compared with control Madin-Darby canine
kidney (MDCK) cells, EXOC5 overexpression increases and
KD decreases EV numbers. Proteomic analyses of isolated
EVs from EXOC5 control, KD, and EXOC5-overexpressing
MDCK cells revealed significant alterations in protein com-
position. Using immunoblotting to specifically examine the
expression levels of ADP-ribosylation factor 6 (ARF6) and
EPS8-like 2 (EPS8L2) in EVs, we found that EXOC5 KD
increases ARF6 levels and decreases EPS8L2 levels, and that
EXOC5 overexpression increases EPS8L2. Knockout of intra-
flagellar transport 88 (IFT88) confirmed that the changes in
EV number/content were due to cilia loss: similar to EXOC5,
the IFT88 loss resulted in very short or absent cilia, decreased
EV numbers, increased EV ARF6 levels, and decreased
Eps8L2 levels compared with IFT88-rescued EVs. Compared
with control animals, urine from proximal tubule-specific
EXOC5-KO mice contained fewer EVs and had increased

ARF6 levels. These results indicate that perturbations in exo-
cyst and primary cilia affect EV number and protein content.

Primary cilia, found at the surface of many cell types, are
sensory organelles known to perceive chemical (e.g. Hedgehog)
and mechanical (e.g. fluid flow) signals. Defects in primary cilia
lead to a number of human diseases termed ciliopathies. Cil-
iopathies can affect the kidney, where mutations that lead to
disruption of ciliary structure and/or function result in auto-
somal dominant polycystic kidney disease (ADPKD), auto-
somal recessive PKD (ARPKD), and nephronophthisis, which
are caused by mutations in the ciliary proteins polycystin-1
(1–3), polycystin-2 (3, 4), fibrocystin (5–7), and nephrocystins
(8), respectively. Cystic overgrowth in PKD leads to destruction
of the kidney architecture and renal failure (9). Although PKD is
the fourth leading cause of end-stage kidney disease, account-
ing for �5% of all end-stage kidney disease cases in the United
States (10), the molecular mechanisms linking ciliary mutations
to the cystic phenotype remain unclear.

Small membrane-bound extracellular vesicles (EV)2 released
via multivesicular bodies into the extracellular environment
(called exosomes) (11) mediate cell-cell communication and
affect signal transduction in recipient cells in both normal and
pathological conditions. For example, platelet-derived exo-
somes regulate coating events (12), exosomes from intestinal
epithelia activate the mucosal system (13), whereas tumor-de-
rived exosomes transfer oncogenic receptors to receiving cells
(14). In the kidney, and other organs, exosomes have also been
suggested to carry disease-specific biomarkers (e.g. for acute
kidney injury, chronic kidney disease, podocyte injury, cancers,
and PKD (15–18)).
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Over the past several years, EVs have been shown to be
released from flagella and cilia (termed ectosomes). The uni-
cellular alga Chlamydomonas achieves timely degradation of
its mother cell wall, a type of extracellular matrix, through
the budding of EVs containing a proteolytic enzyme directly
from the membranes of its flagella (19). Another study
showed that Caenorhabditis elegans-ciliated sensory neu-
rons shed and release EVs containing polycystins LOV-1, the
PKD-1 C. elegans ortholog (20), and PKD-2, and that these
EVs were abundant in the lumen surrounding the cilium
(21). Furthermore, electron microscopy (EM) and genetic anal-
ysis indicated that EV biogenesis occurred via budding from the
plasma membrane at the ciliary base, and not via fusion of mul-
tivesicular bodies, and that intraflagellar transport and the cil-
iary protein KLP-6 were required for release of PKD-2–
containing EVs. The EVs isolated from WT animals induced
male tail-chasing behavior, whereas EVs isolated from klp-6
mutant animals lacking PKD-2 did not, indicating that environ-
mentally released EVs play a role in communication and mat-
ing-related behaviors (21). Finally, it was recently shown, in
murine inner medullary collecting duct (IMCD3) kidney cells,
that, when activated, G protein– coupled receptors fail to
undergo retrieval from cilia back into the cell. These G protein–
coupled receptors concentrate into membranous buds at the
tips of cilia before release into ectosomes, and hedgehog-de-
pendent ectocytosis regulates ciliary signaling (22). Given the
growing evidence of the existence and biological importance of
ectosomes, the question of how they are regulated within the
cell arises. We hypothesize that the exocyst complex and pri-
mary cilia play a critical role in their regulation.

The exocyst is a �750 – kDa octameric protein complex ini-
tially identified in Saccharomyces cerevisiae, and is highly con-
served from yeast to mammals (23, 24). The mammalian exo-
cyst is comprised of Exoc1– 8 (previously called as Sec3, Sec5,
Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) (23) and is best
known for its role in targeting and docking vesicles carrying
membrane proteins from the trans-Golgi network (25). Impor-
tantly, we showed in renal tubule cells that exocyst components
are localized to primary cilia (26), that the exocyst is required
for ciliogenesis (27), that Exoc5-containing vesicles are seen by
EM gold microscopy at the tip and sides of primary cilia (27)
(Fig. S1), that the exocyst genetically interacts with polycystin-2
in zebrafish (28, 29), and that kidney-specific knockout of
Exoc5 leads to renal cystogenesis (30, 31). We and others have
shown that the exocyst regulates the MAPK pathway via EGFR
(29, 32, 33). Most recently, by mutating the VXPX ciliary tar-
geting sequence in Exoc5, we confirmed that the ciliary func-
tion of the exocyst is responsible for the phenotypic changes
following Exoc5 KD/KO (34). Mutations in an exocyst protein
were shown to cause Joubert syndrome, a nephronophthisis
form of PKD, in a human family (35). EVs carry many cilia-
specific membrane proteins, including the exocyst, regulators of
the exocyst (e.g. CDC42), polycystin-2, the protein product of
PKD2, as well as ciliary membrane proteins such as Smooth-
ened (36). As noted, we have also shown, using EM (27, 36), that
cilia interact with EVs. Thus, a link between the exocyst, pri-
mary cilia, and cystic kidney disease has been established.

Given that understanding the mechanisms that mediate
cilia/EV interactions could be critical to elucidating the biology
linking cilia to renal disease, especially PKD, we explored the
link between renal primary cilia, urinary EVs, and the exocyst.
Here, we show that inhibiting ciliogenesis by Exoc5 knockdown
and intraflagellar transport protein 88 (Ift88) knockout leads to
a significant decrease in EV number and a change in protein
content. EXOC5 overexpression, on the other hand, leads to an
increase in EV number, as well as a change in EV protein con-
tent. Rescue of the cilia phenotype in Ift88 KO cells with exog-
enous Ift88 reverses these changes.

Results

EV number is changed following Exoc5 perturbation

To determine how loss of cilia changes the number and/or
composition of EVs, 1.0 � 105 cells of Exoc5 OE, Exoc5 KD, and
control Madin-Darby canine kidney (MDCK) cells were seeded
in 12-well Transwell dishes and grown for 10 days with exo-
some-free medium changed daily. The conditioned medium
was collected after the final change. Following harvesting of the
medium, purification of the EVs was achieved by a series of
ultracentrifugation steps as described under “Materials and
Methods.” The nanoparticle tracking analysis was performed
with the ZetaView Nanoparticle Tracking Analyzer using
the settings described under “Materials and Methods.” The
ZetaView analysis showed that media from all the cellular
conditions (EXOC5 OE, Exoc5 KD, and control MDCK cells)
yielded 50 –150 nm EVs (Fig. 1A). The number of EVs/ml
produced by the Exoc5 KD cells was significantly less,
whereas the number of EVs/ml was significantly greater for
the EXOC5 OE cells, compared with control MDCK cells
(Fig. 1B). Using EM, we confirmed the 50 –150 nm size of the
EVs (Fig. 1C).

Proteomic analysis of EV proteins following Exoc5
perturbation

To study how Exoc5 changes the composition of EVs, we
grew large amounts (nine 15-cm plastic dishes for each repli-
cate) of EXOC5 OE, Exoc5 KD, and control MDCK cells in
minimal essential media supplemented with 5% exosome-free
FBS, and collected the protein lysate for MS, which was per-
formed as described under “Materials and Methods.”

Determination of the protein composition of extracellular
vesicles following Exoc5 perturbation

Mass spectrometry was performed as described under
“Materials and Methods.” We found that Exoc5 perturbation
significantly affected the protein composition of EVs as can be
seen by the complete segregation of samples in the dendrogram
(Fig. 2A), principal components analysis (Fig. 2B), and heat map
of differentially expressed proteins (Fig. 2C). The proteomic
data were deposited in the ProteomeXchange Database under
accession number PXD013549.

Confirmation of the proteomic results using Western blotting

To confirm the MS results, we performed Western blot anal-
ysis on two representative proteins that were interesting candi-
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dates based on the literature. We chose to investigate ADP-
ribosylation factor 6 (Arf6), a small GTPase that has been
shown to regulate Exoc5 (37). We also focused on the epidermal
growth factor receptor kinase substrate 8-like protein 2
(Eps8L2), and Erk, as we, and others, have shown that the exo-
cyst regulates the MAPK pathway via EGFR (29, 32, 33). Impor-
tantly, Arf6 and Eps8 (although not Eps8L2) have previously
been found in human urinary EVs (38), and in primary cilia (39).
We grew Exoc5 KD, EXOC5 OE, and control MDCK cells, and
isolated EVs using ultracentrifugation as described under
“Materials and Methods.” Western blotting of lysate from the
EVs showed that Exoc5 was virtually absent in Exoc5 KD cell
EVs, and significantly increased in EXOC5 OE cell EVs, com-
pared with EVs from control MDCK cells (Fig. 3, A and B). As
would be expected from our previous results showing loss of
Exoc4 with KD of Exoc5 (27), we found significantly less Exoc4
in EVs from Exoc5 KD cells (all Western blotting results were
measured in normalized arbitrary units), compared with EVs
from control MDCK cells. Similar to the MS results (Exoc5 KD,
8 � 1; EXOC5 OE, 6 � 0; MDCK WT, 4 � 3.5) there was
significantly more Arf6 in EVs from Exoc5 KD cells, compared
with EVs from control MDCK and EXOC5 OE cells, and no
significant difference in Arf6 between EVs from EXOC5 OE

and MDCK WT cells. Also similar to the MS results (Exoc5 KD,
0 � 0; EXOC5 OE, 33 � 11.5; MDCK WT, 9.3 � 3.5), there was
significantly less Eps8L2 in EVs from Exoc5 KD cells, compared
with EVs from control MDCK and EXOC5 OE cells, and more
Eps8L2 in EVs from EXOC5 OE compared with MDCK WT
cells (Fig. 3, A and B). Finally, similar to our previous results
showing that Exoc5 inhibition increases phosphorylated
(active) Erk (pErk) (29), we found that Exoc5 KD increased
pErk, whereas EXOC5 OE decreased pErk, compared with
MDCK control cell EVs (Fig. 3, A and B).

We also used a second EV isolation method, the Total Exo-
some Isolation Kit (Invitrogen), and found similar results. 1)
significantly increased levels of Exoc5 in EVs from EXOC5 OE,
and decreased levels of Exoc5 in EVs from Exoc5 KD, compared
with EVs from control MDCK cells. 2) Significantly less Eps8L2
in EVs from Exoc5 KD cells, compared with EVs from control
MDCK and EXOC5 OE cells, and more Eps8L2 in EVs from
EXOC5 OE compared with MDCK WT cells. 3) Significantly
more Arf6 in EVs from Exoc5 KD cells, compared with EVs
from control MDCK and EXOC5 OE cells, and no significant
difference in Arf6 between EVs from EXOC5 OE and MDCK
WT cells (Fig. S2).

Importantly, there were no differences in Arf6 and Eps8L2
levels in whole cell lysate from Exoc5 OE, KD, and control
MDCK cells (Fig. S3). The Arf6 and Eps8L2 levels in EVs seen
by Western blotting using both isolation methods were similar
to what we found using MS, thereby supporting the validity of
the proteomics results.

Investigation of a second cell line lacking primary cilia

Given that the exocyst has been shown by us and others (40 –
43) to perform multiple cellular functions, to confirm that our
EV results were a cilia-related effect, we grew stable Ift88 KO
and rescue cells (44) as described under “Materials and Meth-
ods.” We first confirmed that the Ift88 cells lacked cilia, whereas
Ift88 rescue cells have primary cilia (Fig. 4A). We then con-
firmed by Western blotting that the Ift88 KO cells contained no
IFT88 protein, and that the Ift88 rescue cells had IFT88 (Fig.
4B). The Ift88 KO and rescue cells were then grown to 100%
confluence, and the media were collected 5 days later, with the
media changed every 2 days. The conditioned media was col-
lected 24 h after the final media change, and EVs were purified
using ultracentrifugation as described under “Materials and
Methods.” Similar to Exoc5 KD MDCK cells, there was signifi-
cantly less EVs per cell produced by the Ift88 KO cells, as com-
pared with the Ift88 rescue cells (Fig. 4C). Analogous to what we
found following perturbation of Exoc5, we found significantly
more Arf6 in EVs from Ift88 KO cells, compared with EVs from
Ift88 rescue cells, and less Eps8L2 in Ift88 KO cells, compared
with Ift88 rescue cells. We also found increased pErk in EVs
from Ift88 KO cells compared with EVs from Ift88 rescue cells
(Fig. 4D). Overexpression of EXOC5 in the Ift88 KO cells did
not change the number of EVs produced (Fig. S4), indicating
that the decrease in EV production in Ift88 KO and Exoc5 KD
cells was related to loss of primary cilia, and not parallel
processes.

Figure 1. EV number is increased in EXOC5 OE, and decreased in Exoc5
KD, compared with control MDCK cells. A, the size and number of EVs
isolated from stable EXOC5 overexpressing (OE), Exoc5 knockdown (KD),
and control MDCK cells, using a standard ultracentrifugation procedure
as described under “Materials and Methods,” were measured with a
ZetaView scanner. The uniform size of the EVs demonstrated the purity
and consistency of the preparation, and the size (50 –150 nm) suggested
these were exosomes or ectosomes, which is the EV population we were
targeting. B, quantification demonstrated that there were significantly
more EVs from EXOC5 OE, and significantly less EVs from Exoc5 KD, com-
pared with EVs from control MDCK cells. This experiment was repeated
three times with similar results. Error bars represent 95% confidence inter-
vals. C, EM confirmed the 50 –150 nm size of the EVs.
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Determination of Arf6 levels in EVs from the urine of proximal
tubule-specific Exoc5 knockout mice

To determine whether similar events occurred in vivo follow-
ing loss of Exoc5, we generated proximal tubule-specific knock-
out mice by crossing our tdTom-Exoc5fl/fl mice (30) with
SLC34A-CreERT2 mice, which express Cre in the S1, S2, and
part of the S3 segments of the proximal tubule when induced
with tamoxifen (45). We first generated a male SLC34A-Cre-
ERT2;tdTom-Exoc5fl/� mouse, and backcrossed this mouse
against the tdTom-Exoc5fl/fl female mouse. In the first litter we
obtained a target SLC34A-CreERT2;tdTom-Exoc5fl/fl mouse
and a tdTom-Exoc5fl/fl control mouse, which was determined
by genotyping at 21 days after birth using PCR. At age 7 weeks,
we injected tamoxifen intraperitoneally for 3 days in a row into
the Exoc5fl/fl control and SLC34A-CreERT2;tdTom-Exoc5fl/fl
target mice, and collected urine using metabolic cages. Follow-
ing urine collection, the mice were sacrificed. tdTomato has a
lox-stop-lox cassette surrounding the Tomato reporter, allow-

ing us to confirm Exoc5 knockout in the SLC34A-CreERT2;
tdTom-Exoc5fl/fl mouse by tdTomato expression (red color,
Fig. 5A) (46). Identical settings on the fluorescence microscope
were used and no tdTomato expression was seen in the kidneys
of the tdTom-Exoc5fl/fl mouse (Fig. 5A). Proximal tubule-spe-
cific KO was confirmed by coexpression of the tdTomato
reporter and proximal tubule-specific Lotus tetragonolobus
agglutinin marker (Fig. 5B). EVs were isolated from the urine by
ultracentrifugation, and Western blotting was performed. Sim-
ilar to the cell culture results, significantly more Arf6 was seen
in EVs from the target SLC34A-CreERT2;tdTom-Exoc5fl/fl,
compared with the control tdTom-Exoc5fl/fl mice (Fig. 5C).
Also, similar to the cell culture results, pErk was significantly
increased in EVs from the SLC34A-CreERT2;tdTom-Exoc5fl/fl
target, compared with the control tdTom-Exoc5fl/fl mouse.
Unlike the cell culture results, we did not see a difference in
the level of Eps8L2 in EVs from the target SLC34ACreERT2;
tdTom-Exoc5fl/fl compared with the control tdTom-Exoc5fl/fl

Figure 2. EVs from EXOC5 OE, Exoc5 KD, and control MDCK cells had significantly different protein content as determined by proteomic analysis. A,
the dendrogram reveals that the experimental samples fall into three distinct groups: EXOC5-overexpressing (OE), Exoc5 knockdown (KD), and control MDCK
cells. B, this panel shows a principal component analysis (PCA plot) of the same nine samples shown in the 2D plane spanned by their first two principal
components. This plot allows visualization of the overall effect of experimental covariates and reveals the absence of batch effects. C, the top 250 differentially
expressed (DE) proteins were plotted with the blue color denoting down-regulation, and the red color up-regulation. The heat map shows that all three samples
in each condition are similar, and each of the three conditions are quite distinct.
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mouse. EVs in the urine likely come from all tubular segments,
not just the proximal tubules where Exoc5 was deleted, which
could explain the differences in the in vivo and in vitro results.

Discussion

We report here five principal findings, all of which are impor-
tant for our understanding of urinary EV production. First, we
show that primary cilia are necessary for the production/release
of a significant subset of 50 –150 nm EVs in renal tubular cells.
Primary cilia are absent in Exoc5 KD cells, and longer cilia are
found in EXOC5 OE cells (27). Primary cilia are also absent in
Ift88 KO cells, and present in Ift88 rescue cells (44). In both
Exoc5 KD and Ift88 KO cells, there were �60% less EVs pro-
duced than in their respective controls. This is remarkable in
that the primary ciliary membrane accounts for only �0.2% of

the total cell membrane (47). Furthermore, the number of EVs
produced correlated with the length of the primary cilia with
EXOC5 OE cells producing more EVs, and Exoc5 KD cells pro-
ducing less EVs, compared with control MDCK cells.

Second, depending on the length of primary cilia, the content
of the EVs was also different, as determined by MS and Western
blotting analyses. This is seen on the dendrogram as complete
segregation of protein content in EVs from EXOC5 OE (longer
cilia), Exoc5 KD (short or absent cilia), and control MDCK cells.
Western blotting confirmation of the MS results was per-
formed for two proteins, Arf6 and Eps8L2. Similar to Exoc5 KD
cells, there was more Arf6, and less Eps8L2, found in the EVs
from Ift88 KO cells, compared with Ift88 rescue cells. Finally,
there was more Arf6 in EVs from the urine of a homozygous
proximal tubule-specific Exoc5 KO compared with a littermate

Figure 3. Confirmation of the proteomic results by Western blotting. A, equal amounts of EV proteins (2 �g per lane) from EXOC5 overexpressing (OE),
Exoc5 knockdown (KD), and control MDCK cells were obtained using a series of ultracentrifugation steps as described under “Materials and Methods,” and were
run on a gel for Western blot analysis. B, quantification of the Western blotting data shows a significant decrease in Exoc5 protein in EVs from Exoc5 KD cells,
and a significant increase in Exoc5 in EVs from EXOC5 OE cells, compared with EVs from control MDCK cells. There was also significantly less Exoc4 protein in
EVs from Exoc5 KD, and increased Exoc4 in EVs from EXOC5 OE, compared with EVs from control cells. Importantly, there was a large increase in Arf6 in EVs from
Exoc5 KD, compared with EVs from control and EXOC5 OE MDCK cells. There was also significantly less Eps8L2 in EVs from Exoc5 KD cells, compared with EVs
from control MDCK cells, and more Eps8L2 in EVs from EXOC5 OE compared with control MDCK cells. Finally, there was significantly more phosphorylated
(active) Erk (pErk) in EVs from Exoc5 KD cells, compared with EVs from control cells, and less pErk in EVs from EXOC5 OE compared with control MDCK cells. This
experiment was repeated three times with similar results.
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Figure 4. EV production is decreased in ciliary-deficient Ift88 KO cells and increased in the rescue cells. A, stable Ift88 knockout (KO) and Ift88 rescue
mouse cells were grown on Transwell filters. As previously reported, Ift88 KO cells do not form cilia, whereas Ift88 rescue cells form cilia. Bar � 25 �m. B, Western
blotting from the lysate of Ift88 KO and rescue cells, shows that Ift88 is absent in the KO cells, and present in the rescue cells. C, similar to what we found with
the Exoc5-perturbed cells, the Ift88 KO cells produced significantly fewer EVs per cell than the Ift88 rescue cells. Error bars represent 95% confidence intervals.
D, similar to the Exoc5 KD cells, there was significantly more Exoc4, Exoc5, Ift88, and Eps8L2 in EVs from Ift88 rescue compared with Ift88 KO cells. There was also
significantly less Arf6 and phosphorylated (active) Erk (pErk) in EVs from Ift88 rescue compared with Ift88 KO cells.
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control mouse. A possible explanation is that Arf6 is packaged
in exosomes that are secreted via multivesicular bodies, and this
is independent of the ectosomes secreted from primary cilia.
With loss of cilia, exosomes become a higher percentage of the
EV population and, therefore, there are greater levels of Arf6
seen.

Third, we show that the exocyst is likely to be specifically
involved in ciliary EV generation. There is a question of how the
exocyst can be involved in so many different cellular processes.
We, and others, have shown that the exocyst is found in most
cell types and is involved in a wide variety of cellular processes,
including: vesicular transport to the basolateral membrane (40,
41), primary ciliogenesis (27, 29, 46), protein synthesis in the
endoplasmic reticulum (42, 43), and post-endocytic recycling
(37). We and others have also shown that small GTPases from
the Rab (48), Arf (37, 49), Rho (28, 50, 51), and Ral (52–55)
families regulate the exocyst. We hypothesize that the many
small GTPases, found at different locations in the cell, give the
exocyst specificity of function. We have shown using cell cul-
ture, zebrafish, and kidney-specific knockout in mice that
Cdc42 is found at the primary cilium and regulates the exocyst
(28). Likewise, Tuba, a ciliary Cdc42 guanine nucleotide

exchange factor, regulates the exocyst and is also necessary for
ciliogenesis, cystogenesis, and tubulogenesis (56 –58). We have
similarly shown that Arl13b, a ciliary Arf family GTPase, regu-
lates the exocyst (49). The fact that multiple small GTPases
regulate the exocyst at the primary cilium, suggests that the
exocyst, in addition to trafficking vesicles to the primary cilium,
may have other function(s) in the primary cilium. One of these
functions may be the secretion and/or retrieval of EVs. If the
exocyst were only involved in trafficking vesicles carrying pro-
teins necessary for ciliogenesis, one would expect to find it only
at the base of the primary cilium; instead, we have shown that
Exoc4 and -5 localize not only to the base of primary cilia, but all
along the primary cilium and, indeed, in cilia-interacting EVs
(27, 36). Additionally, we found that all eight members of the
exocyst complex, as well as many regulatory GTPases, includ-
ing Arf6, are present in human urinary EVs (36).

Fourth, we link the exocyst and EVs to Arf6, which has been
shown to regulate the exocyst through Exoc5 to control post-
endocytic recycling (37), a process that may also be involved in
EV generation/retrieval. Arf6 and the exocyst have also been
found in urinary EVs (38, 59). Indeed, we have previously shown
that: 1) Arl13b, another Arf family member, in its GTP form,

Figure 5. EVs from the urine of a homozygous proximal tubule-specific Exoc5 KO mouse contain more Arf6 and pErk, compared with urinary EVs from
control mice. A, kidney sections from an SLC34A-CreERT2;tdTom-Exoc5fl/fl mouse exposed to tamoxifen show tdTomato expression (red color) in the tubules
of SLC34A-CreERT2;tdTom-Exoc5fl/fl, but not in control, mice. This indicates activation of Cre and KO of Exoc5 in the SLC34A-CreERT2;tdTom-Exoc5fl/fl mice.
B, co-staining with LTA-fluorescein demonstrates that the knockout of Exoc5 is occurring in the proximal tubules. C and D, quantification of the Western
blotting data shows that there was significantly more Arf6 and phosphorylated (active) Erk (pErk) in EVs from SLC34A-CreERT2;tdTom-Exoc5fl/fl (homozygous
proximal tubule-specific Exoc5 KO) compared with tdTom-Exoc5fl/fl (control) mice.
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regulates the exocyst; 2) arl13b and cdc42 genetically interact in
zebrafish; and 3) knockout of Arl13b in mice leads to renal
cystogenesis (49). Renal cystogenesis is also seen in kidney-spe-
cific Exoc5 knockout mice surviving for 30 days (30, 31).

Finally, we show that loss of Exoc5 results in phosphorylated
(active) Erk being found in EVs. This is concordant with our
previous studies in which we found that loss of exoc5 in
zebrafish leads to increased pErk (29). We and others have also
shown that the exocyst regulates the MAPK pathway via EGFR
(29, 32, 33). Eps8L2 may be involved in this regulation, although
it would likely be an inhibitor of the pathway, as Exoc5 KD and
Ift88 KO lead to increased pERK and decreased Eps8L2.

In summary, we show here that the primary cilia and the
exocyst are involved in EV generation in mammalian renal cells,
that the exocyst, Arf6, and Eps8L2 may interact in EV genera-
tion (and possibly retrieval), and that the MAPK pathway is
likely to be centrally involved in EV generation. These data,
combined with the growing experimental evidence suggesting a
biologically relevant role for cilia/EV interactions, supports a
model whereby the exocyst is centrally involved in the regula-
tion of cilia/EV interactions via Arf6 (Fig. 6). The fact that the
exocyst complex is required for normal ciliogenesis (27), and
that an exocyst mutation results in the Joubert nephronophthi-
sis form of PKD in a human family (35), demonstrates the cen-
tral role of the exocyst in regulating normal and pathogenic
ciliogenesis, which now may also include cilia/EV interactions.

Materials and methods

Animal study approval

All animal studies were conducted per the protocols
approved by the Medical University of South Carolina and/or
Ralph H. Johnson VAMC Institutional Animal Care and Use
Committee, and NIH guidelines for the Care and Use of Labo-
ratory Animals. Treatment of mice, including housing, injec-
tions, and surgery was in accordance with the institutional
guidelines.

Cell culture

Type II MDCK cells were used between passages 3 and 10.
These cells were originally cloned by Dr. D. Louvard (European
Molecular Biology Laboratory, Heidelberg, Germany) and
came to us via Dr. K. Mostov, who obtained them from Dr. K.
Matlin (University of Chicago, Chicago, IL). We previously
generated myc-tagged human EXOC5 OE (41) and Exoc5 KD
cells (27) from parent MDCK cells. All of these cell lines were
cultured in modified Eagle’s minimal essential medium con-
taining Earl’s balanced salt solution and glutamine supple-
mented with 5% exosome-free FBS, 100 units/ml of penicillin,
and 100 �g/ml of streptomycin. Mouse Ift88 KO and rescue
cells were obtained from the NIH P30 University of Alabama at
Birmingham Hepatorenal Fibrocystic Diseases Core Center
(HRFDCC). These cells were cultured in CD media (Dulbecco’s
modified Eagle’s medium/F12, 10% exosome-free FBS, 1.3
�g/liter of sodium selenite, 1.3 �g/liter of 3,3�,5-triiodothyro-
nine, 5 mg/liter of insulin, 5 mg/liter of transferrin, 2.5 mM

glutamine, 5 �M dexamethasone, 100 units/ml of penicillin, 100
mg/ml of streptomycin, 10 units/ml of interferon-�) at 33 °C
and 5% CO2.

EV isolation

For nanoparticle tracking analysis, 1.0 � 105 cells of Exoc5
OE, Exoc5 KD, and control MDCK cells were seeded in 12-well
Transwell dishes and grown for 10 days with the medium
changed daily. For proteomic analysis, we grew large amounts
(nine 15-cm plastic dishes for each replicate) of EXOC5 OE,
Exoc5 KD, and control MDCK cells. Cells were grown to 100%
confluence, and conditioned media was harvested 5 days later,
with the media changed every 2 days.

The conditioned media was collected 24 h after the final
media change. Purification of the EVs was achieved by first

Figure 6. Model for how the exocyst is involved in EV secretion and/or
retrieval via the primary cilium. Genes are transcribed into mRNA in the
nucleus, and mRNA is translated into proteins in the endoplasmic reticulum.
Proteins destined for the primary cilium are packaged in vesicles in the trans-
Golgi network, and trafficked to the primary cilium by the exocyst complex.
Exoc5 is a central exocyst member as it links Exoc6 (bound to the vesicle via
the small GTPase Rab8) and the rest of the exocyst complex. The exocyst itself
is targeted to the primary cilium by another small GTPase, Cdc42. Finally, the
exocyst is involved in EV secretion and/or retrieval under the control of the
ciliary and EV small GTPase Arf6.
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centrifuging the conditioned media at 3,000 � g for 15 min at
4 °C to remove large debris, and then collecting the superna-
tant. The supernatant was centrifuged at 12,000 � g for 40 min
at 4 °C, and the remaining supernatant was again collected. The
final supernatant was centrifuged at 143,000 � g for 70 min at
4 °C to obtain the EV pellet, which was washed with PBS to
eliminate contaminating proteins, and centrifuged one last
time at 143,000 � g for 70 min at 4 °C. The resulting pellet was
resuspended in 150 �l of PBS.

For the second EV isolation method, EXOC5 OE, Exoc5 KD,
and control MDCK cells were grown to confluence on plastic
culture dishes in exosome-free medium, which was changed
daily, for 5 days. The conditioned medium was collected and
used to isolate EVs with the Total Exosome Isolation Kit (Invit-
rogen, catalog number 4478359) per the manufacturer’s
instructions.

Proteomic analysis of EV proteins by MS

To determine how Exoc5 changes the composition of EVs,
samples (20 �g protein) for each condition (EXOC5 OE, Exoc5
KD, and control MDCK cells-all in triplicate) were sequentially
digested with LysC (1:100) and trypsin (1:20) in sodium deoxy-
cholate (60). Peptides were desalted with solid phase chroma-
tography cartridges (Strata-x, Phenomenex). Peptides were
resuspended in 0.1% formic acid and equal amounts (2 �g) were
separated with a linear gradient of 5–50% buffer B (95% aceto-
nitrile and 0.1% formic acid) at a flow rate of 200 nl/min on a
C18-reversed phase column packed in-house with ReproSil-
Pur, 120 C18-AQ, 1.9 �m of resin. A Dionex U3000 nano-LC
chromatography system (Thermo Scientific) was on-line cou-
pled to the Orbitrap Elite instrument (Thermo Scientific). Mass
spectrometry data were acquired using a data-dependent strat-
egy in the survey scan (400 –1700 m/z). The resolution of the
survey scan was �60,000 at 400 m/z with a target value of 1e6
ions. Low resolution CID MS/MS spectra were acquired in the
linear ion trap in normal CID scan mode. The maximum injec-
tion time for MS/MS was 100 ms. Dynamic exclusion was 120 s
and early expiration was enabled. The isolation window for
MS/MS fragmentation was set to 2 m/z.

Determination of the protein composition of extracellular
vesicles following Exoc5 perturbation

The raw MS data were converted to .mgf files within Proteome
Discoverer 1.4. Peptide data were searched using MASCOT (ver-
sion 2.4) against the NCBI Canine proteome (NCBI annotation
release 104), and a common repository of adventitious proteins,
which also included green fluorescent protein (GFP). Carbam-
idomethyl modification was fixed for cysteine. Oxidation of
methionine and peptide N-terminal pyroglutamate were
selected as variable modifications. Parent ion mass tolerance
was set to 30 ppm and fragment ion mass tolerance was set to
0.25 Da. Search data were imported to Scaffold Q�S and false
discovery rate criteria (61) were applied at a level of 1% for both
peptide and protein level assignments. Count data were ana-
lyzed using DEseq2 (62, 63). Fold-change estimation and
hypothesis testing for differential expression of proteins/pep-
tides was performed using the DESeq2 Bioconductor library
(62–64). The false discovery rate was controlled at 10%.

Immunofluorescence staining

For immunofluorescence staining of MDCK cells grown on
Transwell filters, the cells were directly fixed in 4% paraformal-
dehyde for 20 min at room temperature. The fixed cells were
permeabilized for 15 min at 37 °C with 0.025% saponin in 1�
PBS. After blocking with PFS buffer (0.025% saponin and
0.7% fish skin gelatin in 1� PBS), the cells were incubated
with primary antibodies in the PFS buffer overnight at 4 °C,
and secondary antibodies for 1 h at room temperature. After
nuclear staining with DAPI, the cells were post-fixed in 4%
paraformaldehyde, and mounted with a mounting medium
(71-00-16, KPL).

Cell lysate

EXOC5 OE, Exoc5 KD, and control MDCK cells were grown
to confluence on plastic culture dishes for 5 days. Cells were
washed twice with cold PBS, lysed with RIPA buffer for 30 min
on ice, then centrifuged for 15 min at 13,500 rpm at 4 °C, to
obtain cell lysate for Western blot analysis.

Transfection

Ift88 KO cells were plated in 6-well dishes, 3 � 105 cells per
well. The following day, when cell confluence reached 70 –90%,
5 �g of DNA of pcDNA3 containing human EXOC5, or empty
pcDNA3, plasmid was used with Lipofectamine LTX (Invitro-
gen, catalog number 15338030) to transfect the Ift88 KO cells.
Transfected cells were washed twice and fed with 1.5 ml of fresh
medium 24 h following the transfection. The conditioned
media was collected 24 h after the media change and EVs were
isolated by ultracentrifugation as described above. The cells in
the 6-well dishes were then trypsinized, collected, and counted,
and the cell number was used to normalize the EV concentra-
tion. Finally, the cells were lysed with RIPA buffer for Western
blotting as described below.

Western blot analysis

The protein samples were separated on Bolt 4 –12% BisTris
gels (NW04125, Novex) and then transferred to a nitrocellulose
membrane (LC2000, Novex). The membranes were blocked
with 5% nonfat dry milk in 1� PBS containing 0.1% Tween 20
and incubated with primary antibodies overnight at 4 °C. After
washing with 1� PBS containing Tween 20, the membranes
were incubated with horseradish peroxidase-conjugated sec-
ondary antibodies for 1 h at room temperature. Finally, the
membranes were exposed to a Western blotting chemilumines-
cence reagent (34095, Thermo), and imaged in Odyssey Fc
Imaging System (LI-COR).

Antibodies

The primary antibodies used in this study were mouse mono-
clonal anti-acetylated �-tubulin (T6793, Sigma-Aldrich), anti-
EXOC5, which we previously generated (27), anti-Arf6 (sc-7971,
Santa Cruz), anti-Eps8L2 (GTX112158, GeneTex), anti-Erk (4696,
Cell Signaling) anti-pErk (9101, Cell Signaling), anti-ZO1 (a gift
from Dr. Keith Mostov), anti-glyceraldehyde-3-phosphate dehy-
drogenase (G8795, Sigma), anti-�-actin (GTX629630, GeneTex),
and anti-Exoc4 (ADI-VAM-SV016, Enzo). The secondary anti-
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bodies and stains we used were: Alexa Fluor 555, phalloidin
(A34055, Invitrogen), goat anti-mouse/anti-rabbit horseradish
peroxidase-conjugated secondary antibodies (115-035-003 for
mouse and 111-035-003 for rabbit, Jackson ImmunoResearch
Laboratories), fluorescein-labeled L. tetragonolobus lectin (LTL)
(FL-1321, Vector) and DAPI.

Histological analysis

Frozen sections of mouse kidney tissue were cut at 10-�m
thickness from frozen blocks so as not to compromise the
tdTomato signal. The sections were stained with LTA-Fluores-
cein, DAPI, and hematoxylin and eosin.

Imaging

All images were captured in tiff format and processed in
Adobe Photoshop CS5.1. For immunofluorescence, Transwell-
cultured MDCK cells were imaged on a Leica TCS SP5 confocal
microscope with an HCX PL APO �63/1.4 – 0.6 oil objective.

Nanoparticle tracking analysis

The nanoparticle tracking analysis was performed with the
ZetaView Nanoparticle Tracking Analyzer, and the tracking
parameters used were: camera sensitivity (85), shutter (250),
frame rate (30f/s), minimum brightness(20), maximum size
(1000), minimum size (8), and traces (12).

Electron microscopy (EM)

EM was used to observe EV morphology. The EV samples
were prepared as described above. For EM, briefly, 4-�l drops of
EVs in PBS were adsorbed on 300 mesh copper grids coated
with formvar/carbon (catalog number FCF300-Cu, Electron
Microscopy Sciences) for 1–5 min at room temperature, then
the grid was rinsed gently with 5 drops of 5 mM Tris buffer,
followed by 5 drops of distilled water. Samples were stained
with 0.8% uranyl acetate (catalog number 22400, Electron
Microscopy Sciences) for 30 s, followed by air drying for 30 min.
EVs were examined at 80 kV with a Morgagni 268D transmis-
sion electron microscope (FEI, Brno, CZ) equipped with a
MegaViewIII digital camera (Soft Imaging System).

Statistical analysis

Data were analyzed using Microsoft Excel for Mac (version
16.16.2), SAS software (version 9.4, SAS Institute, Cary, NC),
and R software (version 3.6.0, R Core team, Vienna, Austria).
Results were expressed as the mean � S.D., unless otherwise
specified. The Student’s t test was applied to determine the
significance of differences between treatment groups when
observations were independent. Otherwise, linear mixed mod-
els were used to account for clustering within samples. All sta-
tistical tests were two-sided and unpaired. p values �0.05 were
considered statistically significant.

For the MS data, the intensity values from the mass spectrom-
etry analysis were converted to integers within Excel and read as
raw (not normalized) values into the R package DESeq2 (64).
DESeq2 is designed to account for biological dispersion among
replicates in an experimental design and performs normalization
of the data and computes a Benjamini-Hochberg False Discovery
Rate correction on all p values for every protein in the analysis set

(65). The Identity (Fig. 2A) and PCA (Fig. 2B) are standard plots
from the DESeq2 package and offer a visual representation of the
data groups. The Heatmap (Fig. 2C) was constructed with https://
github.com/MUSC-CGM/sequencingHeatmap3 using the unsu-
pervised hierarchical clustering method of the gplots version 3.0.1
and default parameters. The protein expression data were clus-
tered as shown by the y axis dendrograms whereas the x axis is
ordered by experimental treatment.
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