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Nuclear modifier genes have been proposed to modify the
phenotypic expression of mitochondrial DNA mutations. Using
a targeted exome-sequencing approach, here we found that the
p.191Gly>Val mutation in mitochondrial tyrosyl-tRNA synthe-
tase 2 (YARS2) interacts with the tRNASer(UCN) 7511A>G muta-
tion in causing deafness. Strikingly, members of a Chinese fam-
ily bearing both the YARS2 p.191Gly>Val and m.7511A>G
mutations displayed much higher penetrance of deafness than
those pedigrees carrying only the m.7511A>G mutation. The
m.7511A>G mutation changed the A4:U69 base-pairing to
G4:U69 pairing at the aminoacyl acceptor stem of tRNASer(UCN)

and perturbed tRNASer(UCN) structure and function, including
an increased melting temperature, altered conformation, insta-
bility, and aberrant aminoacylation of mutant tRNA. Using lym-
phoblastoid cell lines derived from symptomatic and asymp-
tomatic members of these Chinese families and control subjects,
we show that cell lines harboring only the m.7511A>G or
p.191Gly>Val mutation revealed relatively mild defects in
tRNASer(UCN) or tRNATyr metabolism, respectively. However,
cell lines harboring both m.7511A>G and p.191Gly>Val muta-
tions displayed more severe defective aminoacylations and
lower tRNASer(UCN) and tRNATyr levels, aberrant aminoacyla-
tion, and lower levels of other tRNAs, including tRNAThr,
tRNALys, tRNALeu(UUR), and tRNASer(AGY), than those in the cell
lines carrying only the m.7511A>G or p.191Gly>Val mutation.

Furthermore, mutant cell lines harboring both m.7511A>G and
p.191Gly>Val mutations exhibited greater decreases in the lev-
els of mitochondrial translation, respiration, and mitochondrial
ATP and membrane potentials, along with increased produc-
tion of reactive oxygen species. Our findings provide molecular-
level insights into the pathophysiology of maternally transmit-
ted deafness arising from the synergy between tRNASer(UCN) and
mitochondrial YARS mutations.

Defects of mitochondrial tRNA metabolisms have been
associated with both syndromic deafness (hearing loss with
other medical problems, such as diabetes) and nonsyndromic
deafness (where hearing loss is the only obvious medical prob-
lem) (1–5). In humans, mitochondrial genomes (mtDNA)3

encode 13 subunits of the oxidative phosphorylation system
(OXPHOS), two rRNAs and 22 tRNAs required for translation
(6, 7). The formation of functional tRNA molecules used for
protein synthesis requires the transcription, nucleolytic pro-
cessing, posttranscriptional nucleotide modifications, and ami-
noacylation (4 –9). These proteins involved in the tRNA matu-
ration processing, especially mitochondrial tRNA synthetases,
encoded by nuclear genes, were synthesized in the cytosol and
subsequently imported into mitochondria (7, 9 –11). These
deafness-associated tRNA mutations have structural and func-
tional consequences for corresponding tRNAs (1, 12). These
included the aberrant processing of 3� end tRNASer(UCN) pre-
cursor, caused by m.7445A�G mutation (13, 14), instability
of the folded secondary structure of tRNAGlu due to
m.14692A�G mutation (15), deficient m1G37 modification of
tRNAAsp caused by m.7551A�G mutation (16), and defective
aminoacylation of tRNAHis resulting from m.12201T�C muta-
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tion (17). Furthermore, alterations in the LARS2, KARS, IARS2,
and NARS2 encoding mitochondrial leucyl-tRNA, lysyl-tRNA,
isoleucyl-tRNA, and asparaginyl-tRNA synthetases have been
associated with syndromic deafness, respectively (18 –21).
Moreover, nonsyndromic deafness in some families was caused
by the coexistence of the 12S rRNA m.1555A�G mutation and
p.Ala10Ser mutation in TRMU responsible for the biosynthesis
of �m5s2U at the wobble position of tRNAGln, tRNAGlu, and
tRNALys (22, 23). However, the pathophysiology underlying
deafness-linked aberrant tRNA metabolisms remains poorly
understood.

As shown in Fig. 1A, the deafness-associated tRNASer(UCN)

7511A�G mutation converted the A4-U69 base-pairing into
a G4-U69 base-pairing at the aminoacyl acceptor stem of this
tRNA (24 –27). This base-pairing may play an important role
in the stability and identity of tRNA (24, 25). We therefore
hypothesized that the m.7511A�G mutation perturbed both
structure and function of tRNASer(UCN). The m.7511A�G
mutation was identified in several families from different
ethnic groups, with varying expressivity and penetrance
of deafness (27–30). In particular, 9 of 10 matrilineal rela-
tives in a three-generation Chinese pedigree carrying the
m.7511A�G mutation exhibited hearing impairment, in
contrast with only a small portion of hearing-impaired
matrilineal relatives in two French pedigrees and one Japa-
nese family carrying the same mtDNA mutation (27–30).
These findings suggest that the nuclear modifier genes, espe-
cially those involved in mitochondrial tRNA metabolism,
contributed to the phenotypic expression of m.7511A�G
mutation. By target exome sequencing (genes encoding 20
mitochondrial tRNA synthetases and 25 tRNA modifying
enzymes), we identified the known variant (c.572G�T,
p.191Gly�Val) in the YARS2 gene encoding the mitochon-
drial tyrosyl-tRNA synthetase (31, 32) that interacted with the
m.7511A�G mutation to cause hearing loss in a three-generation
Chinese family with extremely high penetrance of hearing loss.
In the present study, we further investigated the impact of the
m.7511A�G mutation on the structure and function of
tRNASer(UCN). The effects of YARS2 p.191Gly�Val and
m.7511A�G mutations on mitochondrial functions were first
assessed for the tRNA metabolism, including aminoacylation
capacities and stability of tRNA, through the use of lymphoblas-
toid mutant cell lines derived from members of the Chinese family
(individuals carrying only the m.7511A�G mutation, only the
YARS2 p.191Gly�Val mutation or both m.7511A�G and
heterozygous or homozygous p.191Gly�Val mutations), and
genetically unrelated control subjects lacking these mutations.
These cell lines were further evaluated for an effect on mitochon-
drial translation, respiration, production of ATP, mitochondrial
membrane potential, and reactive oxygen species (ROS).

Results

The m.7511A>G mutation altered the stability and
conformation of tRNASer(UCN)

As shown in Fig. 1A, the m.7511A�G mutation changed the
typical A4-U69 base-pairing into a noncanonical G4-U69 base-
pairing at the acceptor stems. To experimentally test the effect

of m.7511A�G mutation on the stability of tRNASer(UCN), we
examined the melting temperatures (Tm) of WT (A4) and
mutant (G4) tRNASer(UCN) transcripts. These Tm values were
determined by calculating the derivatives of the absorbance
against a temperature curve. As shown in Fig. 1B, the Tm values
for WT (A4) and mutant (G4) tRNASer(UCN) transcripts were
41.7 and 51 °C, respectively. These data suggested that the
tRNASer(UCN) with a G4:U69 bp may be more stable than the
tRNASer(UCN) with an A4:U69 bp.

As shown in Fig. 1C, electrophoretic patterns showed that
the mutant (G4) tRNASer(UCN) transcript migrated faster than
the WT (A4) tRNASer(UCN) transcript under native conditions.
However, there was no difference of migration pattern be-
tween WT (A4) and mutant (G4) tRNASer(UCN) transcripts
under denaturing conditions. These data indicated that the
m.7511A�G mutation resulted in the conformational change
of tRNASer(UCN).

Clinical presentation of a hearing-impaired Han Chinese
pedigree

One Han Chinese hearing-impaired proband carrying the
m.7511A�G mutation was identified among 2651 Chinese
hearing-impaired probands but absent in 574 Chinese hear-
ing-normal controls (28). As shown in Fig. S1A, the Chinese
family exhibited extremely high penetrance of hearing loss.
As shown in Fig. S2 and Table S1, 9 of 10 matrilineal relatives
exhibited the variable degree of hearing impairment (two
with mild hearing loss, six with moderate hearing loss, and
one with severe hearing loss), whereas none of other mem-
bers in this family had hearing loss. The age-at-onset of hear-
ing loss ranged from 5 to 55 years old, with an average of 25
years old. There was no evidence that any of the other mem-
bers of this family had any other causes to account for hear-
ing loss. These matrilineal relatives showed no other clinical
abnormalities, including cardiac failure, muscular diseases,
visual failure, and neurological disorders. Further analysis
showed that the m.7511A�G mutation was present in
homoplasmy in all matrilineal relatives but not in other
members of this family (Fig. S1B).

Targeting exome sequence analysis

The higher penetrance of hearing loss in this Chinese family
implied that nuclear modifier genes, especially for genes
involved in mitochondrial tRNA metabolism, influence the
phenotypic manifestation of m.7511A�G mutation. To test
this hypothesis, we performed targeting exome-sequencing
analyses of 45 genes encoding 20 mitochondrial tRNA synthe-
tases and 25 tRNA-modifying enzymes (Table S2) among seven
matrilineal relatives (II-5, II-7, III-3, III-4, III-5, III-6, and III-7)
and two married-in controls (II-4 and II-5) of WZD200 pedi-
gree carrying the m.7511A�G mutation. As a result, we iden-
tified the known (c.572G�T, p.191Gly�Val) mutation in the
YARS2 gene encoding the mitochondrial tyrosyl-tRNA synthe-
tase in six hearing-impaired matrilineal relatives but not in the
hearing-normal matrilineal relative (III-7). We further ana-
lyzed the presence of the c.572G�T mutation in three sympto-
matic members and six asymptomatic subjects of this Chinese
family and 13 symptomatic members and five asymptomatic
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subjects of a Japanese family (30), by restriction fragment
length polymorphism analysis, because the c.572G�T muta-
tion disrupted a Tsp45I site (32). In the Chinese family, the
symptomatic subjects (II-1 and II-5) and married-in control
(I-1) carried the homozygous c.572G�T mutation, the
symptomatic subjects (I-2, II-2, II-7, III-3, III-4, III-5 and
III-6) harbored the heterozygous c.572G�T mutation, and
the asymptomatic individual (III-7) and three married con-
trols lacked the c.572G�T mutation (Fig. S1A and Table S1).
However, this mutation was absent in the members of the

Japanese family (30). These suggested that the c.572G�T
mutation may increase the penetrance of hearing loss in the
Chinese family.

Reductions in the steady-state levels of mitochondrial tRNAs

To test if the m.7511A�G mutation affected the conforma-
tion of tRNASer(UCN) ex vivo, total RNAs from mitochondria
isolated from various cell lines were electrophoresed through
15% polyacrylamide gel (native condition) and then electro-
blotted onto a positively charged nylon membrane (Roche

Figure 1. The analysis of stability and conformation of tRNASer(UCN). A, cloverleaf structure of human mitochondrial tRNASer(UCN) (12). An arrow denotes the
location of the m.7511A�G mutation. B, thermal stability of WT (A4) and mutant (G4) tRNASer(UCN). Absorbance (Abs) of WT and mutant (MT) was measured at
260 nm with a heating rate of 1 °C/min from 25 to 95 °C (red curves). First derivative, generated with the expression dA/dT, showed the rate of absorbance
change (blue curves). The calculations were based on three independent experiments. C, in vitro analysis of the conformation of tRNASer(UCN). WT and mutant
tRNASer(UCN) transcripts were electrophoresed through native polyacrylamide gel, electroblotted, and hybridized with the DIG-labeled oligonucleotide probes
specific for tRNASer(UCN). D, Northern blot analysis of tRNA under native conditions. Two micrograms of total mitochondrial RNA from mutant and control cell
lines were electrophoresed through native polyacrylamide gel, electroblotted, and hybridized with DIG-labeled oligonucleotide probes specific for the
tRNASer(UCN) and tRNALeu(CUN), respectively.

A nuclear modifier for deafness expression of tRNA mutation

19294 J. Biol. Chem. (2019) 294(50) 19292–19305

http://www.jbc.org/cgi/content/full/RA119.010598/DC1
http://www.jbc.org/cgi/content/full/RA119.010598/DC1


Applied Science) for hybridization analysis with digoxigenin
(DIG)-labeled oligodeoxynucleotide probes for tRNASer(UCN)

and tRNALeu(CUN), respectively. As shown in Fig. 1D, the elec-
trophoretic patterns showed that the tRNASer(UCN) in the
mutant cell lines (III-7) carrying the m.7511A�G mutation
migrated faster than those of one cell line (A61) lacking this
mutation. However, there were no differences in the migration
of tRNALeu(CUN) between WT and mutant cell lines.

To further examine the effect of m.7511A�G and c.572G�T
mutations on the stability of tRNA, mitochondrial RNAs from
various cell lines were subjected to Northern blotting and
hybridized with DIG-labeled oligodeoxynucleotide probes spe-
cific for tRNASer(UCN), tRNATyr, tRNAGlu, tRNAAsp, tRNAMet,
tRNALys, tRNALeu(UUR), and 5S rRNA, respectively. For com-
parison, the average levels of each tRNA in various cell lines
were normalized according to the level of the 5S rRNA. As
shown in Fig. 2, the steady-state levels of tRNASer(UCN) in the
cell line III-7, bearing only the m.7511A�G mutation, and
tRNATyr in the cell line I-1, carrying the homozygous
c.572G�T mutation, were decreased 49.5 and 33.7%, respec-
tively, as compared with those in the control cell line (A61)
lacking these mutations. Strikingly, cells harboring both
m.7511A�G and c.572G�T mutations exhibited drastic

decreases in levels of tRNASer(UCN) and tRNATyr as well as var-
ious reductions in the other tRNAs (Fig. 2B). In particular, the
average steady-state levels of tRNASer(UCN), tRNATyr, tRNAGlu,
tRNAAsp, tRNAMet, tRNALys, and tRNALeu(UUR) in mutant cell
lines carrying both m.7511A�G and homozygous c.572G�T
mutations were decreased by 72.2, 58.9, 33.5, 69.6, 86.1, 13.5,
and 21.2%, as compared with the average values in the control
cell line (A61), respectively. Furthermore, the average steady-
state levels of tRNASer(UCN), tRNATyr, tRNAGlu, tRNAAsp,
tRNAMet, tRNALys, and tRNALeu(UUR) in mutant cell lines car-
rying both m.7511A�G and heterozygous c.572G�T muta-
tions were decreased by 75.8, 51.1, 35.5, 64.4, 71.1, 11.2, and
26.1%, as compared with the average values in the control cell
line (A61), respectively.

Defects in tRNA aminoacylation

The aminoacylation capacities of tRNASer(UCN), tRNATyr,
tRNAThr, tRNALeu(UUR), tRNALys, and tRNASer(AGY) in various
control and mutant cell lines were examined by using electro-
phoresis in an acid polyacrylamide/urea gel system to separate
uncharged tRNA species from the corresponding charged
tRNA, electroblotting and hybridizing with the above tRNA
probes. As shown in Fig. 3A, the slower-migrating band (top
band) represents the charged tRNA, and the faster-migrating
band (bottom band) represents uncharged tRNA. The electro-
phoretic patterns revealed two stacked bands present for the
WT tRNASer(UCN) and two well-separated bands for the mutant
tRNASer(UCN). Furthermore, either charged or uncharged
tRNASer(UCN) migrated faster in all mutant cell lines carrying
the m.7511A�G mutation than those in other cell lines lack-
ing the mutation. To further distinguish nonaminoacylated
tRNA from aminoacylated tRNA, samples of tRNAs were
deacylated after heating for 10 min at 60 °C (pH 9.0) and then
run in parallel. As shown in Fig. 3, the deacylated samples
gave only one band (uncharged tRNA) in both mutant and
control cell lines.

As shown in Fig. 3, �10% decreases in the aminoacylated
efficiency of tRNASer(UCN) in the cell line III-7, bearing only the
m.7511A�G mutation, and 25.4% reductions in the aminoacy-
lated efficiency of tRNATyr in the cell line I-1, carrying only the
homozygous c.572G�T mutation, were observed, as compared
with those in the control cell line (A61). Strikingly, cells harbor-
ing both m.7511A�G and c.572G�T mutations exhibited
greater reductions in aminoacylated efficiencies of tRNASer

-

(UCN) and tRNATyr as well as various reductions in those of
other tRNAs (Fig. 3A). In particular, the aminoacylated effi-
ciencies of tRNASer(UCN), tRNATyr, tRNAThr, tRNALeu(UUR),
tRNALys, and tRNASer(AGY) in mutant cell lines carrying both
m.7511A�G and homozygous c.572G�T mutations were 37.9,
62.5, 88.6, 40.7, 65.1, and 74.3% of the average values in the
control cell line (A61), respectively. Furthermore, the amino-
acylated efficiencies of tRNASer(UCN), tRNATyr, tRNAThr,
tRNALeu(UUR), tRNALys, and tRNASer(AGY) in mutant cell lines
carrying both m.7511A�G and heterozygous c.572G�T muta-
tions were 44, 62.8, 111.2, 51.6, 99, and 88.6% of the average
values in the control cell line (A61), respectively.

Figure 2. Northern blot analysis of tRNA under denaturing conditions. A,
Northern blot analysis of tRNA under denaturing conditions. Two micrograms
of total mitochondrial RNA from various cell lines were electrophoresed
through a denaturing polyacrylamide gel, electroblotted, and hybridized
with DIG-labeled oligonucleotide probes for the tRNASer(UCN), tRNATyr,
tRNAGlu, tRNAAsp, tRNAMet, tRNALys, and tRNALeu(UUR), respectively. B, quan-
tification of tRNA levels. Shown is average relative content of each tRNA per
cell, normalized to the average content per cell of 5S rRNA in mutant cell lines
harboring both the m.7511A�G and heterozygous YARS2 p.Gly191Val muta-
tions, both the m.7511A�G and homozygous YARS2 p.Gly191Val mutations,
only the homozygous YARS2 p.Gly191Val mutation, or only the m.7511A�G
mutation and control cell lines lacking these mutations. The values for the
mutant cell lines are expressed as percentages of the average values for the
control cell lines. The calculations were based on three independent experi-
ments. Error bars, S.D. p, significance, according to the t test, of the differences
between mutant and control cell lines.
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Decreases in the levels of mitochondrial proteins

To assess whether the c.572G�T mutation enhanced the
defects in mitochondrial translation associated with m.7511A�G
mutation, a Western blot analysis was carried out to exa-
mine the levels of seven mtDNA encoding polypeptides (of
respiratory complex) in various cell lines with VDAC as a
loading control. As shown in Fig. 4A, the levels of ND1, ND4,
ND5, and ND6 (subunits 1, 4, 5, and 6 of NADH dehydroge-
nase); CYTB (apocytochrome b); CO1 (subunit 1 of cyto-
chrome c oxidase); and ATP6 (subunit 6 of the H�-ATPase)
exhibited variable reductions in mutant cell lines, as com-
pared with those of the control cell line. As shown in Fig. 4B,
the average levels of ND1, ND4, ND5, ND6, CO1, CYTB, and
ATP6 in mutant cell lines carrying only the homozygous
c.572G�T mutation, the m.7511A�G mutation, or both the
m.7511A�G and heterozygous or homozygous c.572G�T
mutations were 84.9, 77.7, 61.7, and 49.8% of those in the
control cell line (A61), respectively. In particular, the levels
of ND1, ND4, ND5, ND6, CO1, CYTB, and ATP6 in the cell
line carrying only m.7511A�G mutation were 35.4, 97.8,
70.2, 83.7, 52.8, 102.6, and 101.3% of those in control cell line
(A61) (p � 0.05), respectively.

We then examined the levels of seven subunits (mtDNA-
encoding CO2 and six nucleus-encoding proteins) of the phos-
phorylation system (OXPHOS) in control and mutant cell lines
by Western blot analysis. As shown in Fig. 5A, the levels of
NDUFS3, NDUFB8 (subunits of NADH:ubiquinone oxi-
doreductase), CO2, and COX10 (subunits of cytochrome c oxi-
dase) were decreased in the mutant cell lines. By contrast, the
levels of other mitochondrial proteins (ATP5A, UQCRC2, and
SDHB) in mutant cell lines were comparable with those in the
control cell line. As illustrated in Fig. 5B, the average levels of
NDUFS3, NDUFB8, CO2, and COX10 in mutant cell lines car-

rying both m.7511A�G and heterozygous c.572G�T muta-
tions were 42.2, 71.8, 50.3, and 70.5% of those in the control cell
line (A61). In particular, the levels of NDUFS3, NDUFB8, CO2,
and COX10 in mutant cell line carrying both m.7511A�G and
homozygous c.572G�T mutations were 19.4, 52.7, 47.1, and
70% of those in control cell line (A61), respectively (Fig. 5B).

Reduced activities of respiratory complexes I, III, and IV

To examine whether the c.572G�T mutation worsened the
respiratorydeficiencycausedbym.7511A�Gmutation,wemea-
sured the activities of respiratory complexes by isolating mito-
chondria from mutant and control cell lines (33, 34). As shown
in Fig. 6, the activity of complex I in mutant cell lines carrying
only the c.572G�T mutation, the m.7511A�G mutation, or
both the m.7511A�G and heterozygous or homozygous
c.572G�T mutations were 84.8, 68.3, 42.6, and 33.2% of the
control cell line (A61), respectively. The activities of complex
III in mutant cell lines carrying only the c.572G�T mutation,
the m.7511A�G mutation, or both the m.7511A�G and
heterozygous or homozygous c.572G�T mutations were 105.5,
97.5, 89.0, and 67.9% of the control cell line (A61), respectively.
Furthermore, the activities of complex IV in mutant cell lines
carrying only the c.572G�T mutation, the m.7511A�G muta-
tion, or both the m.7511A�G and heterozygous or homozy-
gous c.572G�T mutations were 89.1, 73.9, 47.3, and 49.1% of
the control cell line (A61), respectively. However, the activities
of complex II in the mutant cell lines were comparable with
those in the control cell line (A61).

Respiration defects in mutant cells

To further assess whether the m.7511A�G and c.572G�T
mutations altered cellular bioenergetics, we examined the oxy-
gen consumption rates (OCR) of various mutant and control

Figure 3. In vivo aminoacylation assays. A, 4 – 8 �g of total mitochondrial RNA purified from various cell lines under acid conditions were electrophoresed at
4 °C through an acid (pH 5.0) 10% polyacrylamide, 8 M urea gel, electroblotted, and hybridized with DIG-labeled oligonucleotide probes specific for the
tRNASer(UCN), tRNATyr, tRNAThr, tRNALeu(UUR), tRNALys, and tRNASer(AGY), respectively. The samples from control and mutant cell lines were also deacylated (DA) by
heating for 10 min at 60 °C at pH 9.0, electrophoresed, and hybridized with DIG-labeled oligonucleotide probes as above. B, quantification of aminoacylated
proportions of tRNASer(UCN), tRNATyr, tRNAThr, tRNALeu(UUR), tRNALys, and tRNASer(AGY) in the mutant and controls. The calculations were based on three inde-
pendent experiments. Graph details and symbols are explained in the legend to Fig. 2.
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cell lines using a Seahorse Bioscience XF-96 extracellular flux
analyzer (35, 36). In this system, a single experiment can mea-
sure all major aspects of mitochondrial coupling and respira-
tory control, including basal respiration, O2 consumption
attributed to ATP production, proton leak, maximum respira-
tory rate, reserve capacity, and nonmitochondrial respiration
(Fig. 6B). As shown in Fig. 6C, the basal OCR in the mutant cell
lines carrying only the c.572G�T mutation, the m.7511A�G
mutation, or both the m.7511A�G and heterozygous or
homozygous c.572G�T mutations were 92.5, 68.6, 47.0, and

36.9% of the mean values measured in the control cell lines (p �
0.05), respectively. To investigate which of the enzyme com-
plexes of the respiratory chain was affected in the mutant cell
lines, OCR was measured after the sequential addition of oligo-
mycin (to inhibit the ATP synthase), carbonyl cyanide p-trif-
luoromethoxyphenylhydrazone (FCCP) (to uncouple the mito-
chondrial inner membrane and allow for maximum electron
flux through the electron transfer chain), rotenone (to inhibit
complex I), and antimycin A (to inhibit complex III) (56). The
differences between the basal OCR and the drug-insensitive

Figure 4. Western blot analysis of mitochondrial proteins. A, 5 �g of total mitochondrial proteins from various cell lines were electrophoresed through a
denaturing polyacrylamide gel, electroblotted, and hybridized with antibodies specific for ND1, ND4, ND5, ND6, CO1, CYTB, and ATP6 and with VDAC as a loading
control, respectively. B, quantification of mitochondrial proteins. The levels of mitochondrial proteins in mutant and control cell lines were determined as described
elsewhere (17, 32). The average of three determinations for each cell line is shown. Graph details and symbols are explained in the legend to Fig. 2.
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OCR yielded the amount of ATP-linked OCR, proton leak OCR,
maximal OCR, reserve capacity, and nonmitochondrial
OCR. As illustrated in Fig. 6C, the ATP-linked OCR, proton
leak OCR, maximal OCR, reserve capacity, and nonmito-
chondrial OCR in mutant cell line carrying only homozygous
c.572G�T mutation were 94.7, 82.1, 76.3, 63.2, and 106.4%
of those in the control cell lines. The values in mutant cell
line carrying only the m.7511A�G mutation were 72.5, 50.3,
73.9, 78.2, and 77.5% of the control cell line. Notably, those in
mutant cell lines carrying both m.7511A�G and heterozy-
gous c.572G�T mutations were 43.3, 64.4, 41.1, 36.3, and
94.8%, and those in mutant cell lines carrying both
m.7511A�G and homozygous c.572G�T mutations were
34.1, 50.3, 37.3, 37.7, and 46.9%, relative to the mean values
measured in the control cell lines, respectively.

Reduced levels in mitochondrial ATP production

To examine the capacity of oxidative phosphorylation, we
measured the levels of cellular and mitochondrial ATP produc-

tion using a luciferin/luciferase assay. Populations of cells from
various mutant and control cell lines were incubated in the
medium in the presence of glucose (total cellular ATP produc-
tion) or 2-deoxy-D-glucose with pyruvate (mitochondrial ATP
production). As shown in Fig. 7, the levels of mitochondrial
ATP production in mutant cell lines carrying only the
c.572G�T mutation, the m.7511A�G mutation, or both the
m.7511A�G and heterozygous or homozygous c.572G�T
mutations were 77.6, 58.9, 62.9, and 44.8% of the control cell
lines. Moreover, the levels of total cellular ATP production in
the above mutant cell lines were 97.5, 84.3, 79.5, and 67.1%,
relative to the mean value measured in the control cell lines,
respectively.

Decreases in mitochondrial membrane potentials

The mitochondrial membrane potential (��m) generated by
proton pumps (complexes I, III, and IV) is an essential compo-
nent in the process of energy storage during oxidative phos-
phorylation (37). We examined the levels of ��m in the mutant
and control cell lines using a fluorescence probe JC-10 assay
system. The ratios of fluorescence intensity excitation/emis-
sion 	 490/590 and 490/530 nm (FL590/FL530) were recorded
to reflect the ��m level of each sample. As shown in Fig. 8, the
��m levels of mutant cell lines harboring only the c.572G�T
mutation, the m.7511A�G mutation, or both the m.7511A�G
and heterozygous or homozygous c.572G�T mutations were
97.5, 71.1, 67.7, and 64.1% of the mean values measured in the
control cell lines, respectively. In contrast, the ��m levels in
mutant cell lines in the presence of FCCP were comparable with
those measured in the control cell lines.

Increase of ROS production

Respiratory deficiency can increase the production of ROS
(38, 39). In this study, we measured the levels of ROS generation
in mutant and control cell lines with flow cytometry under nor-
mal and H2O2-stimulated conditions. To detect the capacity of
reaction upon increasing levels of ROS under oxidative stress,
we calculated the ratio of geometric mean intensity between
unstimulated and stimulated with H2O2 in each cell line. As
shown in Fig. 9, the levels of ROS generation in the mutant cell
lines harboring only the c.572G�T mutation, the m.7511A�G
mutation, or both the m.7511A�G and heterozygous or
homozygous c.572G�T mutations were 119.3, 109.6, 127.3,
and 140.6% of the control cell lines.

Discussion

The pathogenicity of tRNASer(UCN) 7511A>G mutation

In the present study, we further investigated the molecular
mechanism of the deafness-associated m.7511A�G mutation.
Indeed, the occurrence of the m.7511A�G mutation in several
hearing-impaired families from different ethic backgrounds
strongly indicated that this mutation is involved in the patho-
genesis of deafness (26 –30). The m.7511A�G mutation caused
the substitution of the A4:U69 base-pairing with G4:U69 base-
pairing at the aminoacyl acceptor stem of tRNASer(UCN) (12, 26,
27). In fact, this A4:U69 base-pairing may play an important
role in the stability and identity of tRNA (12, 24, 25, 39 –42).

Figure 5. Western blot analysis of 7 OXPHOS subunits. A, 5 �g of total
mitochondrial proteins from various cell lines were electrophoresed through
a denaturing polyacrylamide gel, electroblotted, and hybridized with an anti-
body mixture specific for subunits of each OXPHOS complex and with GAPDH
as a loading control. B, quantification of the levels of ATP5A, UQCRC2, SDHB,
CO2, COX10, NDUFS3, and NDUFB8 in mutant and control cell lines as
described elsewhere (32, 47). Graph details and symbols are explained in the
legend to Fig. 2.
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Therefore, it was hypothesized that m.7511A�G mutation led
to structural and functional consequences for tRNASer(UCN),
including the processing of RNA precursors, stability, and ami-
noacylation of tRNASer(UCN). In particular, the substitution
A4:U69 base-pairing with G4:U69 base-pairing caused by the
m.7511A�G mutation may restrict the accessible conforma-
tion space of tRNASer(UCN) (43–45). Here, the altered structure
of tRNASer(UCN) caused by the m.7511A�G mutation was evi-
denced by the increased melting temperature and electropho-
retic mobility of mutated tRNA with respect to the WT mole-
cule in vitro or ex vivo. The instability of mutant tRNA was
further supported by marked reductions in the steady-state
level of tRNASer(UCN) in the cybrid mutant cell lines (26) and
lymphoblastoid cell lines carrying the m.7511A�G mutation in
the present study.

Furthermore, the substitution A4:U69 base-pairing with
G4:U69 base-pairing induced by the m.7511A�G mutation
may result in the faulty interaction of tRNASer(UCN) with mito-
chondrial seryl-tRNA synthetase, thereby altering the amino-
acylation properties of tRNASer(UCN) (39, 43–46). Indeed, all
human AlaRS mischarged to noncognate tRNAs, such as
tRNACys and tRNAAsp, with the G4:U69 bp (45, 46). Therefore,
mutant tRNASer(UCN) with G4:U69 bp can be mischarged with
other amino acids. In this study, the possible mischarging to
noncognate tRNAs of mutant tRNASer(UCN) may account for
the improperly aminoacylated tRNASer(UCN), as suggested by
the aberrantly aminoacylated tRNASer(UCN) in the mutant cell
lines and faster electrophoretic mobility of mutated tRNA with re-

Figure 6. Respiration assays. A, enzymatic activities of respiratory chain complexes. The activities of respiratory complexes were investigated by enzymatic
assay on complexes I, II, III, and IV in mitochondria isolated from various cell lines. B, an analysis of O2 consumption in the various cell lines using different
inhibitors. The rates of O2 (OCR) were first measured on 2 
 104 cells of each cell line under basal conditions and then sequentially added to oligomycin (1.5 �M),
FCCP (0.5 �M), rotenone (1 �M), and antimycin A (1 �M) at the indicated times to determine different parameters of mitochondrial functions. C, graphs
presented the ATP-linked OCR, proton leak OCR, maximal OCR, reserve capacity, and nonmitochondrial OCR in mutant and control cell lines. Nonmitochondrial
OCR was determined as the OCR after rotenone/antimycin A treatment. Basal OCR was determined as OCR before oligomycin minus OCR after rotenone/
antimycin A. ATP-linked OCR was determined as OCR before oligomycin minus OCR after oligomycin. Proton leak was determined as basal OCR minus
ATP-linked OCR. Maximal OCR was determined as the OCR after FCCP minus nonmitochondrial OCR. Reserve capacity was defined as the difference between
maximal OCR after FCCP minus basal OCR. OCR values were expressed in pmol of oxygen/min/�g of protein. The average values of three determinations for
each cell line were shown. Graph details and symbols are explained in the legend to Fig. 2.

Figure 7. Measurement of cellular and mitochondrial ATP levels. Mutant
and control cell lines were incubated with 10 mM glucose or 5 mM 2-deoxy-D-
glucose plus 5 mM pyruvate to determine ATP generation under mitochon-
drial ATP synthesis. Average rates of ATP level per cell line are shown. A, ATP
level in mitochondria; B, ATP level in total cells. Three determinations were
made for each cell line. Graph details and symbols are explained in the legend
to Fig. 2.

Figure 8. Mitochondrial membrane potential analysis. ��m was mea-
sured in various cell lines using a fluorescence probe JC-10 assay system. The
ratios of fluorescence intensity excitation/emission 	 490/590 and 490/530
nm (FL590/FL530) were recorded to delineate the ��m level of each sample.
The relative ratios of FL590/FL530 geometric mean between mutant and con-
trol cell lines were calculated to reflect the level of ��m. Shown are relative
ratios of JC-10 fluorescence intensity at excitation/emission 	 490/530 nm
and 490/590 nm in the absence (A) and presence (B) of 10 �M FCCP. The
average of three determinations for each cell line is shown. Graph details and
symbols are explained in the legend to Fig. 2.
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spect to the WT molecules. Alternatively, the mutant tRNASer(UCN)

may be charged to a lesser extent by the mitochondrial seryl-
synthetase. In this study, only mildly reduced efficiencies of ami-
noacylated tRNASer(UCN) were observed in a mutant cell line car-
rying only the m.7511A�G mutation, in contrast to marked
decreases of aminoacylation in the tRNALeu(UUR) with the 14A�G
substitution or tRNALys with the 55A�G mutation (47–49).
Improper aminoacylation and instability of tRNASer(UCN) were
responsible for marked reductions in the level of tRNASer(UCN)

observed in a cell line carrying the m.7511A�G mutation, as in the
cases of other pathogenic tRNA mutations (47–51). The aberrant
tRNASer(UCN) metabolism resulted in the impairment of mito-
chondrial translation, defective oxidative phosphorylation, and
increasing production of oxidative reactive species (15, 16, 17, 26).
The resultant mitochondrial dysfunctions would lead to the dys-
function or death of cochlear cells, thereby contributing to the
development of hearing loss.

The YARS2 p.191Gly>Val mutation enhanced the phenotypic
manifestation of the m.7511A>G mutation

Genetic modifiers involved in mitochondrial tRNA metabo-
lism modulate the phenotypic manifestation of the deafness-
associated 12S rRNA mutations (22, 23, 52). In this study, the
penetrances of hearing loss in this Chinese family harboring
both the m.7511A�G and YARS2 p.191Gly�Val mutations
were significantly higher than those in the French and Japanese
families carrying only the m.7511A�G mutation (29, 30).
Furthermore, cell lines bearing both p.191Gly�Val and
m.7511A�G mutations exhibited greater mitochondrial
dysfunctions than those carrying only p.191Gly�Val or

m.7511A�G mutation. Strikingly, mutant cell lines harboring
both m.7511A�G and p.191Gly�Val mutations exhibited not
only more decreases in the aminoacylation efficiencies of
tRNASer(UCN) and tRNATyr but also deficient aminoacylation of
tRNAThr, tRNALys, tRNALeu(UUR), and tRNASer(AGY), as com-
pared with those in the cell lines carrying only the
p.191Gly�Val or m.7511A�G mutation. The aberrantly ami-
noacylated tRNA makes the mutant tRNA metabolically less
stable and more subject to degradation, thereby lowering the
level of the tRNA in mutant cell lines (17, 26, 40). In the present
study, mutant cell lines bearing only the m.7511A�G mutation
exhibited 48% reductions in the level of tRNASer(UCN), and
mutant cell lines harboring only the p.191Gly�Val mutation
displayed 33.7% decreases in the level of tRNATyr., respectively.
By contrast, mutant cell lines harboring both m.7511A�G and
homozygous p.191Gly�Val mutations reveled 70% decreases
in the level of tRNASer(UCN) and 59% reductions in the level of
tRNATyr as well as various decreases in the levels of other
tRNAs, including tRNAGlu, tRNAAsp, tRNAMet, tRNALys, and
tRNALeu(UUR). Notably, �70% reductions in the steady-state
levels of tRNASer(UCN) in the cells carrying both p.191Gly�Val
and m.7511A�G mutations were in good agreement with the
75% decrease in the levels of tRNASer(UCN) in those in the
mutant cybrid cells bearing the m.7511A�G, tRNAAla

5655A�G, and ND1 3308T�C mutations (26). These data
strongly suggested that the synergic interaction between the
YARS2 p.191Gly�Val and m.7511A�G mutations mediated
mitochondrial tRNA metabolisms, especially exacertbating the
defects of tRNASer(UCN) and tRNATyr metabolisms. Notably,
mutations in the TRMU involved in biosynthesis of �m5s2U at
the wobble position of tRNAGln, tRNAGlu, and tRNALys

affected the metabolism of not only tRNALys, tRNAGlu, tRNA-
Gln, but also other mitochondrial tRNA (22, 53).

Both shortage of and aberrant aminoacylation of tRNAs led
to impairments of mitochondrial translation. In this investiga-
tion, 50% decreases in the levels of mtDNA encoding proteins
observed in the mutant cells carrying both the m.7511A�G and
p.191Gly�Val mutations are below the proposed threshold
level (50%) to produce a clinical phenotype associated with a
mtDNA mutation (23, 47, 48, 54). The defects of mitochondrial
translation were responsible for the respiratory deficiency,
uncoupling of the oxidative pathway for ATP synthesis, dimin-
ished mitochondrial membrane potentials, and overproduction
of ROS (7, 48, 52, 55). In particular, more drastic decreases of
oxygen consumption rates, mitochondrial ATP production,
and mitochondrial membrane potentials and increases of ROS
production were observed in the cell lines carrying both the
p.191Gly�Val and m.7511A�G mutations than those in cell
lines carrying only the p.191Gly�Val or m.7511A�G muta-
tion. These mitochondrial dysfunctions yielded a preferential
effect on the hair cells and neurons in the cochlea, because
cochlear functions depend on a very high rate of ATP produc-
tion (56 –58). This would result in the dysfunction or death of
hair cells and neurons in the cochlea carrying both the
p.191Gly�Val and m.7511A�G mutations, thereby producing
a phenotype of hearing loss.

In summary, we demonstrated that the pathophysiology of
maternally inherited deafness was manifested by aberrant

Figure 9. Measurement of ROS. Shown is the ratio of geometric mean inten-
sity between the levels of ROS generation in the vital cells with or without
H2O2 stimulation. The rates of total ROS production in various cell lines were
analyzed by measurement of fluorescence using a BD Accuri C6 flow cytom-
eter system. A, flow cytometry histogram showing fluorescence of cell lines
without (red) or with (black) H2O2 stimulation. B, relative ratios of fluorescence
intensity were calculated in the absence and presence of H2O2. The average
of three determinations for each cell line is shown. Graph details and symbols
are explained in the legend to Fig. 2.
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tRNA metabolisms due to the combination of YARS2
p.191Gly�Val with tRNASer(UCN) 7511A�G mutations. The
m.7511A�G mutation altered both the structure and function
of tRNASer(UCN). The p.191Gly�Val mutation deteriorated the
aberrant tRNA metabolisms associated with the m.7511A�G
mutation. The aberrant tRNA metabolisms resulted in defec-
tive mitochondrial translation, respiratory deficiency, decreas-
ing ATP production, and increasing ROS production. These
biochemical defects led to the high penetrance and occur-
rence of deafness in the Chinese family carrying both the
m.7511A�G and p.191Gly�Val mutations. Our findings pro-
vide new insights into the pathophysiology of maternally inher-
ited deafness, manifested by the synergetic interaction between
mitochondrial and nuclear gene products underlying aberrant
tRNA metabolism.

Experimental procedures

Subjects

One Han Chinese family (WZD200), as shown in Fig. S1A,
was recruited from the Otology Clinics of Wenzhou Medical
University (Zhejiang, China), as described previously (28).
Comprehensive history-taking, physical examination, and
audiological examination were performed to identify any syn-
dromic findings, history of exposure to aminoglycosides, and
genetic factors related to hearing impairment in all available
members of this Chinese pedigree, as detailed previously (59,
60). The 574 control subjects were from a panel of unaffected
subjects of Han Chinese ancestry from the same region. This
study followed the principles of the Declaration of Helsinki.
Informed consent was obtained from the participants prior to
their participation in the study, under protocols approved by
the Ethics Committees of Zhejiang University and the Wen-
zhou Medical University.

Mitochondrial DNA-sequencing analysis

Genomic DNA was isolated from whole blood of participants
using the QIAamp DNA Blood Mini Kit (Qiagen, catalog no.
51104). The entire mtDNAs of the family members of WZD200
(I-1, II-1, II-2, III-5, and III-7) and one Chinese control subject
(A61) were PCR-amplified in 24 overlapping fragments using
sets of the light (L) and heavy (H) strand oligonucleotide prim-
ers, as described previously (61). These sequence results were
compared with the updated consensus Cambridge sequence
(GenBankTM accession number NC_012920) (6). For the anal-
ysis for the presence and level of the m.7511A�G mutation, the
PCR DNA fragments (117 bp) spanning the tRNASer(UCN) gene
were amplified using genomic DNA as the template and the
oligodeoxynucleotides 5�-CCCCATGGCCTCCATGACTTT-
TTAAA-3� and 5�-CTACTTGCGCTGCATGTGCCATTAA-
GAT-3�. The resultant 117-bp segments were digested with the
restriction enzyme DraI and analyzed by electrophoresis
through a 14% polyacrylamide gel. After ethidium bromide
staining, the ImageQuant program was used to determine the
proportions of digested and undigested PCR product to ascer-
tain whether the m.7511A�G mutation was present in
homoplasmy in these subjects (Fig. S1B).

Target exome sequencing

A panel of exome sequencings (genes encoding 20 mitochon-
drial tRNA synthetases and 25 tRNA-modifying enzymes,
Table S1) of seven matrilineal relatives (II-5, II-7, III-3, III-4,
III-5, III-6, and III-7) carrying the m.7511A�G mutation and
two married-in controls (II-4 and II-6) of WZD200 pedigree
were performed by BGI (Shenzhen, China). High-quality
genomic DNA (3 �g) was captured by hybridization using the
SureSelect XT Human All Exon 50Mb kit (Agilent Technolo-
gies). Samples were prepared according to the manufacturer’s
instructions. Each captured library was run on a HiSeq 2000
instrument, and sequences were generated as 90-bp pair-end
reads. An average of 82 million paired reads were generated per
sample, the mean duplication rate was 6.37%, and 98% of the
targeted region was covered by at least 50 
 mean depth. All
sequencing reads were mapped to the human reference genome
(GRCh37) at UCSC. The software SOAPsnp was used to assem-
ble the consensus sequence and call genotypes in target regions.
GATK (Indel Genotyper version 1.0) was used for indel detec-
tion. The threshold for filtering SNPs included the following
criteria. SNP quality score should be �20; sequencing depth
should be between 4 and 200; estimated copy number should be
no more than 2; and the distance between two SNPs should be
larger than 5.

Mutation analysis of YARS2 gene

Five pairs of primers for PCR-amplifying exons and their
flanking sequences, including splicing-donor and acceptor-
consensus sequences of YARS2, were used for this analysis, as
described previously (32). Fragments spanning five exons and
flanking sequences from seven matrilineal relatives (II-5, II-7,
III-3, III-4, III-5, III-6, and III-7) and three married-in controls
(I-1, II-4, and II-6) carrying the m.7511A�G mutation in the
Chinese family and two genetically unrelated Chinese controls
were PCR-amplified, purified, and subsequently analyzed by
Sanger sequencing. These sequence results were compared
with the YARS2 genomic sequence (RefSeq NC_000012.12).
Genotyping for the c.572G�T mutation in other subjects was
PCR-amplified for exon 1 and followed by digestion of the
626-bp segment with the restriction enzyme Tsp45I. The
forward and reverse primers for exon 1 are 5�-GACTCGCTT-
CATGTGGGTCAT-3� and 5�-CGAAGGGCAGCAACT-
ACAATC-3�, respectively. The Tsp45I-digested products were
analyzed on 10% polyacrylamide gel (Fig. S1C).

Cell lines and culture conditions

Lymphoblastoid cell lines were immortalized by transforma-
tion with the Epstein–Barr virus, as described elsewhere (62).
Cell lines derived from five members of the Chinese family
(hearing-impaired subjects II-2 and III-4 harboring both
m.7511A�G and heterozygous c.572G�T mutations, II-1 and
II-5 carrying both m.7511A�G and homozygous c.572G�T
mutations, a hearing-normal individual (I-1) bearing only the
homozygous c.572G�T mutation, and one hearing-normal
subject (III-7) carrying only the m.7511A�G mutation) and
two genetically unrelated control individuals (A61 and A62)
lacking these mutations (Table S3) were grown in the RPMI
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1640 medium (Invitrogen) supplemented with 10% fetal bovine
serum.

UV melting assays

UV melting assays were carried out as described previously
(50, 63). The WT and mutant tRNASer(UCN) transcripts were
generated as detailed elsewhere (64). The transcripts were
diluted in buffer including 50 mM sodium phosphate (pH 7.0),
50 mM NaCl, 5 mM MgCl2, and 0.1 mM EDTA. Absorbance
against temperature melting curves were measured at 260 nm
with a heating rate of 0.5 °C/min from 25 to 95 °C through an
Agilent Cary 100 UV spectrophotometer.

Mitochondrial tRNA analysis

Total mitochondrial RNAs were obtained from mitochon-
dria isolated from lymphoblastoid cell lines (�2.0 
 108

cells), as described previously (65). The tRNA Northern blot
analysis was performed as detailed elsewhere (63). Oligode-
oxynucleotide for tRNASer(UCN), tRNATyr, tRNALys,
tRNAMet, tRNALeu(UUR), tRNALeu(CUN), tRNAAsp, tRNAGlu,
and 5S rRNA were as detailed elsewhere (55). The hybridiza-
tion and quantification of density in each band were per-
formed as detailed previously (63).

The aminoacylation assays were carried out as detailed previ-
ously (63, 66). To further distinguish nonaminoacylated tRNA
from aminoacylated tRNA, total RNAs were treated by heat shock
for 10 min at 60 °C at pH 9.0 and then run in parallel (63, 66).
DIG-labeled oligodeoxynucleotide probes for tRNASer(UCN),
tRNATyr, tRNASer(AGY), tRNALeu(UUR), tRNALys, and tRNAThr

were as described above. Quantification of density in each band
was performed as detailed previously (63, 66).

For the tRNA mobility shift assay, 2 �g of total mitochondrial
RNAs were electrophoresed through a 10% polyacrylamide
native gel at room temperature in 50 mM Tris-glycine buffer.
After electrophoresis, the gels were treated according to the
procedure for the tRNA Northern blot analysis described
above.

Western blot analysis

Western blot analysis was performed as detailed previously
(17, 32). The antibodies used for this investigation were from
Abcam (GAPDH (ab8245), ND1 (ab74257), ND5 (ab92624),
ND6 (ab81212), CO1 (ab14705), ATP6 (ab101908), NDUFS3
(ab14711), and total OXPHOS human WB antibody mixture
(ab110411)), Novus (ND4 (NBP2-47365)), and Proteintech
(VDAC (10866-1-AP), CYTB (55090-1-AP), and COX10
(10611-2-AP)). Peroxidase Affini Pure goat anti-mouse IgG and
goat anti-rabbit IgG (Jackson) were used as a secondary anti-
body, and protein signals were detected using the ECL system
(CWBIO). Quantification of density in each band was per-
formed as detailed previously (17, 32).

Assays of activities of respiratory complexes

The enzymatic activities of complex I, II, III, and IV were
assayed as detailed elsewhere (33, 67, 68). Briefly, complex I
(NADH ubiquinone oxidoreductase) activity was determined
by following the oxidation of NADH with ubiquinone as the
electron acceptor. complex III (ubiquinone cytochrome c oxi-

doreductase) activity was measured as the reduction of cyto-
chrome c (III) using D-ubiquinol-2 as the electron donor. The
activity of complex IV (cytochrome c oxidase) was monitored
by following the oxidation of cytochrome c (II).

Measurements of oxygen consumption

OCR in lymphoblastoid cell lines were measured with a Sea-
horse Bioscience XF-96 extracellular flux analyzer (Seahorse
Bioscience), as detailed previously (17, 35, 36).

ATP measurements

The Cell Titer-Glo� luminescent cell viability assay kit (Pro-
mega) was used for the measurement of cellular and mitochon-
drial ATP levels, according to the modified manufacturer’s
instructions (17, 68).

Assessment of mitochondrial membrane potential

The JC-10 Assay Kit-Microplate (Abcam) was used to assess
the mitochondrial membrane potential, according to a modifi-
cation of the manufacturer’s instructions (37).

Measurement of ROS production

ROS measurements were performed following the proce-
dures detailed previously (40, 50, 69).

Computer analysis

Statistical analysis was performed using the unpaired, two-
tailed Student’s t test contained in the Microsoft Excel program
(version 2017). Differences were considered significant at p �
0.05.
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