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Abstract. Convolutional neural networks (CNNs) offer a promising means to achieve fast deformable image
registration with accuracy comparable to conventional, physics-based methods. A persistent question with CNN
methods, however, is whether they will be able to generalize to data outside of the training set. We investigated
this question of mismatch between train and test data with respect to first- and second-order image statistics
(e.g., spatial resolution, image noise, and power spectrum). A UNet-based architecture was built and trained on
simulated CT images for various conditions of image noise (dose), spatial resolution, and deformation magni-
tude. Target registration error was measured as a function of the difference in statistical properties between the
test and training data. Generally, registration error is minimized when the training data exactly match the sta-
tistics of the test data; however, networks trained with data exhibiting a diversity in statistical characteristics
generalized well across the range of statistical conditions considered. Furthermore, networks trained on simu-
lated image content with first- and second-order statistics selected to match that of real anatomical data were
shown to provide reasonable registration performance on real anatomical content, offering potential new means
for data augmentation. Characterizing the behavior of a CNN in the presence of statistical mismatch is an impor-
tant step in understanding how these networks behave when deployed on new, unobserved data. Such char-
acterization can inform decisions on whether retraining is necessary and can guide the data collection and/or
augmentation process for training. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.4.044008]
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1 Introduction
Convolutional neural networks (CNNs) are increasingly being
investigated as a method for deformable registration in medical
imaging1–6 due to their fast runtime and ability to learn complex
functions without explicit physical models. Compared to
conventional methods for image registration such as B-spline
free-form deformation7 and variations on diffeomorphic regis-
tration,8–11 CNN-based methods are not only generally much
faster1,4 but also provide a parameter-free, noniterative interface
for achieving registration. However, a recurring question asso-
ciated with CNN methods is the generalizability of the model
beyond the data presented in the training set. This question is
commonly addressed by dividing the data into train and test sets
and performing cross-validation studies. However, the random
sampling associated with this method enforces that the train and
test data have the same population statistics, which could be
unrealistic for various application scenarios in medical imaging.
A direct example of this effect was shown by Eppenhof and
Pluim,4 who performed CNN-based registration on pulmonary
CT images and examined two separate data sets, DIR-Lab12,13

(images acquired using a GE Discovery ST PET/CT scanner)
and CREATIS14,15 (images acquired using a Philips 16-slice
Brilliance Big Bore Oncology Configuration). They reported
that when the network was trained on DIR-Lab images alone,
the results on cross-validated studies were optimistic compared
to the results obtained by testing on the CREATIS dataset. One

explanation for this deficit is that the network—having only
been trained on one dataset—was not able to fully generalize
to the statistical mismatch that existed between the datasets from
two different scanner manufacturers—each with distinct acquis-
ition and reconstruction protocols and, therefore, spatial resolu-
tion and noise characteristics.

Statistical mismatch—by which we mean a difference in
some statistical characteristic of the image data, including
first-order statistics (e.g., signal power and spatial resolution)
and second-order statistics (e.g., noise and noise–power spec-
trum)—is of particular concern in medical imaging, where small
data sets are unlikely to capture large variations observed in the
population. For example, even within a single anatomical region
and the relatively reproducible modality of CT imaging,
first- and second-order statistics can vary widely based on the
scanner manufacturer, scanning protocol (e.g., dose or beam
energy), reconstruction protocol, and postprocessing technique.
Training with all possible variations encountered in practice
would be impractical and require unrealistically large training
sets. Therefore, in scenarios with known statistical mismatch
from the training set, the user opts either to retrain the network
or assume the network would reasonably generalize to the test
data. For example, when the statistical characteristics of the data
are substantially mismatched (e.g., application to magnetic res-
onance images using a model trained on CT images), the need to
retrain or apply transfer learning is clear. However, with known
differences in first- and second-order image statistics between
the training and test data, (e.g., training on high-dose and testing
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on low-dose data), generalizability of the model may be possible
with a clear understanding of the extent and the limitations of
generalizability.

In this work, we used a classical CNN model for deformable
image registration to examine the effect of statistical mismatch
in image noise, spatial resolution, and deformation magnitude.
We trained the network under a variety of statistical conditions
in simulated image data and measured performance (registration
accuracy) as the statistical characteristics of the test data devi-
ated from those of the training data. Although preliminary
studies16 evaluated the effect of statistical mismatch in image
noise alone, the work reported below extends the analysis to
examine the effects of spatial resolution and deformation mag-
nitude as additional sources of variability. Furthermore, we con-
ducted experiments comparing the performance of networks
trained on data containing wide- versus narrow-range variations
in statistical characteristics. Finally, we validated the findings of
these experiments by deploying the networks (trained on simu-
lated image content alone) on anatomical image content.

2 Methods

2.1 Deformable Registration Techniques

CNN-based methods for performing deformable registration are
generally grouped into three categories with respect to training:
supervised, semisupervised, and unsupervised. Supervised
methods rely upon accessibility to ground truth, dense displace-
ment vector fields, where the error between the predicted and
known displacement fields is directly minimized. The ground
truth displacement fields are typically generated by interpolating
a displacement field based on corresponding landmarks17 or
applying known displacement fields to simulate deformation.4,18

Semi- or unsupervised techniques, on the other hand, still

predict an output displacement vector field; however, the net-
work further incorporates a spatial transformer such that, during
training, an image similarity measure may be optimized,2,5,6

which can be paired with deformation-field regularization to
yield cost functions similar to that of the conventional registra-
tion techniques.19 Furthermore, another active area of research
considers adversarial20 methods (which can be performed in
both supervised and unsupervised settings), where the training
comprises alternating optimization of a generator network (i.e.,
a deformation field estimator) and a discriminator network (e.g.,
which predicts whether or not the registration comes from
ground truth or the generator).1

In this work, we use a supervised approach in which ground
truth deformations were simulated, ensuring that the errors
observed arise from the network and training conditions, rather
than potential errors in ground truth definitions or suboptimality
of the similarity metric. Based on the popularity of the U-Net21

and the potential for the results to be generalized to other CNN
applications, this work examined a modified 2-D version of the
SVF-Net17 for deformable image registration, which is based
upon the U-Net architecture. As illustrated in Fig. 1, the network
takes the stacked 2-D images (moving and fixed) to be registered
as input and produces the displacement vector field as the
output. The network was implemented in TensorFlow and was
trained in a supervised manner with the ground truth displace-
ment fields (discussed in Sec. 2.3.1) and optimized over an L2
loss function on the error in the predicted displacement field
using the Adam optimizer22 with a learning rate of 0.0005.

For comparison, we also examined the performance of con-
ventional registration methods that are based on physical models
(compared to learning-based methods). These included the fast
symmetric forces demons algorithm23 and B-spline free-form
deformation7 as implemented in SimpleITK.24 For each algo-
rithm, we utilized a morphological pyramid and optimized the

Fig. 1 CNN architecture adapted from SVF-Net for 2-D (slice) image registration. The two stacked
64 × 64 image patches are supplied as input, and the output is the 2-D 64 × 64 displacement vector field.
Blue and green coloring of the features is included to explicitly depict the concatenation step.

Journal of Medical Imaging 044008-2 Oct–Dec 2019 • Vol. 6(4)

Ketcha et al.: Learning-based deformable image registration: effect of statistical mismatch between train and test images



displacement field smoothing parameters (demons) and number
of control points (B-spline).

2.2 Statistical Evaluation of Image Registration

When examining registration performance with respect to
statistical measures of image quality, it is useful to compare the
experimental registration performance with respect to funda-
mental error bounds. Recent work25,26 quantitatively related the
image content and noise statistics to image registration accuracy.
Examination of translation-only rigid registration yielded theo-
retical results on the Cramér–Rao lower bound (CRLB) for the
root-mean-square error (RMSE) of unbiased registration estima-
tors. As described by Ketcha et al.,25,26 the CRLB is dependent
on the signal power spectrum of the true image content and the
noise-power spectra of the two images (including stochastic var-
iations due to quantum noise). In the case of high signal-to-noise
ratio, this bound is approximately proportional to 1∕

ffiffiffiffiffiffiffiffiffi

dose
p

when registering equal-dose CT images. By approximating
deformable registration as independent, locally rigid transla-
tion-only registrations at each pixel, we may apply the CRLB
to the context of deformable registration. A variety of properties
of deformable registration may violate the above assumptions,
such as bias and the lack of independence due to regularization
of deformation field. However, the CRLB still provides a useful
baseline of an ideal estimator to compare registration perfor-
mance of different algorithms. Derivation of the CRLB for
this deformable case was achieved through a sliding window
computation of the rigid CRLB over the image to determine
an approximate deformable CRLB at each pixel location (as
described by Ketcha et al.16). The resulting bound (computed
as a function of dose) is shown as a limiting case in comparison
to the registration performance of various conventional and
CNN-based registration methods in the results shown below.

2.3 Experimental Methods

2.3.1 Test image generation

Training and test images were generated by sampling from a
Voronoi image distribution, where seed points were uniformly
and randomly sampled within the image, and piece-wise con-
stant regions were subsequently defined by randomly sampling
from CT Hounsfield units (HU) in the soft-tissue range (−110 to
90 HU). Recent work25 showed this content to follow a
power-law distribution (commonly used to model soft-tissue
anatomy27,28), where the 2-DVoronoi image content has a power
spectrum closely following 1∕f3 with f ¼ sqrtðf2x þ f2yÞ. Since
piece-wise constant content produces degenerate solutions in
deformable image registration, a small amount of clutter content
(10 HU standard deviation) was added to the image by directly
sampling from a 1∕f3 distribution. The image content was
cropped to a 32-cm diameter cylinder with isotropic 0.68 mm
pixel size (regions external to the cylinder defined to be air),
yielding images as shown in Fig. 2(a).

Ground truth displacement fields were simulated by sampling
x- and y-components from a power-law (1∕f4.5) distribution to
generate smoothly varying deformation. The displacement fields
were applied to the noiseless images, after which realistic CT
noise was injected into both the original and warped images.
The noise injection process involved converting the image from
HU to attenuation coefficients, performing 360 digital forward
projections over 360 deg, injecting Poisson noise in the projection

domain, and reconstructing using filtered back-projection. The
magnitude of quantum noise was adjusted by scaling the fluence
associated with the forward projection according to a specified
dose level (quantified by tube-current-time product, mAs) using
the SPEKTR toolkit.29 Furthermore, the spatial resolution in the
image was adjusted by varying the cutoff frequency of the Hann
apodization filter applied during reconstruction. The primary con-
tributor to spatial resolution in this simulation was the apodization
filter, and the full-width at half-maximum (FWHM) of the point
spread function was approximated as the inverse of the Hann cut-
off frequency. Following noise injection, corresponding 64 × 64
pixel patches were sampled from the original and warped images
for use as training and test data. Although training minimized
error on the full displacement field, evaluation on test data was
performed by measuring the mean target registration error (TRE)
at corner points within the test image patches (defined unambig-
uously by the intersection points among three Voronoi regions).

The process described above presented three distinct exper-
imental parameters for investigating the effect of statistical mis-
match between training and test data: (1) the image noise (i.e.,
quantum noise), controlled by variation of dose (referred to as
Dtrain and Dtest); (2) the spatial resolution, controlled by varia-
tion of the FWHM (denoted FWHMtrain and FWHMtest); and
(3) the mean deformation magnitude (denoted X̄train and X̄test).
Variations in the images associated with variation of these
parameters are depicted in Fig. 2.

2.3.2 Mismatch in noise magnitude

Training data in medical imaging, particularly in retrospective
studies, are often limited in the diversity of dose levels exhibited.
As a result, the dose levels observed during network deployment
could vary widely from those observed during training. The fol-
lowing experiments examined the effect of statistical mismatch
of noise between training and test data.

(1) Single-dose training. CNNs were trained with data
from a single-dose level (e.g., Dtrain ¼ 50 mAs)
on ∼108; 000 image patch pairs, each with
FWHMtrain ¼ 2 px and X̄train uniformly sampled
from (0.01, 0.1, 1, 3, 5, 10) px. For each dose con-
dition (ranging from 5 to 1500 mAs), 11 networks
were trained from random initialization, and the TRE
was examined as a function of the difference of the
dose in test data (Dtest) from that in training data.

(2) Diverse-dose training.Additional experiments exam-
ined the effect of training on a dataset containing
a diverse range of dose levels. CNNs were trained
on ∼108;000 image patch pairs with dose levels
uniformly sampled from (5, 10, 50, 100, 500, 1000,
1500) mAs. Additionally, a separate network was
trained in a sparse manner, observing only two dose
levels: 54,000 image patch pairs at 10 mAs and
54,000 image patch pairs at 1500 mAs. The networks
were then evaluated by examining TRE as a function
of the dose of the test image.

2.3.3 Mismatch in image resolution

Spatial resolution is another factor that is often variable in the
population that could be sparsely represented in a training data
set (e.g., a data set with all images acquired with the same make/
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model/manufacturer of scanner with particular postprocessing/
reconstruction protocols). The following experiments examined
the effect of statistical mismatch in spatial resolution between
training and test data.

(1) Single-resolution training. CNNs were trained
observing data from a single-resolution level (e.g.,
FWHMtrain ¼ 2 px) on ∼108;000 image patch pairs,
each with Dtrain uniformly sampled from (5, 10, 50,
100, 500, 1000, 1500) mAs and X̄train uniformly
sampled from (1, 3, 5, 10) px. For each FWHM con-
dition (ranging from 2 to 20 px), a single network
was trained from random initialization, and the TRE
was examined as the resolution of the test data
(FWHMtest) diverged from that of the training data.

(2) Diverse-resolution training. Additional experiments
examined the effect of training on a data set contain-
ing a diverse range of resolution levels. CNNs were
trained on ∼108; 000 image patch pairs with resolu-
tion levels uniformly sampled from Hann frequency
cutoffs ranging from 0.1 to 1.0 × fNyq (with incre-
ments of 0.1 × fNyq), yielding FWHMtrain values
ranging from 2 to 20 px. The network was then evalu-
ated by examining TRE as a function of the resolution
of the test image.

2.3.4 Mismatch in deformation magnitude

The magnitude and range of soft-tissue deformation is a statis-
tical characteristic that is often difficult to control when curating
a training data set and is perhaps even more difficult to control
when the network is deployed in a particular application.
Therefore, it is important to understand how the network
behaves as the statistics of the deformation differ between the
test and training data.

(1) Single-deformation magnitude training. CNNs were
trained using data from only a single-mean deforma-
tion magnitude level (e.g., X̄train ¼ 5 px) on
∼108;000 image patch pairs, each with FWHMtrain ¼
2 px and Dtrain uniformly sampled from (5, 10, 50,
100, 500, 1000, 1500) mAs. For each X̄train condition
(ranging from 0.01 to 10 px), a single network was
trained from random initialization, and the TRE was
examined as the mean deformation magnitude of the
test data (X̄test) diverged from that of the training data.

(2) Diverse deformation magnitude training. Additional
experiments examined the effect of training on a data-
set containing a diverse range of mean deformation
magnitude. CNNs were trained on ∼108;000 image
patch pairs with X̄train uniformly sampled from

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2 Image generation. The simulated noiseless image (a) is injected with noise to form the moving
image with (b)–(d) showing example images at 3 dose levels (where dose is linearly related to the x ray
tube current-time product, mAs). Displacement vector fields are applied to the noiseless image (e) prior to
noise injection to generate the fixed image with (f)–(h) showing the difference images of the fixed and
moving images prior to registration for three levels of deformation magnitude. (i)–(l) Variations on the
apodization filter cutoff allow for reconstruction at various spatial resolutions.
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(0.01, 0.1, 1, 3, 5, 10) px. The network was then
evaluated by examining TRE as a function of the
mean deformation magnitude of the test image.

2.3.5 Testing on anatomical image content

Networks trained on Voronoi images in the above experiments
were applied to registration of real anatomy (a patient image
from an IRB-approved study) in axial CT abdominal images
[proximal to the kidney, as in Fig. 3(a)]. The noise injection and
deformation process described in Sec. 2.3.1 was applied to the
128 × 128 pixel image to generate a registration scenario with
Dtest ¼ 500 mAs, FWHMtest ¼ 2 px, and X̄test ¼ 3 px yielding
a fixed and moving image. The difference image prior to regis-
tration is shown in Fig. 3(b). Note that due to the architecture,
even though the network was trained on 64 × 64 patches, it can
be deployed on the 128 × 128 px image (and larger power of
2 image sizes) without modification.

The noise injection/deformation process was similarly
applied to 10 abdominal CT images from The Cancer Imaging
Archive (TCIA)30–33 to examine the performance of the diversely
trained networks on real anatomy. Each of the 10 images was
reconstructed under various conditions of dose, resolution, and
deformation magnitude and cropped to 128 × 128 pixel image
patch pairs focusing on soft-tissue regions of interest. For each
experimental condition, the noise and deformation injection
process was repeated 10 times per image, yielding 100 total
image pairs. In each image, 10 conspicuous soft-tissue anatomical
landmarks were selected for evaluation of TRE. The diversely
trained networks were then deployed on these image patch pairs,
and TRE was examined as a function of test image dose, reso-
lution, and deformation magnitude.

3 Results

3.1 Registration Results: Effect of Noise Mismatch

Figure 4 shows TRE performance as a function of test image
dose (with X̄test ¼ 3 px and FWHMtest ¼ 2 px) for the conven-
tional registration methods and the CNN-based method at sev-
eral training conditions. To provide context, the results were
assessed relative to the bounds imparted by three figures of
merit: (1) the “no deformation predicted” line, referring to the
error associated with predicting a null displacement field; (2) the
Dtrain and Dtest ¼ “noiseless”line, referring to the performance

when train and test data are noiseless, yielding an optimal bound
that noisy data should not exceed; and (3) the CRLB for rigid
registration, indicating ideal registration performance as a func-
tion of dose for unbiased estimators.

Figure 4(a) illustrates CNN registration performance in the
statistically matched case (Dtrain ¼ Dtest, red line) where the
dose of the training data exactly matches that of test data; each
point shows the TRE (mean ± std) for 11 networks trained at
that dose level with 11 random initializations (e.g., the data point
at Dtest ¼ 100 mAs indicates the performance of networks
trained at Dtrain ¼ 100 mAs). The Dtrain ¼ 10 mAs and Dtrain ¼
5 mAs datapoints only show the results of 3 and 2 trained net-
works, respectively, as most of the 11 randomly initialized net-
works did not successfully converge under these conditions,
indicating the high sensitivity associated with training only
on very noisy data. Generally, we see that CNN registration error
was reduced with higher dose and yielded comparable or better
performance to the conventional registration methods—outper-
forming the conventional methods in the low-dose range and
achieving subpixel TRE in the high-dose range (down to
0.5 px TRE at 1500 mAs). The demons and CNN methods
appeared to trend similarly as a function of dose, whereas B-
spline FFD presented a steeper reduction in error with increased
dose. None of the methods, however, closely followed the
∼1∕

ffiffiffiffiffiffiffiffiffi

dose
p

trend set by the CRLB in rigid registration, indicat-
ing that the assumption of independent, locally rigid registration
is a weak approximation to deformable registration, although
the CRLB still appears to present a reasonable lower limit to
performance.

Figure 4(b) shows CNN registration performance for net-
works trained with only a single-dose level. Examination of the
high-dose training Dtrain ¼ 1500 mAs condition shows similar
performance to the Dtrain ¼ Dtest case for a large range of test
image dose levels—down to ∼50 mAs, where the registration
performance begins to diverge from the statistically matched
condition. Interestingly, for the CNNs trained at lower dose
levels, we observe that registration performance plateaus (and
even slightly increases) as the dose of the test image exceeds
that of training images, indicating that there is no benefit in
deploying the network on images acquired at higher dose
(and lower noise) than the training data. Furthermore, these
lower-dose training conditions did not exhibit a large range
of robustness, where networks trained at 50 mAs yielded similar
performance to those trained at 1500 mAs when tested on
10 mAs images (2.73 versus 2.52 px mean TRE).

Fig. 3 Testing on anatomical content after training on Voronoi images. (a) Moving and fixed images were
generated at Dtest ¼ 500 mAs, FWHMtest ¼ 2 px, and X̄ test ¼ 3 px, yielding the difference image in (b).
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Dashed curves in Fig. 5 show the registration error as a
function of test image dose for CNNs trained at diverse dose
conditions. First, we observe that performance for the single
network trained on a diversity of images with dose levels rang-
ing from 5 to 1500 mAs closely matched the performance of
the multitude of networks associated with the Dtrain ¼ Dtest

curve, with only a slight reduction in the performance in the
very high-dose region. Furthermore, the network trained at

only two dose levels, with half the training data at
1500 mAs and half at 10 mAs, yielded nearly the same perfor-
mance as the highly diverse Dtrain ¼ 5 to 1500 mAs network,
indicating that a wide range of dose levels (not necessarily
densely or uniformly sampled) may be sufficient to diversify
the training set.

3.2 Registration Results: Effect of Image Resolution
Mismatch

Figure 6 shows the TRE measured as a function of the spatial
resolution (FWHM) in the test images (with X̄test ¼ 3 px and
Dtest ¼ 1500 mAs). The FWHMtrain ¼ 2 px curve (magenta)
shows the performance of a network trained on high-resolution
images, where we observe a linear increase in error as networks
are tested on lower resolution images. The FWHMtrain ¼ 4 px
training (cyan) provides increased robustness (compared to
FWHMtrain ¼ 2 px) in the low-resolution test region, and the
performance is only slightly reduced in the high-resolution
range. However, training on very low-resolution data
(FWHMtrain ¼ 10 px [red] and FWHMtrain ¼ 20 px [blue])
does not generalize to high-resolution test data, with a steep
increase in error as the resolution of the test data exceeds that
of the training data. We see again the diverse training network
(green) generalizes well, providing near optimal performance
across the entire range of tested image resolution levels.
Comparison of the CNN performance with the conventional
methods initially indicates that the conventional methods
nearly always outperform the network; however, this can be
attributed to two factors: (1) each data point for the conven-
tional methods represents the TRE for best performing
parameter selection at that FWHM test condition therefore it
represents a “best-case” for the conventional methods and
(2) the testing is performed on high-dose images where similar
performance was observed [Fig. 4(a)] among the conventional
and CNN-based methods.

(a) (b)

Fig. 4 Registration performance as a function of test image dose. (a) TRE as a function ofDtest for single-
dose training statistically matched CNN (Dtrain ¼ Dtest, red), demons (green triangle), and B-spline FFD
(blue square). These results are generally bounded by the rigid CRLB (black line), the predict no defor-
mation line (black dot-dash), and the Dtrain, D test ¼ noiseless error (black dashed). (b) TRE as a function
of Dtest for single-dose training CNNs showing the effect of mismatched statistics for Dtrain values of
10 (green), 50 (cyan), 100 (magenta), and 1500 (blue) mAs.

Fig. 5 Diverse dose training. The green (Dtrain ¼ 5 to 1500 mAs) line
shows TRE performance for the diversely trained (with respect to
dose) network and the cyan dashed line depicts error when half the
training data were 10 mAs and half were 1500 mAs. The blue
(Dtrain ¼ 1500 mAs) and red (Dtrain ¼ Dtest) solid lines from Fig. 4 are
provided for reference.
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3.3 Registration Results: Effect of Deformation
Mismatch

Figure 7 shows registration performance of the CNN as a func-
tion of X̄test (with FWHMtest ¼ 2 px and Dtest ¼ 1500 mAs) for
networks trained with fixed mean displacement magnitude,
X̄train. The experimental error generally increases as the defor-
mation magnitude increases (as the registration becomes more
difficult to solve); however, among each X̄test deformation level,
the best performance is observed when training and test data are
statistically matched (i.e., X̄test ¼ X̄train). At large deformation
(X̄train ¼ 10 px) subpixel error is no longer achieved, and the
best performing network at that condition (X̄train ¼ 10 px)
exhibited a mean TRE of 1.68 px. Although networks general-
ized well when X̄test < X̄train, a sharp increase in error occurs if

X̄test exceeded the mean displacement magnitude of the training
conditions. However, it should be noted that high X̄train data
will still likely contain regions of small deformation, aiding the
ability to generalize. The diversely trained X̄train ¼ 0.01 to 10 px
condition yielded a good compromise on performance across
all test conditions.

3.4 Registration Results: Testing on Anatomical
Image Content

Figure 8 shows the registration performance for networks
trained on Voronoi content alone and tested a real anatomy in
axial CT abdominal images. Registration results are shown in
terms of the difference images following registration, with the
RMSE difference in pixel intensity (HU) shown in each case.
The rows are organized according to the three prior experiments,
examining the effect of dose, resolution, and deformation mag-
nitude, respectively. The columns represent three conditions:
mismatched statistics, matched statistics, and diverse training.
Considering the difference images and RMSE values following
registration, we observe results consistent with the results
described above—namely, that matching the statistics of the
training data to those of the test data tends to be optimal, but
training on diverse datasets provides comparable (and generally
more robust) performance. Furthermore, it is promising that
training on Voronoi images alone yielded reasonable registration
performance in real anatomy, providing another validation to the
Voronoi training model and noting that Voronoi images were
previously shown12 to share second-order statistical characteris-
tics (i.e., power-law spectrum) with real anatomy.

Figure 9 further demonstrates the performance of the
diversely trained networks applied to images of real anatomy.
Figure 9 shows the distributions (mean ± 1 standard deviation,
computed over 100 image pairs) of the mean TRE for each
image pair (mTRE, computed from 10 landmarks per image
pair) for the diversely trained networks. Figure 9(a) shows the
performance for the diversely trained network (Dtrain ¼ 5 to
1500 mAs) and demonstrates a reduction in mTRE with
increased dose (holding X̄test ¼ 3 px and FWHMtest ¼ 2 px).
The mean of the mTRE measurements exhibits a 1/sqrt depend-
ence on dose (R2 ¼ 0.98) in agreement with the statistical model
presented in Sec. 2.2. Example images representing the median
performance at low- and high-dose levels are shown below each
plot, with Canny edges overlaid on the registered image.
Similarly, Fig. 9(b) shows the performance of the diversely
trained (FWHMtrain ¼ 2 to 20 px) network applied to images
generated at various levels of spatial resolution (holding
Dtest ¼ 1500 mAs and X̄test ¼ 3 px). A nonmonotonic (quad-
ratic) dependence on spatial resolution (FWHMtest) is exhibited
(R2 ¼ 0.91) with weak correlation to FWHMtest (∼0.1 px varia-
tion in mean mTRE over the full range of FWHMtest). Finally,
Fig. 9(c) shows results for the diversely trained (X̄train ¼ 0.01 to
10 px) network as a function of the test image deformation mag-
nitude (holding FWHMtest ¼ 2 px and Dtest ¼ 1500 mAs), also
demonstrating a roughly quadratic dependence (R2 ¼ 0.99) on
the mean fit. Although the trends in mean of the mTRE mea-
surements are consistent with basic models of performance
(e.g., 1/sqrt dependence on dose), the individual mTRE mea-
surements exhibit high variability, and fitting the collection
of mTRE measurements (rather than the per-condition mean)
to the models tested above exhibits low correlation [R2 ¼ 0.11,
0.02 and 0.43 for Figs. 9(a)–9(c), respectively]. Thus the

Fig. 6 Effect of image spatial resolution. TRE results as a function
of FWHMtest for CNNs trained at various spatial resolutions:
FWHMtrain ¼ 2 (magenta diamond), 4 (cyan triangle), 10 (red circle),
and 20 (blue square) px. The green line (FWHMtrain ¼ 2 to 20 px,
sideways triangle) shows registration performance for the diversely
trained (with respect to FWHM) network. Dashed lines show the
performance of demons and B-spline FFD for comparison.

Fig. 7 Effect of mismatch in mean deformation magnitude. TRE
measured as a function of mean displacement magnitude for CNNs
trained at 3 (cyan triangle), 5 (blue star), and 10 (magenta diamond)
px. The green line shows registration performance for the diversely
trained (with respect to ) network. Dashed lines show the performance
of demons and B-spline FFD for comparison.
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experimental variables are not strongly predictive of mTRE for a
single image (e.g., a noisy image may spuriously yield more
accurate registration than a higher dose image); however, the
overall trends in mean mTRE were as expected. Overall, image
registration is robustly achieved, except perhaps for the case
of large test image deformation in Fig. 9(c). In each case, the
trends in TRE reflect that of the registration errors shown above
for the diversely trained networks applied to Voronoi test
images (Figs. 5–7, respectively), again validating the use of
Voronoi content as a statistical model for registration training
that appears to transfer reasonably well to registration of real
anatomy.

4 Discussion and Conclusion
The quality—and statistical characteristics—of medical images
varies widely, depending on the imaging system, image
acquisition protocol (e.g., dose level), reconstruction method

(e.g., smoothing filters), and postprocessing techniques.
Accordingly, it can be difficult to curate training data that is fully
representative of the population statistics. Therefore, an under-
standing of the behavior of the network as the statistics of the
test data deviate from those of the training data helps to ensure
reliability of the network and/or determine whether additional
data collection or augmentation is necessary. In this work,
we specifically studied statistical mismatch in the form of image
noise, spatial resolution, and deformation magnitude, generally
finding that exactly matching the statistics is optimal; however,
training the network with data featuring a diversity of statistical
characteristics yields a single model that tends to be robust
across a broader range of test conditions.

The experiments in this work provided insight on the
importance of the various statistical characteristics that were
examined. For mismatch in dose, it was found that testing on
higher dose images than present in the training set did not

Fig. 8 Testing on anatomical content. Difference images following registration (original images shown in
Fig. 3) are shown for networks at various training conditions. RMSE of the difference in HU is shown in
text for each image. Columns represent conditions of (a) mismatched training and test statistics,
(b) matched statistics, and (c) diverse training. Rows examine various training conditions for dose,
resolution, and deformation magnitude.
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improve (and in fact, slightly diminished) registration perfor-
mance. Although testing on images that were noisier (e.g.,
lower-dose) than the training data generalized well, the ability
to maintain similar performance to the matched statistics case
was limited. Performance was further improved by including
a diverse range of dose levels in the training set, extending gen-
eralizability of the network—especially in the low-dose range
(although slightly diminishing performance in the high-dose
range). Interestingly, a training set composed of two distinct
noise levels (e.g., high-dose data and low-dose data) yielded
similar improvement, with performance comparable to that of
a training set representing “all” intermediate noise levels.

For mismatch in spatial resolution, while there was a modest
reduction in performance by testing on blurrier data than present
in the training set (which is easy to account with blurring aug-
mentation methods), testing on much higher resolution images
was found to exhibit a steep reduction in performance. Networks
trained only on low-resolution data sets are therefore unlikely to
extend well to high-resolution test data.

With respect to deformation magnitude, we found it impor-
tant to ensure that the test data deformation magnitude did not
exceed that observed in the training data. Although the networks
generalized better to smaller deformation scenarios, perfor-
mance could be greatly improved by ensuring a wide range of
deformation magnitude in the training data, which can be
accomplished by augmenting the dataset with known deforma-
tions of various magnitudes.

Many of the parameters and hyperparameters in this study
were explored in preliminary studies to determine nominal val-
ues and fixed for the rest of the experiments. Such parameters
include the number of training images (fixed ∼108;000 image
patch pairs), the learning rate, and network size. It is certainly
the case that robustness could be improved if low-dose Dtrain

networks had either more training data or a smaller network with
fewer weights to learn. Future and ongoing work investigates
these and similar questions in the context of other forms of stat-
istical mismatch, such as displacement vector field smoothness
and nonlinear intensity shifts (e.g., due to change in beam

Fig. 9 Registration error mTRE (mean ± 1 standard deviation) of the diversely trained networks applied
to anatomical content as a function of the TCIA test image: (a) dose, (b) spatial resolution, and (c) defor-
mation magnitude. Below each plot, are the median performers for two test conditions with the symbol on
the image referring to the plotted symbol in the associated graph.
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energy for CT or T1/T2 weighting in MRI). Furthermore, the
extent to which these findings hold for different network archi-
tectures or training methods (e.g., including regularization on
the parameter weights or performing unsupervised training)
warrants investigation. It is also important to consider how these
findings may hold in much smaller datasets, where “diverse”
training may not provide enough high-quality data for success-
ful training.
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