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Abstract
Complex human behavior emerges from dynamic patterns of neural activity that transiently syn-

chronize between distributed brain networks. This study aims to model the dynamics of neural

activity in individuals with schizophrenia and to investigate whether the attributes of these

dynamics associate with the disorder's behavioral and cognitive deficits. A hidden Markov model

(HMM) was inferred from resting-state functional magnetic resonance imaging (fMRI) data that

was temporally concatenated across individuals with schizophrenia (n = 41) and healthy compari-

son individuals (n = 41). Under the HMM, fluctuations in fMRI activity within 14 canonical

resting-state networks were described using a repertoire of 12 brain states. The proportion of

time spent in each state and the mean length of visits to each state were compared between

groups, and canonical correlation analysis was used to test for associations between these state

descriptors and symptom severity. Individuals with schizophrenia activated default mode and

executive networks for a significantly shorter proportion of the 8-min acquisition than healthy

comparison individuals. While the default mode was activated less frequently in schizophrenia,

the duration of each activation was on average 4–5 s longer than the comparison group. Severity

of positive symptoms was associated with a longer proportion of time spent in states character-

ized by inactive default mode and executive networks, together with heightened activity in sen-

sory networks. Furthermore, classifiers trained on the state descriptors predicted individual

diagnostic status with an accuracy of 76–85%.
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1 | INTRODUCTION

Resting-state functional neuroimaging is widely used to investigate

cerebral processes underlying the neurocognitive and behavioral defi-

cits associated with schizophrenia. Most studies have employed

functional magnetic resonance imaging (fMRI) or encephalographic

modalities to derive time-averaged measures of regional activation and

functional connectivity, which provide a summary of activity over the

duration of the entire scan acquisition (Alexander-Bloch et al., 2010;

Calhoun, Eichele, & Pearlson, 2009; Cocchi, Halford et al., 2014;

Fornito, Yoon, Zalesky, Bullmore, & Carter, 2011; Fornito, Zalesky,

Pantelis, & Bullmore, 2012; Gur & Gur, 2010; Kircher & Thienel, 2005;

Liu et al., 2008; Rubinov et al., 2009; van den Heuvel & Fornito,

2014). However, these neuroimaging modalities yield data that is

inherently time-resolved, and thus enable investigation of dynamics in

neural activity and connectivity as a function of time.

Neural dynamics give rise to spatially distributed networks of

functionally interconnected regions that emerge and dissolve over

multiple timescales (Cabral, Kringelbach, & Deco, 2014, 2017;

Calhoun, Miller, Pearlson, & Adalı, 2014; Deco, Jirsa, & McIntosh,

2011; Hutchison et al. 2013a; Kottaram et al., 2018; Preti, Bolton, &

Van De Ville, 2016). An emerging idea is that of a functional repertoire

of putative brain states that is continually revisited and rehearsed

against a background of noise-driven endogenous neural activity

(Deco & Jirsa, 2012; Sporns, 2013). The dynamics that play out on this

functional repertoire are thought to support cognition (Cabral et al.,

2017; Cocchi, Zalesky, Fornito, & Mattingley, 2013) and reflect the

overall functional capacity of a neural system (Deco et al., 2011),

which are likely related to changing mental states. Given that cogni-

tive deficits are one of the core clinical features of schizophrenia

(Bora & Pantelis, 2015; Elvevåg & Goldberg, 2000), and cognition is

thought to emerge from the dynamic interactions among distributed

brain regions (Bressler & Menon, 2010; Cabral et al., 2017; Cabral,

Kringelbach & Deco 2017; Cocchi, Harding et al., 2014; Cole, Ito, Bas-

sett, & Schultz, 2016), we hypothesized that neurocognitive and

behavioral deficits associated with the disorder may be characterized

by altered transition dynamics between putative brain states.

Previous studies suggest that large-scale neural dynamics in schizo-

phrenia are aberrant and characterized by reduced dynamism

(Damaraju et al., 2014; Miller et al., 2016), heritable (Su et al., 2016),

distinguishable from bipolar disorder (Rashid et al., 2014) and healthy

comparison individuals (Kottaram et al., 2018), and associated with

working memory performance (Fu et al., 2017). These previous studies

have primarily focused on characterizing functional connectivity

dynamics (i.e., interregional coupling), rather than the dynamics of brain

activity per se (i.e., blood-oxygenation level-dependent [BOLD] signal

dynamics). While connectivity and activity are related, time-resolved

analysis of functional connectivity is hampered by controversy in the

core definition of connectivity dynamics (Liegeois, Laumann, Snyder,

Zhou, & Thomas Yeo, 2017) and ongoing debate about choice of win-

dow lengths and other potential confounds (Hindriks et al., 2016;

Leonardi & Van De Ville, 2015; Lindquist, Xu, Nebel, & Caffo, 2014;

Zalesky & Breakspear, 2015). To circumvent these concerns, a more

principled approach may be to explicitly model the dynamics of brain

activity in regions or networks of interest.

One such computationally tractable model is the hidden Markov

model (HMM). The basic premise of the HMM is that brain activity

measurements from multiple locations can be decomposed into a

sequence of discrete brain states that repeat over time. These puta-

tive brain states are continually revisited and represent distinct spatio-

temporal patterns of activation, which are not directly observable, and

thus considered “hidden.” The HMM aims to discover these hidden

brain states as well as the likely sequence of transitions between

them. The overall proportion of time that an individual resides in each

putative brain state, known as the state's fractional occupancy, and the

average time spent in each state during each visit, known as the mean

lifetime or dwell time, can then be inferred for each individual.

The HMM has recently been applied to model neural dynamics

inferred from magnetoencephalography (MEG) (Baker et al., 2014;

Quinn et al., 2018; Vidaurre et al., 2016) as well as task-based and

resting-state functional MRI data (Ryali et al., 2016; Vidaurre et al.,

2017a; Vidaurre et al., 2017b; Taghia et al., 2018). These seminal

studies provide evidence for the utility of the HMM in characterizing

dynamic interactions between brain networks in healthy individuals

and show that the frequency of state transitions increases with age

(Ryali et al., 2016) and transitions can be organized hierarchically into

cognitive and sensorimotor metastates, with dwell times in these

putative metastases being heritable and correlating with cognitive

traits (Vidaurre et al., 2017a).

In the present study, we aim to model the temporal dynamics of

neural activity in individuals with schizophrenia and investigate any

potential relation between these dynamics and the disorder's core

symptoms. We hypothesize that the clinical symptoms and pervasive

cognitive deficits evident in schizophrenia may be associated with

aberrant dynamics involving activation of the default mode, salience,

executive control, and sensorimotor networks. To investigate this

hypothesis, we fit an HMM to resting-state functional MRI data

acquired in individuals with schizophrenia and healthy comparison

individuals. Our study is the first to apply the HMM to a clinical popu-

lation. We show that the HMM provides a principled characterization

of how canonical brain networks are coupled and evolve over time in

schizophrenia.

2 | MATERIALS AND METHODS

2.1 | Participants

Two neuroimaging data sets were analyzed. Data set 1 comprised

individuals with schizophrenia and healthy comparison individuals,

and was used to address the primary aims of this study. Data set

2 comprised only healthy individuals and was used to test the robust-

ness and replicability of the HMM.

Data set 1: Detailed clinical assessment and neuroimaging of

brain anatomy and function was performed in 41 individuals with

schizophrenia (mean age 40.9 ± 10.0 years, 28 males) and 41 healthy

comparison individuals (age-matched, mean age 38.3 ± 10.9 years,

24 males). Individuals with a confirmed diagnosis of schizophrenia
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(DSM-IV) were recruited from inpatient and outpatient clinics in the

metropolitan area of Melbourne, Australia. Individuals with schizo-

phrenia were treatment-resistant, defined as at least two unsuccessful

trials of at least two antipsychotic medications in the last 5 years.

Exclusion criteria included any contraindication to MRI, any neurologi-

cal disorder, history of brain trauma followed by a long period of

amnesia, mental retardation, current drug or alcohol dependence,

and/or history of electroconvulsive therapy. Healthy comparison indi-

viduals were recruited from the local community and had similar

socio-economic backgrounds to that of patients. Healthy comparison

individuals were excluded if they had a personal or family history of

psychosis or bipolar disorder. All individuals were aged between

18 and 62 years and provided written informed consent before partic-

ipation. Recruitment and all data acquisition procedures were

approved by the Melbourne Health Human Research Ethics Commit-

tee (MHREC ID 2012.069). Demographics and clinical characteristics

are shown in Table 1.

Data Set 2: Minimally preprocessed resting-state functional MRI

data from the human connectome project (HCP; Smith et al., 2013)

was sourced for 40 healthy adults (age range = 22–35 years; 20 males)

to assess the robustness and replicability of the model. Details about

recruitment procedures and inclusion/exclusion criteria are described

in detail elsewhere (Van Essen et al., 2013).

2.2 | Clinical assessments

All individuals were administered the Mini International Neuropsychi-

atric Interview (Sheehan et al., 1998) to confirm diagnosis of individ-

uals with schizophrenia and exclude current or past psychopathology

in the healthy comparison individuals. Further, all individuals were

administered the global assessment of functioning (GAF; Hall & Parks,

1995) and the social and occupational functioning assessment scale

(SOFAS; Goldman, Skodol, & Lave, 1992). The scale for the assess-

ment of positive symptoms (SAPS) and the scale for the assessment of

negative symptoms (SANS; Andreasen, Flaum, Arndt, Alliger, &

Swayze, 1991) were used to assess clinical symptoms in individuals

with schizophrenia. The Cambridge neuropsychological test auto-

mated battery (CANTAB; Sahakian et al., 1988) was used to assess

cognition (executive function and working memory) and the Wechsler

abbreviated scale of intelligence (WASI; Wechsler, 1955) was used to

measure full-scale intelligence quotient.

2.3 | Image acquisition

Data set 1: Data were acquired on a Siemens Avanto 3T Magnetom

TIM Trio scanner. T1 weighted images of brain anatomy were acquired

using an optimized Magnetization-Prepared Rapid acquisition Gradient

Echo sequence (176 sagittal slices with 1 mm thickness without gap;

repetition time (TR) = 1980 ms; echo time (TE) = 4.3 ms; flip angle =

15�; field of view (FOV) = 250 × 250 mm2 and resolution = 0.98 ×

0.98 × 1.0 mm3). Resting-state functional images were acquired using

a T2*-weighted echo-planar imaging sequence (TR = 2 s, TE = 40 ms,

voxel dimensions = 3.3 × 3.3 × 3 mm3 and matrix size 64 × 64), for a

duration of 7.8 min, resulting in 234 frames. Individuals were instructed

to stay awake and keep their eyes closed during the scan.

Data set 2: Acquisition details are described in detail elsewhere

(Smith et al., 2013). In short, 1,200 frames of resting-state multiband,

gradient-echo planar imaging were acquired during a period of

14.4 min with the following parameters: relaxation time, 720 ms; echo

time, 33.1 ms; flip angle, 52�; field of view, 280 × 180 mm; matrix,

140 × 90; and voxel dimensions, 2 mm isotropic. Only one of the four

runs acquired for each individual was analyzed in this study (left–right

encoded, first session).

2.4 | Image preprocessing

Data set 1: Image preprocessing was performed using FSL (FMRIB

software Library, https://fsl.fmrib.ox.ac.uk/fsl/) and SPM8 (www.fil.

ion.ucl.ac.uk/spm). The following sequence of steps was completed

TABLE 1 Demographic, behavioral, and clinical characteristics (Data set 1)

Schizophrenia (n = 41) Comparison group (n = 41) Between-group comparison

Sex (male/female) 28/13 24/17 χ2(1, N = 82) = 0.97, p = 0.32

Age (years) 40.9 ± 10.0 38.3 ± 10.5 t(82) = 1.1, p = 0.27

Illness duration (years) 17.9 ± 9.3 – –

IQ (WASI) 86.1 ± 18.7 111.2 ± 13.6 t(75) = 6.70, p < 0.01*

Education (years) 12.0 ± 0.55 16.4 ± 0.47 t(79) = −6.35, p < 0.01*

GAF 45.9 ± 13.0 79.5 ± 10.6 t(79) = −12.79, p < 0.01*

SOFAS 46.5 ± 14.8 79.5 ± 11.0 t(80) = −11.49, p < 0.01*

Generalized cognition1 (CANTAB) −48.5 ± 30.2 42.9 ± 20.7 t(82) = 7.91, p < 0.01*

Clozapine dosage (mg/day) 393.24 ± 24.6 – –

Chlorpromazine equivalent dosage (mg/day) 615.4 ± 55.84 – –

SAPS2 1.19 ± 0.62 – –

SANS2 1.48 ± 0.79 – –

Note. IQ = intelligence quotient; WASI = Wechsler abbreviated scale of intelligence; GAF = the global assessment of functioning; SOFAS = social and occu-
pational functioning assessment scale; CANTAB = Cambridge neuropsychological test automated battery; SAPS = scale for the assessment of positive
symptoms; SANS = scale for the assessment of negative symptoms; mg = milligram.
*Significant p < 0.01. Mean ± standard deviation of each measure is shown.
1Principal component across multiple CANTAB outcome measures (Section 2.8, Supporting Information Table S2).
2Mean across all available subscales (Section 2.8, Supporting Information Table S2). Variation in degrees of freedom is due to missing data for some
individuals.
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for each individual: slice-time correction, realignment to the mean

functional volume to correct for head motion, co-registration to the

respective T1-weighted anatomical image via rigid-body registration

and then spatial normalization to the Montreal Neurological Institute

152 template maintaining an isotropic 2 mm resolution via nonlinear

transformation. Confounds such as motion parameters (Friston

24-parameter model; Friston, Williams, Howard, Frackowiak, &

Turner, 1996) and signals from white matter and ventricles were

regressed from the BOLD time courses for each gray matter voxel, to

correct for head motion and physiological noise. Spatial smoothing

was applied to the residuals from this regression using a Gaussian

kernel of full-width at half-maximum (FWHM) of 4 mm. After smooth-

ing, the voxel time courses were band-pass filtered (0.01–0.1 Hz) to

alleviate low-frequency drifts and high-frequency physiological noise

(Cordes et al., 2001). Global signal regression was not applied, given

that this procedure has been suggested to alter the covariance struc-

ture of the data (Murphy, Birn, Handwerker, Jones, & Bandettini,

2009), particularly when assessing dynamics (Xu et al., 2018).

Of note, the sample characterized in Table 1 excludes seven individ-

uals (three healthy and four schizophrenia individuals) who were omitted

due to excessive intrascan head motion (framewise displacement

[FD] >0.5 mm). For the remaining individuals, FD did not significantly dif-

fer (p > 0.05) between the schizophrenia group (0.14 ± 0.07 mm) and

healthy comparison individuals (0.1 ± 0.05 mm).

Data set 2: The minimal preprocessing pipeline for the HCP data

is described in detail elsewhere (Smith et al., 2013). The minimally pre-

processed data were spatially smoothed with a Gaussian kernel

(FWHM = 4 mm) and band-pass filtered (0.01–0.1 Hz). These addi-

tional steps were undertaken to ensure Data sets 1 and 2 shared com-

parable frequency spectra and spatial smoothness.

2.5 | Delineation of resting-state networks

The temporal dynamics of BOLD activity were modeled in 14 canonical

resting-state networks (RSNs) using a HMM. The spatial extent of each

RSN was delineated according to established reference maps (Shirer,

Ryali, Rykhlevskaia, Menon, & Greicius, 2012; Supporting Information

Table S1). RSNs included cortical, subcortical, and cerebellar regions.

For each individual, network-averaged time courses were determined

for each of the 14 RSNs by averaging BOLD activity over all voxels

encapsulated by the RSN. These time courses were normalized to have

zero mean and unit standard deviation across time. Normalization was

performed separately for each RSN and each individual. These steps

yielded a matrix with three dimensions: subjects × RSNs × time (Data

set 1: 82 × 14 × 234; Data set 2: 40 × 14 × 1,200). The RSNs could

have been alternatively delineated using independent component anal-

ysis (ICA) or other data-driven parcellation methods; but this would

limit the comparability of the model across data sets. Hence, we opted

to use established reference maps that facilitate these explicit

comparisons.

2.6 | Hidden Markov model

The network-averaged BOLD time courses for each RSN (zero mean

and unit standard deviation) were temporally concatenated across all

individuals with schizophrenia as well as healthy comparison individ-

uals. After concatenation, the three dimensional matrix was thus

reduced to two dimensions: RSNs × T, where T = subjects × time

(Data set 1: 14 × 19,200; Data set 2: 14 × 48,000). The HMM was

then fitted to the temporally concatenated time courses. Fitting the

HMM to the concatenated data yielded a single set of model parame-

ters (e.g., brain states) that represented a consensus across all individ-

uals. While all individuals thus shared a common set of states, the

amount of time spent in each state and the transition probabilities

between states varied between individuals.

A schematic of the HMM architecture used in the present study

is shown in Figure 1 and a brief technical overview of the HMM is

provided in Supporting Information Section 1. The basic premise of

the HMM is that BOLD activity dynamics in the 14 RSNs can be

decomposed into a sequence of discrete brain states that repeat over

time. These putative brain states represent distinct spatiotemporal

patterns of activation. For example, a certain state might be character-

ized by relatively high activity in the default mode RSNs and relatively

low activity in all other RSNs, potentially corresponding to an intro-

spective state. The HMM aims to discover these hidden brain states

as well as the likely sequence of transitions between the states, under

the assumption that the network-averaged BOLD time courses are

stationary processes and the probability of the current state only

depends on the previous state.

The HMMBOX MATLAB toolbox (www.robots.ox.ac.uk/~parg/

software) was used to perform variational Bayes (VB) inference on the

HMM (Rezek & Roberts, 2005). Further details about VB inference on

HMMs are available elsewhere (Baker et al., 2014; Vidaurre et al.,

2017a). A total of 400 training cycles were completed and the model

fit with the lowest free energy was selected. A multivariate Gaussian

distribution was chosen for the observation model (emission distribu-

tion), and thus each inferred state was fully characterized by a mean

activation for each RSN (K × 1 vector per state; Figure 1c) as well as a

K × K covariance matrix, where K denotes the number of RSNs (K=

14 in this study). Covariance matrices were not analyzed in this study.

The group-level transition probability matrix was also estimated

(Figure 1d). Element (i, j) of the transition matrix is the probability of

transitioning from the state xi to state xj, while element (i, i) relates to

the average amount of time spent in state xi. Because we used a VB

inference framework, the marginal posterior distribution on the state

variable was estimated, and thus to compute summary statistics, the

most probable a posteriori state was chosen to be the active state at

each time point (Figure 1e).

The total number of states comprising the HMM needs to be

specified a priori. Previous studies that modeled functional MRI

dynamics in healthy individuals have considered 5–12 states (Baker

et al., 2014; Damaraju et al., 2014; Ou et al., 2015; Vidaurre et al.,

2017a). Following the recent study of Vidaurre et al. (2017a), we fore-

most inferred an HMM with M = 12 states. Our results were qualita-

tively comparable for HMMs inferred with as few as eight states.

Moreover, HMMs comprising 8–12 states differed negligibly in good-

ness of fit (Supporting Information Figure S1). Inference with 12 states

yielded the most physiologically plausible findings and provided a mar-

ginally improved fit (free energy).
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2.7 | Inference

After the HMM was inferred, each individual was characterized by a

distinct transition probability matrix (M × M) as well as distinct frac-

tional occupancy (M × 1) and mean lifetimes (M × 1) for each of the

M = 12 states. These descriptors were derived from the state path

sequence for each individual (Figure 1e). Transition probabilities char-

acterized the probability of transitioning from one state to another at

each time epoch. Each time epoch corresponded to one TR. A state's

fractional occupancy was defined as the proportion of time that an

individual resided in the state during the scan acquisition, whereas the

state's mean lifetime, or dwell time, was the average time an individual

resided in the state during each visit (Baker et al., 2014). Fractional

occupancy and mean lifetimes provided complementary characteriza-

tions: states with long fractional occupancy times, but short mean life-

times, are frequently visited for short intervals.

Inference was performed to evaluate the null hypothesis of equal-

ity in transition probabilities, fractional occupancy times, and mean

lifetimes between the schizophrenia and healthy comparison groups.

The network-based statistic (NBS) (Zalesky, Fornito, & Bullmore,

2010) was used to perform inference on the transition probability

matrices. The primary statistic threshold was set to 2.5; a total of

5,000 permutations were generated; and the family-wise error rate

was controlled at 5%. Connected components in the network of

supra-threshold connections were identified with a breadth first

search and the size of each connected component was measured

based on the number of supra-threshold connections it comprised.

Permutation testing was performed by shuffling group labels (schizo-

phrenia or control) among individuals, under the assumption of

exchangeability. For each permutation, the size of the largest con-

nected component was stored to estimate an empirical null distribu-

tion. The family-wise error corrected p-value for a component of

given size was then estimated as the proportion of permutations with

components of equal or larger size.

Two-sample t-tests were used for fractional occupancy and mean

lifetimes and permutation testing was used to assess the null

FIGURE 1 Architecture of the HMM. (a) HMM inputs were network-averaged BOLD time courses for each of K RSNs. Network-averaged time

courses were temporally concatenated across N individuals (columns), where the dashed vertical lines indicate concatenation points.
Concatenated time courses are denoted yk, k = 1, … K. (b) The HMM identified recurring patterns of activation among the K network-averaged
time courses. Each distinct activation pattern was assumed to represent a putative brain state. The variable Xt ϵ {x1, x2, … , xM} denotes the state
in which the brain resides at time t, where M is the total number of states comprising the HMM, while the variable Yt = (y1,t, y2,t, … , yK,t) denotes
the values of the network-averaged time courses observed at time t. The variable Xt is not directly observable from the data, and is thus
considered ‘hidden’. According to the HMM, the brain resides in a given state for a certain period of time and then transitions to a new state with
a probability that depends only on the previous state. At time t, the value of the observed variable Yt depends only on the value of the state Xt

and was assumed to follow a K-variate Gaussian distribution in this study. The parameters fitted to the HMM are: i) the mean activity of the RSNs
in each state (emission distribution parameters, Panel C); and, ii) the probabilities of transitioning from one state to another (transition
probabilities, Panel D). (C) Example fit of emission distribution means for each of M = 12 brain states (columns). Element (i, j) of the matrix is the
mean activity of RSN i in state j. (D) Example matrix of transition probabilities, where element (i, j) is the probability of transitioning to state xj
from state xi. (E) After fitting the HMM, the most probable brain state at each time point for each individual was inferred using Viterbi decoding.
The state path sequence shown contains discrete steps of varying height, each of which corresponds to a state transition. Brain states are labeled
with integers in an arbitrary order (vertical axis). Note that the HMM infers a covariance matrix corresponding to each state; however this was
not analyzed in the present study; hence not listed here [Color figure can be viewed at wileyonlinelibrary.com]
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hypothesis of equality in fractional occupancy and mean lifetimes

between the schizophrenia and healthy comparison group. Specifically,

we generated 5,000 permutations by shuffling group labels (schizophre-

nia or control) among individuals. For each permutation, a t-statistic

was computed to test for a between-group difference in fractional

occupancy or mean lifetimes. The absolute value of the t-statistic was

stored for each permutation, thereby generating an empirical null distri-

bution. A separate null distribution was estimated for each state. The

p-value for each state was then estimated as the proportion of samples

in the state's null distribution that were greater than or equal to the

absolute value of the t-statistic in the nonpermuted data.

2.8 | Canonical correlation analysis

Canonical correlation analysis (CCA) was used to study associations

among clinical/behavioral measures and fractional occupancies of dif-

ferent states in schizophrenia individuals. CCA enabled discovery of

multivariate associations between state descriptors of the HMM and

interindividual variation in clinical/behavioral measures, thereby pro-

viding a more principled approach than independently assessing each

potential association and then correcting for multiple tests. Specifi-

cally, CCA tested for multivariate associations across individuals

between the 12 fractional occupancy times and 8 measures character-

izing positive (SAPS) and negative symptoms (SANS), general (GAF)

and social (SOFAS) functioning, full-scale intelligence quotient (WASI),

a generalized measure of cognition (based on the CANTAB), chlor-

promazine equivalent dosage as well as the illness duration. Further

details on each score can be found in Supporting Information

Table S2. Principal component analysis was applied to summary mea-

sures to estimate missing values. CCA was performed on the resultant

measures and the fractional occupancy times of 12 states. Permuta-

tion testing was performed to establish significance of the correlation.

The fractional occupancy times were randomly permuted between

individuals and the CCA was re-estimated using this permuted data.

The correlation coefficient associated with the principal canonical

mode was then stored. This was repeated for 5,000 independent per-

mutations, thereby generating an empirical null distribution. A family-

wise error corrected p-value was computed for each canonical mode

in the unpermuted data as the proportion of correlation coefficients in

the null distribution that either equaled or exceeded the correlation

coefficient associated with the mode.

2.9 | Prediction of diagnostic status

Machine classifiers were trained to classify individuals according to

diagnostic status (schizophrenia or control) based on the fractional

occupancy times for each of the 12 states inferred from the HMM.

Ten-fold cross-validation (CV) was used to evaluate the performance

of each classifier as follows. Data set 1 was randomly partitioned into

two mutually exclusive groups of individuals—one containing 90% of

the sample and the other with the remaining 10% of individuals. The

HMM with 12 hidden states was inferred using individuals comprising

the larger partition (90%) and the state path sequences for each indi-

vidual were estimated. The HMM fitted to the larger partition was

then used to estimate the state path sequences for each individual

comprising the smaller partition (10%). Note that the HMM was not

re-fitted to the data comprising the smaller partition. Fractional occu-

pancy times were then computed for each state and each individual.

The 12 fractional occupancy times computed for each individual were

used as features for machine classification of diagnostic status. The

following classifier models were investigated: (a) support vector

machines (SVM) with a linear kernel, (b) k-nearest neighbor (k = 5),

(c) decision trees, (d) naive Bayes, (e) random forests, and (f ) ensemble

method (via boosting of trees). Each classifier model was trained on

the larger partition and then used to predict single-subject diagnosis

in the remaining 10% of the sample. Classifier performance was

assessed using accuracy, sensitivity, specificity, and area under the

curve (AUC). The 10-fold CV was repeated 100 times to estimate the

average performance under a range of data partitions.

In supplementary analyses, we investigated the robustness and

replicability of the states inferred by the HMM using an independent

data set (Data set 2) comprising healthy individuals (Supporting Infor-

mation Section 2).

3 | RESULTS

The HMM architecture shown in Figure 1 (12 states) was used to

model resting-state functional MRI dynamics in 14 canonical RSNs.

The spatiotemporal characteristics of these dynamics were then:

(a) investigated for aberrant behavior in individuals with schizophrenia

(n= 41), relative to healthy comparison individuals (n = 41); (b) tested

for associations with the severity of clinical symptoms and cognitive

deficits; (c) evaluated as features to predict single-subject diagnostic

status using a range of machine classifiers; and (d) compared to an

independent data set to establish the robustness of the HMM.

3.1 | Characterization of brain states

The 12 putative brain states inferred from the HMM are characterized

in Figure 2 and represent recurring patterns of activation among the

14 RSNs. The data used to infer the HMM were normalized to have

zero mean and unit standard deviation across time, and thus an activa-

tion of zero in Figure 2 corresponds to the mean level of activation.

Accordingly, negative activations (cool colors) indicate a relatively low

level of BOLD activity (i.e., below average), while positive activations

(warm colors) indicate relatively high BOLD activity (i.e., above aver-

age). State Hi is an aroused state in which all RSNs are active, whereas

state Lo is the converse state in which all RSNs show dampened activ-

ity. Similarly, states DMLo-SenHi and DMHi-SenLo demonstrate

antagonistic behavior between the default mode and sensory net-

works. State Mean is the baseline state in which all RSNs exhibit their

mean level of activation. States are also evident where salience and

executive networks show high and/or low activity (SalHi-ExHi, SalLo-

ExHi, and DMHi-SalLo).

The covariance matrix inferred for each state is shown in Sup-

porting Information Figure S4. In this study, no further analysis was

performed on the covariance matrices.
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3.2 | Aberrant dynamics in schizophrenia

Between-group inference was performed on three summary measures

characterizing the dynamic behavior of the HMM: (a) state transition

probabilities (12 × 12 matrix per individual); (b) proportion of time

spent in a state, or fractional occupancy (12 occupancies per individ-

ual); and (c) average time spent in a state during each visit, or mean

lifetime (12 lifetimes per individual). Figure 3 shows the mean frac-

tional occupancies (Panel a) and mean lifetimes (Panel b) for each

group of individuals and each of the 12 states. Fractional occupancy

times for each individual are reported in Supporting Information

Figure S5. Relative to the healthy comparison group, individuals with

schizophrenia resided for significantly shorter periods in states charac-

terized by: (a) overall high activation (Hi); and (b) relatively high activa-

tion of the default mode network (DMN) and diminished activation of

sensory networks (DMHi-SensLo). In particular, the fractional occu-

pancy of state DMHi-SensLo is 5–6% lower in patients. Despite resid-

ing in this state for significantly shorter periods than the comparison

group, this state's mean lifetime was significantly increased (4–5 s on

average) in the schizophrenia group. Therefore, schizophrenia is char-

acterized by infrequent but prolonged visits to state DMHi-SensLo.

Furthermore, the schizophrenia group resided for significantly longer

periods in states that were characterized by: (a) low overall activation

(Lo); and (b) heightened activation of sensory networks combined with

relatively low activation of cognitive and executive control networks

(DMLo-SensHi and SensHi-ExLo).

Figure 4a shows group-averaged transition probability matrices.

The top 20% of these transitions are visualized as a state transition

diagram in Figure 4b. It must be noted that these transitions do not

FIGURE 2 Characterization of inferred brain states. A HMM was used to decompose functional MRI dynamics in 14 predefined RSNs into a

sequence of 12 repeating brain states. Brain activation maps illustrate the level of normalized BOLD activity within the regions comprising each
RSN. The 12-segment bar provides a summary of the activation pattern characterizing each state. Data used to infer the HMM were normalized,
and thus an activation of zero corresponds to the mean level of activation (green shades). The activation of each RSN is expressed as a
percentage above or below the mean level of activation. DMN, default mode networks; SAL, salience networks; EXEC, executive control
networks; SENS, sensory networks. Supporting Information Table 1 provides details about the 14 RSNs [Color figure can be viewed at
wileyonlinelibrary.com]
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imply significant between-group differences; rather, they are more

probable on average. Significant between-group differences in transi-

tion probabilities were found with the NBS (p < 0.05) and these tran-

sitions are shown in Figure 4c. Note that the NBS can detect

individual connections (i.e., components of size one) if the majority of

permutations (i.e., >95%) do not contain any connections that exceed

the primary statistic threshold, leading to a null distribution predomi-

nated by components of size zero. Several observations about the

sequence of transitions between states warrant consideration. First,

the healthy comparison group tends to transition back and forth

between states Hi and DMHi-SensLo (1$9 loop). In contrast, this

putative loop is absent in the schizophrenia group, where state Mean

is the preferred transition from both these states. Second, healthy

individuals are more likely to transition to state DMHi-SensLo from

state Lo (10 ! 9), whereas schizophrenia individuals often transition

back and forth between states Lo and DMLo-SensHi (10 $ 3). Third,

from state DMHi-SalLo, healthy individuals preferably transition to

states Hi or DMLo (11 ! 1/5), whereas individuals with schizophrenia

are more likely to transition to state DMHi (11 ! 4). Together, these

results suggest that schizophrenia is characterized by an inability to

dynamically activate and deactivate the DMN.

3.3 | Association between aberrant dynamics and
clinical symptoms

Fractional occupancy times were associated with the largest effect

sizes (Figure 3a), and were thus selected as the summary measure to

correlate with the severity of clinical symptoms and cognitive deficits

in the schizophrenia individuals. CCA identified one significant mode

(r = 0.9, p < 0.01, family-wise error corrected across all CCA modes

FIGURE 3 Comparison of fractional occupancy and mean lifetimes between schizophrenia and healthy comparison groups for states inferred

from the HMM. (a) Comparison of fractional occupancy times for each of the 12 states inferred from the HMM. A state's fractional occupancy is
the proportion of time that an individual resided in the state during the scan acquisition. (b) Comparison of mean lifetimes for each state. A state's
mean lifetime is the average time an individual resided in the state during each visit. Permutation tests (Section 2.7) were performed to assess the
null hypothesis of equality in fractional occupancy times between the schizophrenia and healthy comparison group. Asterisks (*) denote p < 0.05.
Boxplots: upper (lower) box edge, 25th (75th) percentile; central dot, median; thin lines, 1.5 x interquartile length [Color figure can be viewed at
wileyonlinelibrary.com]
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with permutation testing), which characterized an association

between interindividual variation in positive symptoms and fractional

occupancy times (Figure 5). Figure 5b shows that the canonical coeffi-

cient for the measure of positive symptoms (SAPS) is substantially

greater than all other symptoms and cognitive measures. The signifi-

cant CCA mode is thus predominantly explained by interindividual

variation in positive symptoms. The canonical coefficients for the frac-

tional occupancy times (Figure 5c) show a more complex pattern. In

particular, the most positive canonical coefficients are associated with

states DMLo, SenHi-ExLo, and Lo, while states Hi and DMHi show the

most negative canonical coefficients. Therefore, the greater the sever-

ity of positive symptoms, the longer the proportion of time spent in

states characterized by inactive default mode and executive networks,

together with heightened activity in sensory networks.

3.4 | Prediction of diagnostic status

Six distinct machine classifiers were trained to predict the diagnostic

status of each individual (schizophrenia or control) based on the

12 fractional occupancy times. Figure 6 shows classifier performance.

For each classifier architecture, the accuracy, sensitivity, specificity,

and AUC from 100 runs of 10-fold CV are reported. Classification

accuracies ranging between 76 and 85% were achieved across the six

classifiers (sensitivity: 70–78%; specificity: 78–88%, area under curve:

75–82%). All performance measures are significantly greater than the

chance level and multiple classifiers such as SVM, naive Bayes, ran-

dom forest, and ensemble of trees provide a median accuracy above

80%, over different runs of 10-fold CV.

3.5 | Model robustness

Supplementary analyses show that the states inferred from the HMM

are robust to the choice of initial conditions and stochastic variations

in the training cycle (Supporting Information Figure S2). The states

inferred from different instantiations of null data were observed to be

substantially different from that inferred on the real data. The inferred

states were also replicated in an independent group of healthy individ-

uals (Supporting Information Figure S3). We observed that the state

occupancy patterns of healthy individuals from Data sets 1 and 2 are

positively correlated on average, whereas the occupancy patterns of

schizophrenia individuals showed a slightly negative correlation, on

average, to the occupancy patterns of healthy subjects from either

data sets.

FIGURE 4 Transition probabilities between brain states for schizophrenia and healthy comparison groups. (a) Group-averaged transition

probability matrices for schizophrenia (lower) and healthy comparison groups (upper). Diagonal matrix elements omitted to aid visualization.
(b) Top 20% of the transitions (c) State transitions that have significantly different probability of occurrence (p < 0.05), identified by network-
based statistic. Each circle represents a state. Circle diameter is modulated by the fractional occupancy time of the corresponding state. Circle
colors denote states with significantly increased fractional occupancy in the healthy comparison (green) and schizophrenia (blue) groups. Yellow
circles denote states with no significant between-group difference in fractional occupancy. Each arrow represents a transition. Arrows denote
transitions with significantly greater probability in healthy comparison (dark yellow) and schizophrenia (maroon)) groups. Arrow thicknesses in
panel b correspond to group-averaged probability of that transition. The 20% strongest transitions should not be interpreted as significant, but
are rather visualized in panel b to highlight those transitions which are more probable on average. FO, fractional occupancy; Prb, probability. The
12 states are as follows: 1 = Hi, 2 = SalHi-ExHi, 3 = DMLo-SenHi, 4 = DMHi, 5 = DMLo, 6 = SenMean, 7 = SalLo-ExHi, 8 = SenHi-ExLo,
9 = DMHi-SenLo, 10 = Lo, 11 = DMHi-SalLo, 12 = Mean [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Schizophrenia is associated with disturbances to the activity and con-

nectivity of brain networks, at rest (Calhoun et al., 2009; Breakspear

et al., 2003; Liang et al., 2006; Fox & Greicius, 2010; Liu et al., 2006;

Liu et al., 2008; Bluhm et al., 2007; Bluhm et al., 2009; Salvador et al.,

2007; Zhou et al., 2007; Jafri et al., 2008; Whitfield-Gabrieli et al.,

2009) and during the execution of cognitive and motor tasks (Calhoun

et al., 2012; Gur et al., 2002; Harrison, Yücel, Pujol, & Pantelis, 2007;

Hugdahl et al., 2004; Manoach et al., 1999; Yoon et al., 2008). In this

study, we provided a novel characterization of these disturbances by

explicitly modeling the dynamics of neural activity as a function of

time, whereas most previous functional neuroimaging studies of

schizophrenia have focused on static characterizations of activation

and connectivity that represent time averages over the entire data

acquisition interval. Time-resolved analyses of functional connectivity

in schizophrenia suggest that the disorder is characterized by reduced

dynamism in connectivity (Miller et al., 2016), shorter dwell times in

highly integrated states and altered thalamo-sensory dynamics

(Damaraju et al., 2014). Furthermore, aberrant connectivity dynamics

in the disorder are heritable (Su et al., 2016) and enable accurate,

single-subject prediction of diagnostic status (Kottaram et al., 2018).

These previous studies provided motivation to explicitly model the

dynamics of fMRI activity in schizophrenia to gain deeper insight into

the temporal characteristics of aberrant neural activity in the disorder.

To this end, we inferred an HMM from resting-state fMRI data

that was temporally concatenated across adults with schizophrenia

and healthy comparison individuals. The basic premise of the HMM

inferred in this study was that fMRI activity within 14 canonical RSNs

could be decomposed into a repertoire of 12 putative brain states,

where each state characterized a distinct pattern of activation across

the 14 networks. Neural dynamics under the HMM consisted of

dwelling in a state for a period of time and then transitioning to a new

state with a probability that only depended on the previous state.

States were therefore continually revisited. For each individual, we

quantified the proportion of time spent in each state (fractional

FIGURE 5 Association between interindividual variation in fractional occupancy times and severity of clinical symptoms and cognitive deficits.

CCA was performed to test for multivariate associations between interindividual variation in fractional occupancy times for 12 brain states and
eight measures of symptom severity, cognition, and clinical characteristics. (a) Scatter plot of canonical scores for the significant CCA mode. Solid
black line denotes line of best fit. A correlation of 0.91 (p = 0.007, family-wise error corrected) was observed between the canonical covariates.
The inset shows the distribution of correlation coefficients across 5,000 null instantiations (mean = 0.8). The dotted red line represents the
observed correlation coefficient of 0.91, which is significant (p < 0.01) with respect to the null distribution. (b) Canonical coefficients
corresponding to the eight summary measures. These measures are described in Supporting Information Table S2. SAPS, scale for the assessment
of positive symptoms; SANS, scale for the assessment of negative symptoms; GAF, global assessment of functioning; SOFAS, social and
occupational functioning assessment scale; IQ, intelligence quotient; COG, a generalized measure of cognition; CPZ, chlorpromazine equivalent
dosage; DOI, duration of illness. (c) Canonical coefficients corresponding to fractional occupancy times of the 12 states. Figure 2 provides a
description of each state. The value indicated above/below each bar indicates the Pearson correlation coefficient between the corresponding
variable and its canonical covariate. Whereas the height of each bar indicates the extent to which each variable is up- or down-weighted in
relation to its canonical covariate, the correlation coefficients provides a univariate measure of how strongly each variable is associated with its
canonical covariate [Color figure can be viewed at wileyonlinelibrary.com]
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occupancy) and the average duration of visits to each state (mean life-

time) as well as the likelihood of transitioning from one state to

another (transition probability matrix). These descriptors of the HMM

were compared between the two groups and investigated for associa-

tions with symptom severity and cognitive deficits in the individuals

with schizophrenia.

We found that the schizophrenia group resided for a significantly

longer proportion of the 8-min fMRI acquisition in states that were

characterized by overall low activity in all networks, particularly low

activation of the default mode and executive networks. This might

explain the poor behavioral and emotional regulatory functions in

schizophrenia (Breton et al., 2011; Orellana & Slachevsky, 2013),

which contributes to increased negative symptoms (Strauss et al.,

2013). Furthermore, states characterized by high activation of sensory

networks were visited for a longer proportion of time, potentially cor-

responding to the sensory gating deficits in schizophrenia (de Wilde,

Bour, Dingemans, Koelman, & Linszen, 2007; Patterson et al., 2008)

leading to hallucinations (Bohlken, Hugdahl, & Sommer, 2017).

Figure 4 suggests that schizophrenia is associated with an inability

to rapidly transition in and out of states with high DMN activation.

This accords with the finding that the mean lifetimes of both DMHi-

SenLo and DMLo-SenHi states were significantly higher in schizophre-

nia. Interestingly, while the schizophrenia group spent a significantly

shorter proportion of time in the state characterized by an active DMN

but inactive sensory networks (DMHi-SenLo), the duration of each acti-

vation in this state was on average significantly longer (4–5 s) than the

healthy comparison individuals. Thus, individuals with schizophrenia

do not often switch to this state compared to healthy subjects. This

suggests that schizophrenia is associated with reduced dynamism of

the DMN and that this network may be difficult to activate and deac-

tivate in individuals with the disorder. In other words, while the DMN

activates less frequently in schizophrenia, once it is activated, it

remains active for abnormally long periods.

Therefore, the mechanisms that upregulate or downregulate DMN

activation appears to be disrupted in schizophrenia. This deficit might

explain the observed perseveration (Crider, 1997), particularly the

impairments in set shifting (Ceaser et al., 2008). Given the role of the

DMN in self-generated cognition and self-consciousness (Andrews-

Hanna, 2012; Buckner, Andrews-Hanna, & Schacter, 2008; Raichle

et al., 2001), this inability might also correspond to the disrupted sense

of self (i.e., difficulty in differentiating self from others; Sass & Parnas,

2003; Wang, Metzak, & Woodward, 2011; Moe & Docherty, 2014) and

“poor mental coordination” (Andreasen, Paradiso, & O'Leary, 1998)

reported in schizophrenia. A number of task-based fMRI studies show

that individuals with schizophrenia fail to deactivate the DMN

(Anticevic, Repovs, & Barch, 2013; Calhoun, Maciejewski, Pearlson, &

Kiehl, 2008; Camchong et al., 2011; Garrity et al., 2007; Hasenkamp,

James, Boshoven, & Duncan, 2011; Kim et al., 2009; Pomarol-Clotet

et al., 2008; Salgado-Pineda et al., 2011; Wang et al., 2011; Whitfield-

Gabrieli et al., 2009). Studies have also reported a correspondence

between the reduced task-related suppression in DMN and gray matter

volume loss in some of the regions comprising this network (Pomarol-

Clotet et al., 2010; Salgado-Pineda et al., 2011; Skudlarski et al., 2010;

Zhou et al., 2008). In the present study, using a time-resolved approach,

FIGURE 6 Box plots of different performance measures from single-subject prediction of diagnostic status. The 12 state fractional occupancy

values were used as subject-specific features. Each box represents the distribution of a performance measure over 100 runs of 10-fold cross
validation. Blue box = 25–75 percentile, red line = median, black dotted lines = 9–91 percentile, red “+” = outliers. AUC, area under the curve;
SVM, support-vector machine; kNN, k-nearest neighbor; DT, decision trees; NB, naive Bayes; RF, random forest; EN, ensemble of trees [Color
figure can be viewed at wileyonlinelibrary.com]
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we show that this inability to suppress DMN activity is evident even in

the resting state.

Two of the states inferred—the DMLo-SenHi and DMHi-SenLo

states, are characterized by an antagonistic relationship between

default mode and sensory systems. While initial studies on RSNs

report the existence of anticorrelation between these two systems

(Fox et al., 2005; Greicius, Krasnow, Reiss, & Menon, 2003; Raichle

et al., 2001), suggesting it to be a mechanism for “division of labor”

between task-positive networks and DMN (Fransson, 2005, 2006)

and an indicator of behavioral performance (Kelly, Uddin, Biswal, Cas-

tellanos, & Milham, 2008), later studies on connectivity dynamics have

reported more complex relationships among RSNs (Allen et al., 2014;

Chang & Glover, 2010; Hutchison et al., 2013b). In the current study,

we observed instances of time when these two systems exhibit antic-

orrelated activity. This consisted of a state in which the DMN showing

heightened activation and the other state with low DMN activity

while sensory components in each case showing opposite trends.

Notably, another study on dynamic functional network connectivity in

schizophrenia also identified two such states (Rashid et al., 2014).

Similarly, a state with reduced connectivity in DMN and hyperconnec-

tivity in visual systems has been reported in healthy individuals

with psychotic-like experiences (Barber, Lindquist, DeRosse, &

Karlsgodt, 2018).

Interindividual variation in the severity of positive symptoms was

significantly correlated with a multivariate combination consisting of

the proportion of time spent across several states. More specifically,

the severity of positive symptoms, as assessed with the SAPS, was

associated with the following pattern of fractional occupancy times:

increased occupancy of states characterized by an inactive default

mode network (DMLo), inactive executive but active sensory net-

works (SenHi-ExLo), and overall low activity across all networks (Lo);

together with reduced occupancy of the state characterized overall

high activity across all networks (Hi). Both these relationships—the

inverse association between severity of positive symptoms and DMN

activation as well as the direct correspondence between positive

symptoms and activation of sensory networks, are in agreement with

previous task based (Menon, Anagnoson, Mathalon, Glover, & Pfeffer-

baum, 2001; Perlstein, Carter, Noll, & Cohen, 2001) and resting-state

(Rotarska-Jagiela et al., 2010; Skudlarski et al., 2010) fMRI studies.

Fractional occupancy times were not associated with cognitive defi-

cits, durations of illness, antipsychotic medication dose, and measures

of general functioning. While we hypothesized that altered transition

dynamics may correlate with cognitive deficits, altered dynamics that

specifically underpin cognition might only manifest during engage-

ment of tasks, but not in the resting state considered in this study.

While there is strong evidence on lack of DMN suppression dur-

ing goal-directed cognition in schizophrenia (Anticevic et al., 2012a;

Calhoun et al., 2008; Camchong et al., 2011; Garrity et al., 2007;

Hasenkamp et al., 2011; Kim et al., 2009; Pomarol-Clotet et al., 2008;

Salgado-Pineda et al., 2011; Wang et al., 2011; Whitfield-Gabrieli

et al., 2009), its exact causes remain unclear, fundamentally due to our

limited understanding of the mechanisms underlying the functional

antagonism between DMN and task-positive networks (Anticevic

et al., 2012a). A few neuropharmacological studies have implicated

defective synaptic mechanisms in psychotic conditions, mediated by

certain monoaminergics that prevent inhibitory interneuronal func-

tions in the cortex (Anticevic et al., 2012b; Carhart-Harris et al., 2012;

Dang, O'Neil, & Jagust, 2012; Minzenberg, Yoon, & Carter, 2011). This

“cortical disinhibition” (Krystal et al., 2003) has been shown to affect

the dynamic interplay between task-positive and task-negative sys-

tems, which was explained by plausible biophysical models based on

conductance of different membrane receptors (Compte, Brunel,

Goldman-Rakic, & Wang, 2000) and further validated by pharmaco-

logical experiments (Brunel & Wang, 2001; Krystal et al., 2003).

The singe-subject prediction analyses using fractional occupancy

times as subject-specific features provided high classification accura-

cies (>80%) that remain consistent across different classifier models.

This implies the utility of the model in capturing disease-related infor-

mation, even when the states were estimated from the concatenated

network time series. Previous studies on functional connectivity have

reported accuracies in the range of 60–95% in classifying schizophre-

nia versus healthy subjects (Du, Zening, & Calhoun, 2018; Woo,

Chang, Lindquist, & Wager, 2017); however, most of them employ

ICA to define networks from the whole data, which leads to a bias in

the cross validation. Using predefined maps for the delineation of

RSNs, we could eliminate this drawback and by this way, the features

become more comparable across subjects.

Intrascan head motion (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012) is well-known to influence functional connectivity

measures (Satterthwaite et al., 2012; Van Dijk, Sabuncu, & Buckner,

2012; Yendiki, Koldewyn, Kakunoori, Kanwisher, & Fischl, 2014),

emphasizing the need for appropriate motion correction strategies, par-

ticularly in the case of time-resolved analyses (Laumann et al., 2016). At

the same time, head motion has been shown to have a genetic basis

(Couvy-Duchesne et al., 2014, 2016), rather than an artifact; and the

choice of correction technique can potentially influence the specificity

of imaging-based biomarkers (Parkes, Fulcher, Yücel, & Fornito, 2018;

Zeng et al., 2014). In the case of modeling dynamics with the HMM,

head motion can induce artificial state transitions, which confounds the

summary measures calculated. However, as noted in Section 2.1, mean

FD values were not significantly different between groups in our data.

Furthermore, we repeated the between-group comparisons of frac-

tional occupancy and mean lifetimes after regressing the mean FD

values from each measure and performing inference on the resulting

residuals. Supporting Information Figure S6 shows that between-group

differences were unchanged when inference was performed on the

residuals resulting from motion regression, suggesting that intrascan

head motion did not significantly influence our findings.

Several limitations warrant consideration. First, the same refer-

ence maps were used to delineate RSNs in both the schizophrenia

and healthy comparison groups, thereby disregarding any between-

group differences in the spatial extent (Ma, Calhoun, Phlypo, &

Adalı, 2014) of these networks. Second, fitting the HMM to the

concatenated data yielded a single set of inferred states that repre-

sented a consensus across all individuals. While all individuals thus

shared a common set of states, the amount of time spent in each state

and the transition probabilities between states could vary between

individuals. To improve the fit of the model, an alternative approach

would have been to independently fit a separate HMM to each indi-

vidual or each diagnostic category. However, this approach would
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have substantially increased the model complexity and would not

have allowed for state-specific statistics to be directly compared

between groups. Third, the influence of intrascan head motion (Power

et al., 2012) could have potentially confounded our observations. A

standard motion correction algorithm was used in our analyses, but

we have not adopted any stringent methods like scrubbing. However,

there were no significant between-group differences in head motion

in our subjects and our results remain significant even after regressing

motion parameters from summary measures. The influence of antipsy-

chotic medication (Moncrieff & Leo, 2010) on observed dynamics is

also unknown. Finally, the effect of drowsiness or sleep (Deco et al.,

2018; Tagliazucchi & Laufs, 2014) on our observations is unclear. Par-

ticipants were instructed to remain awake during the scan, but there

were no further measures to control or monitor sleep.

5 | CONCLUSION

The present study characterizes aberrant dynamic network interac-

tions in schizophrenia. We observed that compared to a healthy com-

parison group, schizophrenia individuals spent greater amounts of

time in states characterized by overall low activity, particularly within

the DMN and executive networks. Interindividual variation in these

attributes significantly correlated with the severity of positive symp-

toms, but not cognitive deficits, medication, and duration of illness.

We also found that individuals with schizophrenia are not capable of

regulating DMN activity as efficiently as healthy subjects, and as a

result, have difficulty in activating and inactivating the DMN. We

assessed the efficacy of different state occupancies as potential bio-

markers for the disease using a machine learning classifier and

observed that such models can achieve a high diagnostic accuracy.

Further, we tested the reproducibility of the model on another data

set and performed rigorous permutation testing to validate the

robustness of model estimation.
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