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Abstract

Precision medicine tailors treatment to individuals personal data including differences in their 

genome. The Pharmacogenomics Knowledgebase (PharmGKB) provides highly curated 

information on the effect of genetic variation on drug response and side effects for a wide range of 

drugs. PharmGKB’s scientific curators triage, review and annotate a large number of papers each 

year but the task is challenging. We present the PGxMine resource, a text-mined resource of 

pharmacogenomic associations from all accessible published literature to assist in the curation of 

PharmGKB. We developed a supervised machine learning pipeline to extract associations between 

a variant (DNA and protein changes, star alleles and dbSNP identifiers) and a chemical. PGxMine 

covers 452 chemicals and 2,426 variants and contains 19,930 mentions of pharmacogenomic 

associations across 7,170 papers. An evaluation by PharmGKB curators found that 57 of the top 

100 associations not found in PharmGKB led to 83 curatable papers and a further 24 associations 

would likely lead to curatable papers through citations. The results can be viewed at https://

pgxmine.pharmgkb.org/ and code can be downloaded at https://github.com/jakelever/pgxmine.
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1. Introduction

Precision medicine has been described as getting patients “the right drug at the right dose at 

the right time”.1 It has been shown that genetics can play a significant part in whether the 

drug and dose are right for that particular patient and numerous diagnostic tests have been 

developed to test for genetic variants related to drug efficacy.2 These pharmacogenomic 

variants encompass germline variants or somatic variants in cancer. They may affect the 

direct target of a drug, potentially by disrupting binding pockets, (e.g. T790M for many 

EGFR inhibitors3), the metabolizing enzymes that may affect drug concentrations, by 
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affecting enzyme efficiency (e.g. the cytochrome P450 family of enzymes4), or drug 

transporters that may affect the disposition of the drugs and influence efficacy and toxicity.

Cataloging this expanding knowledge of pharmacogenomic variants is the goal of the 

PharmGKB.5 Launched in 2000, it collects, curates and disseminates knowledge about gene-

drug associations, many of which are clinically actionable, and provides resources for both 

researchers and clinicians. A group of expert curators searches the scientific literature for 

relevant pharmacogenomic papers and add their findings to the knowledge base. However, 

managing the curation of a biomedical knowledge base is a very time-consuming and 

challenging task. As precision medicine efforts increase and the cost of sequencing 

decreases, more genetic biomarkers will be found that might prove to be clinically 

actionable. It is already a huge challenge to identify relevant papers and these technological 

developments will inevitably lead to an increase in the number of published papers and an 

increased burden on the PharmGKB curators.

Machine learning methods are used to assist in biomedical knowledge base curation in two 

different ways. A document-level approach attempts to identify documents that would be 

appropriate for curation into the knowledge base using word frequencies, metadata, and 

other factors. This approach was taken for the ORegAnno database,6 Gene Expression 

Database7 and mouse genomics.8 A mention-level approach attempts to extract the main 

associations that would be curated in the knowledge base and aggregating them to identify 

missing knowledge linked to curatable papers. The CIViCmine approach extracted mentions 

of clinically relevant cancer variants to identify the most frequently discussed that should be 

curated into the CIViC database.9 This method is linked with automated knowledge base 

construction methods which have been used in part to construct the STRING database of 

protein interactions10 and the CancerMine database of cancer genes11 directly from 

published literature.

To extract pharmacogenomic variants associated with specific chemicals, we propose to use 

a biomedical relation extraction method. The field of biomedical relation extraction focuses 

on extracting mentions of particular relations between entities (e.g. genes, drugs, variants, 

etc) in unstructured text. Dependency-parse based methods have seen great success in this 

area while deep learning methods achieve similar performance but face issues with 

overfitting.12 Relation extraction relies on first identifying mentions of specific entities, e.g. 

chemicals and variants, using entity extraction tools such as BANNER13 and tmVar.14 The 

PubTator resource has provided PubMed abstracts annotated with chemicals, diseases, 

genes, species, and variants.15 Numerous projects have built on top of the annotations 

provided by PubTator.16,17 Recently, the Pubtator Central resource expanded this to open-

access Pubmed Central full-text articles.18

In this paper, we present PGxMine, a text-mined resource of pharmacogenomic associations 

between chemicals and variants. We build upon the PubTator Central resource and use a 

text-alignment method to extract specific mentions of chemicals, genes, and variants in the 

text. We further identify star alleles that are particularly important and frequently appear in 

pharmacogenomic literature (e.g. CYP2D6*2) in text. We parse and extract sentences that 

mention a chemical and variant and filter to enrich for sentences that likely discuss 
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pharmacogenomic associations. We build classifiers to extract pharmacogenomic 

associations and apply these to all sentences accessible from PubMed abstracts and PubMed 

Central full-text papers. These results are then presented to the PharmGKB scientific 

curators to assist in their curation efforts.

2. Methods

Figure 1 shows an overview of the approach that takes in PubTator Central entities and 

abstracts/articles and outputs collated sets of pharmacogenomic associations between 

variants and chemicals relevant to the PharmGKB project.

2.1. Resources

We downloaded the 21st August 2019 release of the Pubtator Central data which uses 

TaggerOne19 for chemicals, tmVar 2.014 for variants and GNormPlus20 for genes. It provides 

mappings for chemical mentions to MeSH terms, genes to Entrez Gene IDs and where 

possible, variants to dbSNP IDs21 (also known as rs IDs). We used the PubRunner 

infrastructure to download abstracts from PubMed and full-text papers from the PubMed 

Open Access (PM-COA) subset and PubMed Central Author Manuscript Collection 

(PMCAMC) and convert to BioC format.22 To map chemicals in PubTator Central to the 

identifiers used in PharmGKB, we used DrugBank.23 We filtered the drug list by several 

categories in DrugBank to remove biological molecules that were not relevant drugs (details 

in supplementary materials). We also removed short terms (shorter than 4 characters). 

Variants were filtered using a custom set of exclusion words to remove common terms that 

appear to be variants but are not, e.g. for common cell-line names.

2.2. Text alignment

Unlike PubTator, PubTator Central does not provide the specific offsets of each biomedical 

entity within the text of the abstract or full paper. It provides the substring of the mention 

along with the PubMed ID. We used this information to align the substrings to the 

corresponding text in the abstract or full-text paper wherever appropriate (with example 

shown in Figure S1). The alignment algorithm takes each text mention and creates a regular 

expression to search the corresponding article text. Each regular expression starts and ends 

with word-boundaries so that matches wouldn’t happen inside words. We replaced each 

section of whitespace with a “\s+” regular expression to map to any length of whitespace. 

PubTator Central appears to translate the papers from Unicode to ASCII and provides ASCII 

mentions. Several important entities contain Unicode characters, e.g. TGF-<x so we 

replaced ASCII Greek letters (e.g. alpha) with a regex to map to either the ASCII text or the 

Greek character. These regular expressions then find candidate mappings for each text. We 

process the mappings largest to smallest so that no entity is mapped inside a larger entity.

2.3. Finding Star Alleles

Star alleles denote a named haplotype of a gene, which may include one or more specific 

variants. They are normally numbered such that the second star allele for CYP2D6 is 

denoted CYP2D6*2. Suballeles also exist such as CYP2A6*4A. To extract these, we used 

the gene annotations from the aligned PubTator Central documents. We built a regular 
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expression that searched immediately after gene mentions to identify instances of an asterisk 

followed by a word beginning with a digit (including colons to capture HLA alleles). We 

allowed for additional star alleles separated by white space, forward slashes, commas, and 

the words “and” and “or”. The normalized version of the variant is the name of the gene 

concatenated with the star-allele with whitespace removed. Furthermore we normalized the 

name of the allele specifically for the HLA family of genes. Specifically, we remove 

whitespace, leading zeros, and colons and then reinsert colons in character doubles. For 

example, HLA-B*05701 goes to HLA-B*57:01.

2.4. Filtering and Renormalizing Variants

PubTator Central uses the tmVar 2.0 tool for extracting variant mentions.14 It can extract 

DNA-level mutations (e.g. c.93G>A), protein-level mutations (e.g. T790M) and dbSNP IDs 

(e.g. rs12979860). Where possible, tmVar 2.0 will map the DNA/protein variants back to a 

dbSNP ID using co-mentions of genes in the document to filter down candidate matches. 

Hence a mention of PON1 alongside Q192R provides enough context to map it to rs662. We 

are primarily interested in those that can be mapped back to dbSNP IDs but kept all variant 

mentions as long as they contained a specific coordinate (i.e. filtering out cases such as 

c.G>A). For variants that are successfully mapped to a dbSNP ID by tmVar 2.0, PubTator 

Central does not provide the normalized text form of the variant. For example, ‘a PON1 

glutamine-to-arginine mutation at residue 192’ is mapped successfully to rs662 but we also 

need the HGVS normalized form, p.Q192R. We implemented a re-normalization stage using 

regular expressions to capture the variant types output by tmVar 2.0.

2.5. Identifying Sentences of Interest

We extract all sentences that mention at least one variant (including star alleles) and one 

chemical from our filtered list. In an initial trial of this system focussing only on mentions of 

specific dbSNP IDs, we found that sentences were highly likely to mention 

pharmacogenomic events. However, when all variants were included, sentences were much 

less likely to discuss a pharmacogenomic association. Any machine learning system would 

then have a large challenge with such an imbalanced problem. We, therefore, filtered with a 

customized set of keywords (in supplementary materials) that increased the likelihood of a 

pharmacogenomic association or for a mention of a specific dbSNP ID.

2.6. Relation Classifier

The previous steps provide a large set of co-occurrences between variants and chemicals. 

But many of them are not describing a pharmacogenomic association. For instance, some of 

the sentences are very long and the chemical and variant are discussed in different contexts. 

Therefore we built relation classifiers to identify the pharmacogenomic relations.

Due to a class balance difference, we split the dataset into two. The first set is all potential 

chemical/variant where the variant is a specific rs ID or a star allele. The second set is all 

remaining chemical/variant associations which contain variants for specific DNA or protein 

changes. We worked on the two sets separately because, empirically, the first set has a higher 

likelihood for discussing pharmacogenomic associations. For each set, we annotated 500 

sentences for pharmacogenomic associations. Chemical/variant associations were annotated 
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as pharmacogenomic if the variant was discussed as physically interacting with the 

chemical, as affecting the metabolism, concentration or resistance of the chemical, as 

causing adverse events related to the chemical, as related to addiction to the chemical, or as 

part of a clinical test for that chemical use. The PharmGKB curators were also interested in 

variants found to be negatively associated pharmacogenomically with a chemical. Thus, we 

also annotated negative discoveries as positive sentences in our data set. For instance, 

“MDR1 C3435T does not affect the metabolism of telmisartan” would be annotated as 

pharmacogenomically associated. In total, we had 1000 annotated sentences which for 

evaluation are split into 80%/20% training and test sets. We include statistics on the 

annotated dataset in the supplementary materials.

We then created two Kindred relation classifiers,24 one for each for the two sets. We used a 

logistic regression as the classifier using Kindred’s default set of dependency-path based 

features. The logistic regression provides a thresholdable output score to control the 

precision-recall tradeoff. As in previous work, we used a high-precision/low-recall classifier.
11 We created precision-recall curves to evaluate the trade-off and select a threshold of 0.75 

for both classifiers. We filtered out cancer-associated chemicals (using DrugBank categories) 

that are associated with a protein/DNA variant as they are likely somatic events which are 

outside the focus of the PharmGKB resource.

2.7. Application to the entire literature

We then used the PubRunner infrastructure to apply these two classifiers across all the 

aligned sentences.25 This enabled the use of a compute cluster to quickly classify sentences 

as to whether they contain pharmacogenomic information. We then outputted relations along 

with the normalized form of the chemical and genes and other metadata. The gene 

information was included for star alleles and for variants normalized to dbSNP if it could be 

extracted from dbSNP. Metadata from the source paper is also included such as PubMed ID, 

title, journal, publication year and section within the paper. We also provide a version of the 

sentence which has HTML characters escaped and the entities in the relation highlighted 

with basic HTML tags for easy viewing. This output is the unfiltered version available.

We filtered relations that were scored lower than the previously selected threshold of 0.75 to 

reduce the false positive rate to create the pgxmine_filtered.tsv file. Finally, we collated the 

results by variant, chemical and where applicable gene IDs to find the total number of papers 

that discuss each variant/chemical association. This provides a rough metric of the 

importance of each association and allows a ranking to see which frequently discussed 

associations should be curated into PharmGKB. This collated version is released as the 

pgxmine_collated.tsv file.

2.8. Mapping to PharmGKB

We mapped the PGxMine set of associations to those found in PharmGKB. PharmGKB 

already contains some mappings directly to MeSH IDs but these needed to be supplemented 

with additional mappings from other sources. DrugBank provides a mapping from the 

MeSH ID used by PubTator Central to PharmGKB chemical IDs. Variants that have been 

mapped to dbSNPs or are star alleles can be mapped directly into PharmGKB. PharmGKB 
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contains compound associations where multiple chemicals are associated with a variant. For 

simplicity, we unfold these associations so that all associations are from one chemical to one 

variant, allowing matching against the PGxMine data. For this comparison, we remove 

suballeles from star alleles (e.g. CYP3A5*3A -> CYP3A5*3). We also built a mapping for 

star alleles that map directly to a single rs ID to check if either was found in PharmGKB 

(e.g. POR*28 maps to rs1057868). Further details of this mapping are explained in the 

supplementary materials. For each PGxMine association, we then check if the variant has 

been seen in PharmGKB, the chemical has been seen in PharmGKB and whether this 

particular association has been seen.

2.9. Viewer

The filtered and collated versions are then viewed through a viewer built using the R Shiny 

framework. This viewer (shown in Figure 2) shows the collated chemical-variant 

associations sorted in descending order by the number of papers that mention them. These 

results can then be filtered by a chemical, variant or gene, whether this data exists in 

PharmGKB and the type of variant, e.g. star allele. There are also Download buttons to 

facilitate downloading only a subset of the data. When a row in the top table is selected, a 

lower table is populated with all the sentences that discuss that particular association. These 

sentences, which may be from the same paper or across many papers, are ordered by 

publication date and additional metadata is provided for the source of the sentence with links 

to the original paper.

3. Results

3.1. Performance of Classifiers

Using an 80%/20% training and test split, we evaluated the two classifiers independently. 

Figure 3 shows precision-recall curve plots of the three classifiers. The black line shows the 

selected high threshold (0.75) that provides higher precision (71.4% and 84.5% for the two 

classifiers) with the tradeoff of lower recall (11.2% and 39%).

3.2. Knowledge Base Results

By applying the two classifiers we identify 19,930 mentions of pharmacogenomic 

associations in 15,228 sentences across 7,170 papers. 41.1% of these associations were in 

the title or abstract. When collated, we find a total of 6,099 unique gene/variant associations. 

Of all the variant mentions, 39.9% can be normalized to an rs ID and 39.6% are star alleles.

As would be expected, there is a long-tail of associations with 75.6% of the unique 

associations being discussed in only a single paper. These singletons are of interest to the 

PharmGKB curators as the aim to improve coverage for rarer and less frequently discussed 

associations. We also find that the associations were found across all subsections of papers 

(Figure S2).

Figure 4 illustrates the most common chemicals in extracted chemical/variant associations as 

well as the most common variants with their gene names. Warfarin is the most frequently 

discussed drug in pharmacogenomic research and many of variants in the CYP family 
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appear in the top ten variants. It also shows the most frequent journal sources that mentions 

are extracted from. Unsurprisingly, PLOS ONE is the most common source given the high 

number of papers that published there and also that they provide full-text articles.

Notably, a substantial number of the variants that cannot be normalized to a human gene 

appear to be HIV specific variants that appear in the virus genome and not the human 

genome. While these do affect drug resistance, they are outside the scope of PharmGKB but 

could be useful information for HIV researchers.

3.3. Comparison to PharmGKB

We compared the associations extracted from the literature with the contents of the 

PharmGKB knowledgebase downloaded on 26 September 2019. Figure 5 shows the overlap 

of associations and specific papers. The scale of the PharmGKB knowledgebase cannot be 

understated and this figure illustrates the vast number of associations that have already been 

manually curated. 37.2% of associations found in PGxMine have previously been curated 

into PharmGKB but 2,779 could be curatable associations. As we identify mentions of 

associations, many of which will be in papers discussing previous work and not a new result, 

we wouldn’t expect to see a large overlap in the articles in PGxMine and PharmGKB. 

Nevertheless, we do see a sizeable overlap of papers based on PubMed IDs suggesting that 

PGxMine does often directly identify the appropriate paper for curation.

3.4. Utility for Curators

The goal of PGxMine is to lead the PharmGKB curators to new papers that should be 

curated. To evaluate this, the PharmGKB curators reviewed a subset of the top chemical/

variant associations. The top 100 associations that were not in PharmGKB and did not 

appear in a previously curated paper were provided to the PharmGKB curators. They 

evaluated each association with the sentences and metadata provided by PGxMine. They 

judged whether the associated papers were appropriate for curation into PharmGKB or 

whether the discovered papers likely led to curatable papers. Of the 100 associations, 57 led 

directly to at least one curatable paper. A further 24 associations likely led to curatable 

papers through citations in the papers discovered by PGxMine.

Of the 57 that led directly to curatable papers, 37 led to a single curatable paper, 16 led to 

two curatable papers, 3 led to three papers and one association (Donepezil with CYP2D6 

rs1080985) led to five papers for curation. In total, the 100 associations examined led 

directly to 83 curatable papers and likely 24+ other papers that could be found through 

examining citations of the PGxMine extracted papers.

The curators made use of the sentence metadata that identifies the section of the paper and 

found that associations mentioned in the Results section were more likely to be in curatable 

papers. Associations in the Introduction section were more likely to lead to valuable papers 

through citations and that specific paper would not be curatable. The curators normally focus 

on a smaller set of journals that publish pharmacogenomic studies. These results identified 

several papers in journals outside this group and show that PGxMine is a valuable tool to 

survey the broader biomedical literature without putting further burden on the PharmGKB 

curators.
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4. Discussion

Our results suggest that PGxmine will assist PharmGKB curators but there are several 

notable limitations. The results of PGxMine rely entirely on the results of PubTator Central. 

We have explored running the individual NER tools on the large corpus ourselves but the 

computational cost, in terms of time and memory usage, is immense. Updates to our 

resource will, therefore, depend on the update frequency of PubTator Central which we hope 

to be frequent. This reliance on PGxMine on PubTator Central also means that we inherit 

any limitations of the NER tools used. While the NER tools are state-of-the-art for the 

entities that they are extracting, mistakes will still be made. We attempted to clean up issues 

by requiring longer terms and filtering out certain drug categories.

The main limiting factor is the poor access to full-text papers for text mining. 58.9% 

(11,735/19,930) mentions of pharmacogenomic associations were extracted from the main 

text of the article. Only a fraction of the biomedical literature is accessible for text mining. 

With only 12.3% (796/6,489) of the papers curated in PharmGKB having full-text available, 

it is understandable that PGxMine fails to catch many of the previously curated papers. 

PGxMine is also limited to associations found within the same sentence. This is a problem 

that all current information extraction systems face as the false positive rate explodes for 

systems that attempt to extract relations across sentences.26

The tradeoff of recall and precision is a challenging one for many machine learning 

problems. Curators become frustrated with a system that has too many false positives and 

are understanding of a system that does not have 100% coverage of associations. We, 

therefore, target high-precision low-recall for this problem, especially when the frequently 

discussed associations are found in hundreds of papers, meaning that they will likely be 

discovered by our pipeline. For example, the most frequently extracted association is 

Abacavir with HLA-B*57:01 in 272 papers. This means we should capture frequently 

discussed associations that aren’t yet curated into PharmGKB. We find that the vast majority 

of extracted associations (75.6%) are only mentioned in one paper. While more frequently 

discussed associations are of greater interest to PharmGKB, these singletons provide a 

valuable trove for further curation. The most common mistake that the classifier makes is 

incorrectly matching a drug with a variant in a different clause of a sentence. This occurs 

most frequently in sentences with multiple drugs and variants. Another challenge is 

capturing diplotypes of alleles or more complicated haplotype arrangements. While these are 

rare, they provide useful information for curators.

5. Conclusions

We have presented PGxMine, a knowledge base of pharmacogenomic associations to 

support curation of PharmGKB database. We developed a method for extracting knowledge 

from the new PubTator Central resource using a text alignment system coupled with a 

method for identifying star alleles and proven relation extraction methods. Our results can be 

updated regularly as PubTator Central is updated. We make the code and supplementary 

materials available with an MIT license (https://github.com/jakelever/pgxmine) and data 

available under CC0 license (https://doi.org/10.5281/zenodo.3360930) with the 
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understanding that all data is extracted automatically and has not been vetted by the 

PharmGKB curation team.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An overview of the full PGxMine system. The input data sources on the left (PubMed, etc) 

and PubTator Central are combined through a text alignment process to identify mentions of 

specific biological entities in published literature. Star Alleles (e.g. CYP2D6*2) are then 

found using gene annotations. Sentences are filtered using keywords to enrich for 

pharmacogenomic topics. A Kindred supervised classifier is then trained and applied to 

identify specific variant/chemical associations. These are then filtered for high probability 

matches and collated to produce the three output files on the right.
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Fig. 2. 
The data can be viewed through an R Shiny application in a web browser which allows the 

user to sort and filter the data and explore specific sentences that mention the association. 

The main table shows chemical/variant associations with gene information where possible. 

This table can be filtered using controls to the left to select specific chemicals, variants or 

genes. It can also be filtered for whether elements are already curated into PharmGKB. By 

selecting a row in the top table, a further table below (not shown) is populated with 

sentences that mention the selected association along with paper metadata.
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Fig. 3. 
The precision-recall curves (above) and the same statistics shown against the threshold 

parameter for the classifier (below) for the two classifiers.
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Fig. 4. 
The 10 most common chemicals, variants and source journals by the number of extracted 

associations.
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Fig. 5. 
Venn Diagrams for the overlap in associations between PharmGKB and the PGxMine 

resource and papers identified in both resources.
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