Table 9.
Article | Evaluation metric | Source of the test data sets and Data set statistics (where available) | Predictive performance results |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Proposed DNN methoda | Compared methods | ||||||||||||
Dahl et al. [238] | Multi-task DNNb | Single-task DNN | RFb | Decision Tree Ensembles | |||||||||
AUCb |
|
0.825 | 0.793 | 0.783 | 0.795 | ||||||||
| |||||||||||||
Ma et al. [164] | Multi-task DNN | RF | |||||||||||
Pearson correlation coefficient |
|
0.496 | 0.423 | ||||||||||
| |||||||||||||
Unterthiner et al. [243] | Multi-task DNN | SVMb | BKDb | LRb | k-nearest neighbour | Parzen-Rosenblatt | Bayesian Classifier | Similarity Ensemble | |||||
AUC |
|
0.83 | 0.816 | 0.803 | 0.796 | 0.775 | 0.73 | 0.755 | 0.699 | ||||
| |||||||||||||
Ramsundar et al. [242] | Pyramidal multi-task NNb (PMTNN) | LR | RF | Single-Task NN (STNN) | Pyramidal Single-Task NN (PSTNN) | Max{LR, RF, STNN, PSTNN} | Multi-task NN (MTNN) | ||||||
AUC |
|
0.873 | 0.801 | 0.800 | 0.795 | 0.809 | 0.824 | 0.842 | |||||
|
0.841 | 0.752 | 0.774 | 0.732 | 0.745 | 0.781 | 0.797 | ||||||
|
0.818 | 0.738 | 0.790 | 0.714 | 0.74 | 0.79 | 0.785 | ||||||
| |||||||||||||
Koutsoukas et al. [164] | DNN | SVM (rbf kernel) | SVM (linear kernel) | RF | k-nearest neighbour | NBb | |||||||
Mean MCC |
|
0.912 | 0.904 | 0.861 | 0.892 | 0.821 | 0.764 | ||||||
Wang et al. [244] | PINNs | Bipartite Local Model | CS and PDb | ||||||||||
AUC |
|
0.959 | 0.799 | 0.858 | |||||||||
| |||||||||||||
Wan et al. [245] | DN N | RF | |||||||||||
AUC |
|
0.792 | 0.686 | ||||||||||
AUC |
|
0.880 | 0.879 | ||||||||||
AUC |
|
0.875 | 0.855 | ||||||||||
AUC |
|
0.880 | 0.763 | ||||||||||
| |||||||||||||
Lenselink et al. [246] | DNN PCMb | DNN QSAR | DNN Multi Class | LR QSAR | SVM QSAR | NB QSAR | RF QSAR | RF Multi Class | RF PCM | ||||
AUC |
|
0.894 | 0.879 | 0.89 | 0.858 | 0.858 | 0.679 | 0.868 | 0.502 | 0.845 | |||
MCC | 0.610 | 0.600 | 0.63 | 0.572 | 0.572 | 0.380 | 0.630 | 0.010 | 0.670 | ||||
| |||||||||||||
Wen et al. [85] | Deep Belief Network | Bernoulli NB | Decision Trees | RF | |||||||||
AUC |
|
0.916 | 0.754 | 0.768 | 0.910 | ||||||||
| |||||||||||||
Wang et al. [248] | RBMs | Logic-based approach | |||||||||||
AUC |
|
0.987 | 0.921 | ||||||||||
AUC (precision vs. recall) | 0.896 | 0.816 | |||||||||||
Wallach et al. [165] | Conv. DNN (AtomNet) | Smina | |||||||||||
AUC | ChEMBL-20 PMD | 0.781 | 0.552 | ||||||||||
|
0.745 | 0.607 | |||||||||||
DUD-E-30 | 0.855 | 0.700 | |||||||||||
|
0.895 | 0.696 | |||||||||||
| |||||||||||||
Gonczarek et al. [249] | Graph Conv. DNN | Neural fingerprints | AutoDock Vina | Smina | |||||||||
AUC |
|
0.567 | 0.704 | 0.633 | 0.642 | ||||||||
|
0.474 | 0.575 | 0.503 | 0.503 | |||||||||
| |||||||||||||
Kearnes et al. [251] | Graph Conv. DNN | MaxSim | LR | RF | Pyramidal multi-task NN | ||||||||
AUC |
|
0.908 | 0.754 | 0.838 | 0.804 | 0.905 | |||||||
|
0.858 | 0.638 | 0.736 | 0.655 | 0.869 | ||||||||
|
0.867 | 0.728 | 0.789 | 0.802 | 0.854 | ||||||||
| |||||||||||||
Altae-Tran et al. [166] | Iterative refinement LSTMb | Graph Conv. DNN | Siamese one-shotlearning | Attention LSTM | RF | ||||||||
AUC |
|
0.823 | 0.648 | 0.820 | 0.801 | 0.586 | |||||||
|
0.669 | 0.483 | 0.687 | 0.553 | 0.535 | ||||||||
|
0.499 | 0.568 | 0.601 | 0.504 | 0.754 |
In the case of multiple DNN methods proposed, one of them is shown under the proposed method column and the rest are given under the group of compared methods.
Abbreviations: T: target, D: drug, C: compound, AC: active compound, IC: inactive compound, I: interaction, B: bioassay, AI: active interaction, II: inactive interaction, DNN: deep neural network, RF: random forest, AUC: Area under the ROC curve, SVM: support vector machine, BKD: binary kernel discrimination, LR: logistic regression, NB: naive Bayes, CS & PD: chemical substructures and protein domains, PCM: proteochemometric modelling, NN: neural net, LSTM: long short-term memory.