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Abstract

In the genetic system that regulates complex traits, metabolites, gene expression levels, RNA editing levels and DNA methy-
lation, a series of small and linked genes exist. To date, however, little is known about how to design an efficient framework
for the detection of these kinds of genes. In this article, we propose a genome-wide composite interval mapping (GCIM) in
F2. First, controlling polygenic background via selecting markers in the genome scanning of linkage analysis was replaced
by estimating polygenic variance in a genome-wide association study. This can control large, middle and minor polygenic
backgrounds in genome scanning. Then, additive and dominant effects for each putative quantitative trait locus (QTL) were
separately scanned so that a negative logarithm P-value curve against genome position could be separately obtained for
each kind of effect. In each curve, all the peaks were identified as potential QTLs. Thus, almost all the small-effect and
linked QTLs are included in a multi-locus model. Finally, adaptive least absolute shrinkage and selection operator (adaptive
lasso) was used to estimate all the effects in the multi-locus model, and all the nonzero effects were further identified by
likelihood ratio test for true QTL identification. This method was used to reanalyze four rice traits. Among 25 known genes
detected in this study, 16 small-effect genes were identified only by GCIM. To further demonstrate GCIM, a series of Monte
Carlo simulation experiments was performed. As a result, GCIM is demonstrated to be more powerful than the widely used
methods for the detection of closely linked and small-effect QTLs.
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Introduction

Most complex traits are controlled by a few major genes with
large effects plus a series of undetectable genes with small
effects. When markers are introduced, some genes will be cap-
tured by the markers in recombinant or linkage disequilibrium
with quantitative trait loci (QTLs). Among these reported QTLs,
most have small effects on complex traits and some are closely
linked QTLs [1,2], for example, flowering time in maize [3] and
growth rate in Arabidopsis [4]. Although QTL mapping has pro-
ven to be useful for detecting major QTLs with relatively large
effects, it may lack power in accurately modeling small-effect
QTLs [5]. Additionally, closely linked QTLs might be mistakenly
estimated as a single QTL with a larger effect at the wrong pos-
ition if they have the same direction in effects, or they might be
missed if their effects are in opposite directions [6]. We are now
in the era of omics, which enables us to incorporate genetic
variation in omics phenotypes into a QTL mapping framework.
In expressional QTL (eQTL) mapping, most are trans-eQTLs with
small effects [7,8]. Similar results have been observed in the
mapping of metabolites [9], RNA editing levels [10] and DNA
methylation [11]. Because of the difficulty in detecting small-
effect and closely linked QTLs, the genetic foundations of most
complex and omics-related traits are not well understood.

To overcome the above issue, many attempts have been
made during the past several decades. In biology, accurate phe-
notypes and high-density molecular genotypes are needed for
many thousands of individuals to map small-effect and closely
linked QTLs [2]. In statistics, many approaches have been pro-
posed. In early studies, some markers associated with complex
traits of interest were selected to control polygenic background
in composite interval mapping (CIM) and its derivatives [12–16].
Subsequently, controlling polygenic background via the selec-
tion of markers in the CIM was replaced by estimating all the
marker variances or effects in one model [17–21]. To estimate
these effects in one model, many penalization methods have
been developed, for example, least absolute shrinkage and se-
lection operator (lasso) [22], smoothly clipped absolute devi-
ation [23] and empirical Bayes [24]. Although these penalization
methods can handle a number of markers several times larger
than the sample size, they will fail when the number of markers
is significantly larger than the sample size, especially for ex-
tremely high marker density. Recently, controlling polygenic
background in linkage analysis has been replaced by estimating
polygenic variance in genome-wide association studies [25–27].
However, this method cannot be directly applied in F2.

Goddard et al. [28] have proposed a method to treat marker
effects as random and described several advantages of the ran-
dom model approach over the fixed model treatment. This view-
point has been further confirmed by Wang et al. [27,29]. If marker
effects in F2 are treated as random, five variance components
must be estimated in genome scanning. Although Wang et al. [27]
have proposed a new method for the detection of small and close-
ly linked QTLs in the backcross generation, this method does not
work in F2. This is because there are five variance components to
be estimated. Clearly, this increases the difficulty of parameter es-
timation and the calculation burden in genome scanning.

In this study, we propose a rapid and efficient multi-locus
mixed linear model to detect small and linked QTLs in F2. To de-
crease the number of variance components estimated in gen-
ome scanning, three measures were used. The first is to
separately scan additive and dominant effects. The second is to
fix the polygenic-to-residual variance ratio [30], and the last is
to use the algorithm of Wen et al. [31]. To increase the power in

the detection of small and linked QTLs, all the peaks in the
negative logarithm P-value curve against genome position for
additive or dominant effects were viewed as potential QTLs,
and these potential QTLs were placed into one model for true
gene identification. To confirm the benefit of the new method
proposed in this study, yield and yield component traits in an
‘immortalized F2’ (IMF2) population derived from an elite rice
hybrid [32] were reanalyzed by the new method, while a series
of simulation studies were conducted to show the advantage of
the new method over those currently used.

Results
Mapping QTLs for yield and yield component traits in
an IMF2

In this study, we reanalyzed four rice traits described in Zhou
et al. [32] using four methods. The four traits are yield per plant
(YIELD), tillers per plant (TILLER), grains per panicle (GRAIN) and
thousand grain weight (KGW). The four methods were genome-
wide composite interval mapping (GCIM)-random, GCIM-fixed,
CIM and inclusive CIM (ICIM). GCIM-random and GCIM-fixed are
the GCIM under the situations of random and fixed QTL effects,
respectively. All the results are listed in Table 1, Supplementary
Tables S1–S2 and Figure 1, Supplementary Figures S1–S3.

A total of 104, 56, 20 and 46 QTLs for the aforementioned four
traits were detected by GCIM-random, GCIM-fixed, ICIM and CIM, re-
spectively (Supplementary Table S1). Clearly, the number of QTLs
identified by the new methods (GCIM-random and GCIM-fixed) was
much higher than that identified by the current ICIM and CIM meth-
ods. For example, 24 and 21 QTLs for GRAIN were detected, respect-
ively, by GCIM-random and GCIM-fixed while only 4 and 10 QTLs
were identified, respectively, by ICIM and CIM. The same trend was
also observed for the other traits. Among all the 226 QTLs, 176 (78%)
had<5% proportions of phenotypic variance explained by each QTL.
Among the 50 large QTLs, 11 were detected simultaneously by sev-
eral methods. The QTL genotypic information for each trait was
used to conduct a multiple linear regression analysis, and the corre-
sponding Akaike’s information criteria (AIC) values were calculated.
A smaller AIC value indicates a better model fit. As a result, the min-
imum AIC value for each trait was from GCIM, and the current
methods had the maximum AIC values (Supplementary Table S2).
For example, the AIC value for TILLER was 838.44 for GCIM-random,
850.17 for GCIM-fixed, 853.41 for CIM and 913.91 for ICIM.

In the proximity of the QTLs detected by GCIM-random,
GCIM-fixed, ICIM and CIM methods, a total of 24, 9, 7 and 7 pre-
viously reported genes were found to be associated with the
aforementioned four traits, respectively (Table 1, Figure 1, and
Supplementary Figures S1–S3). Clearly, GCIM detected more pre-
viously reported genes when compared with all the other meth-
ods. Among the aforementioned genes, five genes were
simultaneously detected by all the four methods, i.e. GS3 [33]
and GW5 [34] for KGW, Ghd7 [35] and GUDK [36] for YIELD, Gn1a
[37] for GRAIN and Ghd7 [35] for GRAIN were identified by GCIM-
random, GCIM-fixed and CIM. Note that all the five genes have
almost large effects (r2 > 5%), and the other genes have small
effects (r2 < 2.5%) with an exception of gene TAC1 (r 2 ¼ 5.81).
More importantly, all the small-effect known genes were
detected by GCIM-random rather than by the current methods
(CIM or ICIM). For example, Gn1a [37], OsLSK1 [38], NOG1 [39],
GW2 [40], AFD1 [41], GS3 [33], GIF1 [42], GW5 [34], d3 [43],
OsglHAT1 [44], OsAPO1 [45], PROG1 [46] and PAY1 [47] for YIELD;
d3 [43], OsLIC [48] and ATC1 [49] for TILLER; NOG1 [39] for GRAIN
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and IPA1 [50] for KGW. This means that GCIM-random has high
power for the detection of small-effect QTLs or genes.

Monte Carlo simulation studies

To validate the new method, a series of Monte Carlo simulation
experiments was carried out. In the first experiment, 19 QTLs
were simulated in an F2 population of 400 individuals, each
with 481 markers. All the interval lengths between adjacent
markers were 5 cM and the number of replicates was 200. Each
sample was analyzed by GCIM-random, GCIM-fixed, ICIM and
CIM. As a result, the average power for the four methods was
73.42%, 67.71%, 43.39% and 29.97%, respectively (Figure 2 and
Supplementary Table S3). When additive polygenic background
(r2 ¼ 0.05) was added to the first simulation experiment, the
average power for the four methods in the second simulation
experiment was 83.63%, 78.42%, 47.47% and 33.16%, respectively
(Figure 2 and Supplementary Table S3). When normal distribu-
tion for residual error in the first experiment was replaced by
log-normal distribution in the third simulation experiment,
average power for the four methods was 74.89%, 71.11%, 47.03%
and 30.95%, respectively (Figure 2 and Supplementary Table S3).
Clearly, GCIM-random has the highest average power in all
three simulation experiments. If a paired t-test was used to test
the significance of statistical power between new (GCIM-ran-
dom and GCIM-fixed) and current (CIM and ICIM) methods, the
new methods were significantly better than the current meth-
ods; GCIM-random was significantly better than GCIM-fixed,
indicating the highest power from GCIM-random (Table 2).

The accuracy of QTL effect estimation was measured by
mean absolute deviation (MAD). Smaller MAD means higher

accuracy of parameter estimation. As a result, the average
MADs for the four methods were 0.427 6 0.351 (additive) and
0.266 6 0.304 (dominant), 0.429 6 0.361 and 0.231 6 0.314,
0.421 6 0.225 and 0.405 6 0.105 and 0.639 6 0.376 and
0.592 6 0.288, respectively, in the first simulation experiment;
0.548 6 0.401 and 0.316 6 0.336, 0.509 6 0.410 and 0.254 6 0.331,
0.538 6 0.208 and 0.437 6 0.150 and 0.789 6 0.389 and
0.661 6 0.343, respectively, in the second simulation experi-
ment; and 0.403 6 0.330 and 0.245 6 0.291, 0.404 6 0.348 and
0.223 6 0.308, 0.529 6 0.255 and 0.452 6 0.152 and 0.611 6 0.372
and 0.585 6 0.287, respectively, in the third simulation experi-
ment (Supplementary Table S4). Clearly, GCIM-random and
GCIM-fixed have relatively small average MADs in all three
simulation experiments. If a paired t-test was used to test the
significance of the aforementioned accuracies between new
(GCIM-random and GCIM-fixed) and current (CIM and ICIM)
methods, the new methods had significantly lower MADs than
the current methods, especially for dominant effects; GCIM-
fixed had significantly lower MADs than GCIM-random
(Table 2). This indicates that GCIM has higher accuracy in the
estimation of QTL effects than the current methods.

The false positive rate (FPR) can be used to assess the per-
formance of a method. The FPR results in the first simulation
experiment are shown in Figure 3. The significance level (a) was
set from 1e-8 to 1e-2.5, and the FPR slightly increased with the
increase in the a value (Figure 3). When a was set at 0.0032 (1e-
2.5), the FPR values for GCIM-random, GCIM-fixed, ICIM and CIM
were 0.4404%, 0.1722%, 0.1000% and 0.0211%, respectively.

In the three simulation experiments and real data analysis,
the running times for the four methods were recorded and are

Figure 1. Multi-locus QTL mapping for yield per plant (YIELD) in rice using CIM, ICIM, GCIM-random and GCIM-fixed methods. The data set is derived from Zhou et al. [32].
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listed in Supplementary Table S5. The results show that ICIM
has the minimum running time followed by GCIM-fixed and
GCIM-random, and CIM has the maximum running time in real
data analysis, indicating the moderate running time of the
GCIM. Note that GCIM-fixed is faster than GCIM-random. This is
reasonable, because four variance components in GCIM-
random need to be estimated while only three variance compo-
nents in the GCIM-fixed need to be estimated.

We used the IMF2 population of an elite rice hybrid as a real ex-
ample to demonstrate the several methods, while we conducted
Monte Carlo simulation studies on the F2 population to compare
their differences. In reality, the genome structures of both IMF2 and
F2 are not exactly the same in all respects. If IMF2 is derived from
doubled haploid lines, named IMF2-DH, there are no differences be-
tween them, because the recombinant rate (r) between two adjacent
markers in F2 is the same as that in IMF2-DH. If IMF2 is derived from
recombinant inbred lines, named IMF2-RIL, however, the differences
exist, because the recombinant rate between two adjacent markers
is 2r/(1þ 2r) in IMF2-RIL rather than r in F2. More recombinant in
IMF2-RIL will increase the power and accuracy of QTL detection. To
validate the aforementioned deduction, we performed an additional
simulation experiment to compare the results of QTL mapping in F2

and IMF2. All the results are listed in Supplementary Tables S6–S9.
We found almost no significant differences between F2 and IMF2-DH
(Supplementary Table S6). However, the powers for linked QTLs in
IMF2-RIL were significantly higher than those in both F2 and IMF2-
DH (Supplementary Table S6), and the FPR in IMF2-RIL was slightly
less than those in both F2 and IMF2-DH (Supplementary Table S9).

Discussion
Genetic reasons why GCIM-random has high power in
the detection of QTLs

The 19 simulated QTLs mentioned above can be divided into three
types: small (QTL1, QTL11 and QTL15), large (QTL14 and QTL19) and

linked (QTL2 � QTL10, QTL12 � QTL13 and QTL16 � QTL18). As
described above, GCIM-random has 5.71%, 30.03% and 43.45%
higher power than GCIM-fixed, ICIM and CIM, respectively, in the
first simulation experiment (Figure 2, Table 2, and Supplementary
Table S3). To make clear the reasons that result in significant dif-
ference in statistical power across various methods, we summar-
ized the results from small, large and linked QTLs. We found that,
for large-effect QTLs, GCIM-random has 0.0%, 0.0% and 2.75%
higher power than GCIM-fixed, ICIM and CIM, respectively; for
small-effect QTLs, GCIM-random has 6.83%, 17.17% and 26.83%
higher power than GCIM-fixed, ICIM and CIM, respectively; for
linked QTLs, GCIM-random has 6.29%, 37.07% and 52.82% higher
power than GCIM-fixed, ICIM and CIM, respectively. This indicates
the similar power of the four methods for large-effect QTLs, signifi-
cantly different values between the current methods and GCIM-
random for small-effect QTLs, and very significantly different val-
ues between the current methods and GCIM-random for linked
QTLs. The same trends are also found in the other two simulation
experiments. These results are further confirmed by real data ana-
lysis in this study. For example, five large-effect QTLs are detected
simultaneously by the four methods (Table 1); among all the QTLs
identified from GCIM-random and GCIM-fixed, 147 (91.88%) are
small-effect (<5%) (Supplementary Table S1). In conclusion, the
high power for the GCIM-random is derived from its high power in
the detection of small and linked QTLs.

The advantages of GCIM-random are favorable in the map-
ping of gene expression levels, metabolites and epigenetic in-
heritance indicators. As we know, one of the most remarkable
findings in eQTL mapping is that the most strong eQTLs are
found to be near the target gene [8], and the proportion of these
cis-acting eQTLs is approximately one third [7]. This means that
most trans-eQTLs have small effects. Similar conclusions can be
found in the mapping of metabolites [9] and epigenetic inherit-
ance indicators [10,11]. Thus, GCIM-random can improve the
power in the detection of expressional, metabolic and epigenet-
ic QTLs.

Figure 2. Comparison of statistical powers of QTL detection in the first (A), second (B) and third (C) simulation experiments using CIM, ICIM, GCIM-random and

GCIM-fixed methods.
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The advantages of GCIM-random over the
current methods

As described in Kroymann and Mitchell-Olds [4] and Mackay
et al. [2], it is difficult for the widely used QTL mapping methods
to detect small and linked QTLs. However, this situation has
been significantly changed in this study; for example, a large
number of small-effect QTLs have been identified in rice real
data analysis by GCIM-random. The reasons are as follows.
First, all the peaks in the negative logarithm P-value curve
against genome position for additive or dominant effects are
viewed as potential QTLs and placed into a multi-locus genetic
model for true QTL identification. In the widely used QTL map-
ping methods, the peaks of small or linked QTLs in the LOD
curve exist. Although their LOD scores may be less than the crit-
ical value of significant QTL, putting all the potential QTLs in
one genetic model can increase the possibility of detecting
small and linked QTLs. The results are consistent with those in
Kao et al. [14], Xu [18], Wang et al. [51] and Wang et al. [27]. Then,
controlling polygenic background via selecting markers in QTL
mapping is replaced by estimating polygenic variance in a
genome-wide association study (GWAS). Although CIM and
ICIM can control the background of polygenes with large and in-
dividual moderate effects, GCIM-random may control the back-
ground of polygenes with large, moderate and small effects.
Note that polygenic background control has been adopted in
Bernardo [25], Xu [26] and Wang et al. [27]. However, GCIM-
random is based on the new algorithm of Wen et al. [31], multi-
locus genetic model and adaptive lasso.

In the ICIM and CIM, additive and dominant effects for each
putative QTL in the genome are simultaneously estimated.
However, the two effects are separately detected in this study.
In doing so, the number of variance components to be esti-
mated in GCIM-random will decrease from five to three so that
the algorithm of Wen et al. [31] can be directly adopted. This sol-
ves the difficulty of parameter estimation in F2. This is reason-
able because the two effects in F2 are orthogonal. In addition,
real data analysis and simulation studies provide the evidence
for this treatment. In addition, we find one unexpected phe-
nomenon in real data analysis. That is, two falsely linked QTLs
(Bin1004 and Bin1006�Bin1007 on chr 7) are found by GCIM-
random in one neighborhood to be associated with YIELD. This
is because only one QTL is detected by CIM and ICIM. To make
clear the position and effects of the true QTL, we scanned this
neighborhood by CIM [52] (http://cran.r-project.org/web/pack
ages/qtl/). As a result, this QTL is located between Bin1003 and
Bin1004. This kind of treatment has been incorporated into our
GCIM software.

In the CIM, we frequently find several peaks around one true
QTL. In this situation, we cannot distinguish one QTL from mul-
tiple linked QTLs. In the GCIM-random, this situation can be
avoided. This is because all the potential QTLs are placed into
one genetic model, and their effects are estimated by shrinkage
estimation (adaptive lasso). If there is only one true QTL in one
neighborhood, only one nonzero effect estimate is obtained.

As compared with GCIM-random, GCIM-fixed has slightly
higher accuracy in the estimation of QTL effects and takes less
running time. However, GCIM-random has higher power in the
detection of small and linked QTLs. The Monte Carlo simulation
studies and real data analysis in this study provide the
evidence for the detection of more small and linked QTLs
(Supplementary Tables S1, S3 and S4). Thus, we recommend
GCIM-random. Note that maximum likelihood (ML) and
restricted maximum likelihood (REML) can be used to estimate
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the parameters in GCIM-random and GCIM-fixed. Thus, users
may adopt both methods to analyze real data sets and to select
the better one as the final results.

When adaptive lasso is used to estimate all the effects in a
multi-locus model, a random number is needed. In GCIM-
random, its seed is uncertain. This may produce slightly differ-
ent results across the replicated calculations. To solve this
issue, users can select the best result of several calculations as
the final result.

We investigated the influence of the selection of distance
(2 and 5 cM) on the power in the first simulation experiment. The
results from paired t-tests are listed in Supplementary Table S10. In
Supplementary Table S10, the power of detected QTL within 5 cM
of the simulated QTL is higher at the 0.01 significance level than
that within 2 cM. Similar results are shown in Supplementary
Figure S4. In Supplementary Figure S4, most unlinked QTLs were
identified within 2 cM of the simulated one. However, some linked
QTLs were within 5 cM of the simulated one. Clearly, the signifi-
cance is derived from linked QTLs rather than unlinked QTLs
(Supplementary Table S10 and Supplementary Figure S4).

The prospects of the GCIM-random method

The results in this study have indeed shown the high FPR of
GCIM-random over the other three methods. This means that it
is possible to decrease the GCIM-random FPR in the future.
However, GCIM-random has identified a series of true QTLs in
simulation studies (Figure 2) and previously reported genes in
real data analysis (Table 1). Moreover, some approaches can be
used to obtain reliable and significant QTLs. In biology, the
QTLs, detected commonly either in multiple environments
(locations or years) in an IMF2 or across multiple F2 populations,
are viewed as reliable QTLs. More importantly, the advances in
modern omics can distinguish reliable candidate genes around
significant QTLs, for example, gene annotation, expression,
KEGG (Kyoto Encyclopedia of Genes and Genomes) and network
analyses. Thus, more candidate genes related to the traits of
interest can be mined.

Detecting small and linked QTLs has been a thorny issue in
analyzing complex traits. Although the major contribution of this
study is to propose a statistical framework jointly using CIM, ran-
dom model and lasso techniques to tackle this issue for general
usage, the new method is not limited to the F2 population and

can be expanded to the analysis of data from other experimental
populations. Additionally, this framework can be also used to de-
tect QTL-by-environment and QTL-by-QTL interactions, which
are underway and will be reported in a subsequent paper.

Conclusion

Based on the FASTmrEMMA (fast multi-locus random-SNP-ef-
fect efficient mixed model association) algorithm, the GCIM-
random method is proposed for detecting small and linked
QTLs in F2. First, FASTmrEMMA is used to separately conduct
genome scanning for additive or dominant effects in F2. For
each kind of effect, all the peaks of negative logarithm P-value
curve are viewed as potential QTLs, which are included into one
multi-locus model. Then, adaptive lasso is used to estimate all
the effects in the model, and all the nonzero effects are further
identified by the likelihood ratio test (LRT) for true QTL identifi-
cation. Finally, a series of Monte Carlo simulation studies and
real data analysis are used to validate the GCIM-random. As a
result, GCIM is more powerful for detecting closely linked and
small-effect QTLs than the widely used methods. Among 25
known genes detected in this study, 16 small-effect genes were
identified only by GCIM.

Materials and methods
Materials

Phenotypic and bin genotypic values in a rice IMF2 population
were downloaded from Zhou et al. [32] (http://www.pnas.org/
content/suppl/2012/09/07/1214141109.DCSupplemental). The
sample size was 278 and the number of bins was 1619. These
bins were treated as markers for QTL mapping. The bin map
was constructed by its RIL genotypes [53]. The traits analyzed in
this study were yield per plant (YIELD), tillers per plant (TILLER),
grains per panicle (GRAIN) and thousand grain weight (KGW).
The phenotypic values of the two replicates in 1998 and 1999
were pooled for each cross after removing the year effects using
yj ¼ 1

2 ðyj1 � �y1Þ þ ðyj2 � �y2Þ�
�

, where �y1 and �y2 are the averages of
the trait measured in 1998 and 1999, respectively [26]. We
inserted one or more pseudo markers at intervals larger than 1
cM to make sure that the entire genome is evenly covered by
pseudo or true markers with no intervals larger than 1 cM.
Thus, the number of all the pseudo or true markers was 1981.
For the pseudo markers, the genotype indicator variable is miss-
ing for each individual. In this case, the missing variable was
replaced by their conditional expectations, which are calculated
from the R function calc.genoprob in R package qtl (http://cran.
r-project.org/web/packages/qtl/).

Single-locus genetic model in F2

We consider the following single-locus mixed linear model:

y ¼ 1lþ Xaba þ Xdbd þ ua þ ud þ e (1)

where y is an n� 1 phenotypic vector of quantitative trait, and n is
the number of individuals; 1 is a n� 1 vector of 1; l is overall aver-

age; ba � Nð0; r2
aÞ and bd � Nð0; r2

dÞ are random additive and dom-

inant effects of a putative QTL, respectively; Xa and Xd are the
dummy variable matrix defined as 1 and 0 for genotype AA, 0 and 1

for genotype Aa and �1 and 0 for genotype aa; ua � MVNð0; r2
agKaÞ

and ud � MVNð0; r2
dgKdÞ are the n� 1 vector of additive and domin-

ant polygenic effects, respectively; Ka and Kd are the known n� n

Figure 3. FPRs of QTL detection in the first simulation experiment plotted

against Type I error (in a log10 scale) for CIM, ICIM, GCIM-random and

GCIM-fixed methods.
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kinship matrices for additive and dominant polygenic effects, re-
spectively, are inferred from marker information and are defined

as Ka ¼ 1
da

Pp
i¼1 XaiXT

ai and Kd ¼ 1
dd

Pp
i¼1 XdiXT

di [26,54], where da ¼ ð1=
nÞtrð

Pp
i¼1 XaiXT

aiÞ and dd ¼ ð1=nÞtrð
Pp

i¼1 XdiXT
diÞ are normalization

factors, p is the number of QTLs excluding pseudo markers; and e

� MVNnð0; r2
e InÞ is an n� 1 vector of residual errors, r2

e is the vari-
ance of residual error, and In is an n� n identity matrix, MVN
denotes multivariate normal distribution, and tr denotes trace.

Although the ba and bd are treated as fixed in the CIM and ICIM
methods, in this study we treat them as random to make the model
more realistic [28,29,31,54]. In this case, five variance components
need to be estimated. Thus, the variance of y in Model (1) is:

VarðyÞ ¼ r2
aXaXT

a þ r2
dXdXT

d þ r2
agKa þ r2

dgKd þ r2
e In

¼ r2
e ðkaXaXT

a þ kdXdXT
d þ kagKa þ kdgKd þ InÞ

¼ r2
e H

(2)

where ka ¼ r2
a=r

2
e , kd ¼ r2

d=r
2
e , kag ¼ r2

ag=r
2
e and kdg ¼ r2

dg=r
2
e .

GCIM-random method in F2

The key to solve Model (1) is to estimate five variance compo-
nents (r2

a, r2
d, r2

ag, r2
dg and r2

e ). For each putative QTL, we may esti-
mate the five variance components using mixed model method.
If the number of the putative QTLs on the genome is large, it
takes a long time. To save running time, we may scan separate-
ly additive or dominant effect for each putative QTL along the
genome. This method is named as GCIM-random. The details
are as follows.

Estimation of four variance components. First, we estimatebkag and bkdg by the reduced model with only polygenic
background:

y ¼ 1lþ ua þ ud þ e; (3)

Replacing kag and kdg in varðyÞ ¼ r2
e ðkagKa þ kdgKd þ InÞ of (3)

by bkag and bkdg, we obtain B ¼ bkagKa þ bkdgKd þ In. Using the
FASTmrEMMA algorithm of Wen et al. [31], the spectral
decomposition for B is B = QKQT, the model transformation ma-
trix is C ¼ QK�1=2QT , where K is a r� r diagonal matrix with
positive eigenvalues, Q is the n� r block of an orthogonal matrix
and r ¼ RankðBÞ.

Then, we may separately scan each kind of effect for all the
putative QTLs. In the scanning of additive effect, the transferred
single-locus mixed linear model is

yc ¼ 1clþ Xc:aba þ ec; (4)

where yc ¼ Cy, 1c ¼ C1, Xc:a ¼ CXa and
ec ¼ Cðua þ ud þ eÞ � MVNnð0; r2

e InÞ. Then

VarðycÞ ¼ r2
e ðkaXc:aXT

c:a þ InÞ (5)

In the scanning of dominant effect, similarly, the transferred
single-locus mixed linear model is:

yc ¼ 1clþ Xc:dbd þ ec; (6)

where yc ¼ Cy, 1c ¼ C1, Xc:d ¼ CXd and
ec ¼ Cðua þ ud þ eÞ � MVNnð0; r2

e InÞ. Then:

VarðycÞ ¼ r2
e ðkdXc:dXT

c:d þ InÞ; (7)

In Models (4) and (6), clearly, only two variance compo-
nents need to be estimated. In this study, we adopted the
FASTmrEMMA algorithm of Wen et al. [31]. All the formulae
are similar to those in Wen et al. [31]. Thus, negative loga-
rithm P-value curve against genome position for additive ef-
fect in Model (4) and dominant effect in Model (6) can be
obtained. In each curve, all the peaks are viewed as putative
QTLs to be included in one multi-locus model [27], their
effects are estimated by adaptive lasso [55], and all the non-
zero effects are further detected by LRT for true QTL
identification.

Detection of true QTLs in multi-locus model. In the multi-
locus model for GCIM-random:

y ¼ 1lþ
Xq

i¼1

ðXaibai þ XdibdiÞ þ e; (8)

where y, l and e are the same as those in Model (1); q is the
number of the potential QTLs selected in the first step of GCIM-
random; Xai and Xdi are the dummy variables of additive and
dominant genotypes for the ith putative QTL, respectively, and
bai and bdi are additive and dominant effects. In the abovemen-
tioned model, polygenic background is not included, because all
the potential QTLs have been included in Model (8). We assume
that the data are centered, so the intercept term is 0. Let
b2q�1 ¼ ðba1; bd1; ba2; bd2; . . . ; baq; bdqÞT , Y ¼ y� 1l with a zero
mean, and centralizing each column in matrix
ðXa1 Xd1 Xa2 Xd2 . . . Xaq Xdq Þn�2q produces a new matrix
X with

Pn
i¼1 xij ¼ 0, j ¼ 1; . . . ; 2q.

We invoked the adaptive lasso algorithm of Zou [55] to
estimate their effects implemented by the R package parcor
of Kraemer et al. [56] (http://cran.r-project.org/web/pack
ages/parcor/). Therefore, adaptive lasso estimates bb are
given by

bb ¼ argminkY � Xbk2 þ k
X2q

j¼1

ðbx jjbjjÞ; (9)

Here we use the lasso estimates bb lasso as initial
values and define the weights bx j ¼ 1=jbb j;lassoj[56]. The tuning
parameter k of adaptive lasso is chosen by 10-fold cross-
validation.

LRT for all the nonzero effects in the multi-locus model.
Based on the estimates of all the effects in the multi-locus
model, the effects with jbb jj > 10�5 are further selected for LRT to
obtain the significantly associated QTLs. Let the selected effects
be bh ¼ �bbða1Þ;

bbðd1Þ;
bbða2Þ;

bbðd2Þ � � � ; bbðalÞ;
bbðdlÞ

�T
. Note that as long as

one estimate of additive or dominant effects (jbbðakÞj and jbbðdkÞj)
for kth selected QTL is greater than 10�5, we selected the two
effects of this QTL. Thus, the null hypothesis is H0 : bðakÞ ¼ 0,
bðdkÞ ¼ 0 (k ¼ 1; . . . ; l), that no QTL exists in this position. The
LOD score is calculated by:

LODk ¼ �2½Lðbh�kÞ � LðbhÞ�=4:605; (10)

where bh�k ¼
�bbða1Þ;

bbðd1Þ; . . . ; bbða;k�1Þ;
bbðd;k�1Þ;

bbða;kþ1Þ;
bbðd;kþ1Þ; . . . ;

bbðalÞ;
bbðdlÞ

�T
, LðbhÞ ¼Pn

i¼1 ln/ðyi; 1bl þPl
k¼1ðXak

bbak þ Xdk
bbdkÞ; br2

e Þ is

log-likelihood function, /ðyi; 1bl þPl
k¼1ðXak

bbak þ Xdk
bbdkÞ; br2

e Þ is nor-

mal density with mean 1bl þPl
k¼1ðXak

bbak þ Xdk
bbdkÞ and variance

br2
e and y ¼ ðyiÞn�1. Considering that all potential QTLs are selected

in the first step, we adopt a slightly more stringent criterion of
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P-value¼ 0.00316 as significant QTL, which is converted from

LOD score 2.50 using P ¼ Prðv2
df¼2 > 2:5� 4:605Þ � 0:00316.

GCIM-fixed method in F2

If we treat QTL effects as fixed, the method is called as GCIM-
fixed. The variance y in Model (1) could be reduced as:

VarðyÞ ¼ r2
agKa þ r2

dgKd þ r2
e In

¼ r2
e ðkagKa þ kdgKd þ InÞ;

(11)

where kag ¼ r2
ag=r

2
e and kdg ¼ r2

dg=r
2
e .

The GCIM-fixed includes two steps. In the first step, we esti-
mate bkag and bkdg under pure polygenic model and fix it when
scanning each putative QTL on the genome [30], as described in
GCIM-random.

In the second step, we scan separately each kind of effect for
each putative QTL on the genome. In the scanning of additive
effect, the single-locus mixed linear model is:

yc ¼ 1clþ Xc:aba þ ec; (12)

where yc ¼ Cy, 1c ¼ C1, Xc:a ¼ CXa, ec ¼ Cðua þ ud þ eÞ � MVNnð0;
r2

e InÞ and VarðycÞ ¼ r2
e In. In the scanning of dominant effect, the

single-locus mixed linear model is:

yc ¼ 1clþ Xc:dbd þ ec (13)

where yc ¼ Cy, 1c ¼ C1, Xc:d ¼ CXd, ec ¼ Cðua þ ud þ eÞ � MVNnð0;
r2

e InÞ and VarðycÞ ¼ r2
e In.

In Models (12) and (13), only one variance component is
included. Thus, we can quickly estimate bba and bbd using ML or
REML and calculate P-value for each QTL. The remaining steps
are similar to those in GCIM-random.

The abovementioned two methods can be implemented by
software QTL.gCIMapping, which is available at https://cran.r-
project.org/web/packages/QTL.gCIMapping/index.html.

Composite interval mapping

CIM [12,13] is a commonly used method for mapping QTLs in
segregating populations derived from biparental crosses. This
method was implemented by WinQTLCart, which is down-
loaded from https://brcwebportal.cos.ncsu.edu/qtlcart/
WQTLCart.htm. The CIM was performed using Model 6 in QTL
cartographer with a window size of 10.0 cM and five other
markers used as cofactors in the model. Significance thresholds
were set at the LOD score of 2.50.

Inclusive composite interval mapping

ICIM [15] is a modified algorithm of CIM [12,13]. In ICIM, marker
selection is conducted only once through stepwise regression
by considering all marker information simultaneously, and the
phenotypic values are then adjusted by the selected markers (or
significant cofactors) except the two markers flanking the cur-
rent mapping interval. The adjusted phenotypic values are fi-
nally used in interval mapping. The ICIM was conducted by
QTLIciMapping v3.0, which was downloaded from http://www.
isbreeding.net/. Interval mapping at 1-cM intervals along the
genome was used to scan for QTLs based on the critical LOD
score of 2.50. T
ab
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The methodological comparison for the abovementioned
four methods is listed in Table 3.

Monte Carlo simulation studies

An F2 population of 400 individuals was simulated in the first
Monte Carlo simulation experiment. Each individual had six
simulated chromosomes. On the first to fifth chromosomes,
each was covered by 81 evenly spaced markers, and the sixth
one was covered by 76 evenly spaced markers. We placed
19 QTLs along the genome with positions and effects listed in
Supplementary Table S3. Among these simulated QTLs, 14 over-
lapped with markers, five resided in the middle of an interval,
and the proportion of phenotypic variance explained by each
QTL ranged from 0.5% to 10% (Supplementary Table S3). The
total average and residual variances were set at 20 and 10, re-
spectively. The phenotype for each F2 individual was simulated
by the model: y ¼ 1lþ

P19
i¼1ðxaibai þ xdibdiÞ þ e, where

e �MVNnð0; 10� InÞ. The number of replicates was 200. Each
sample was analyzed by four methods: GCIM-random, GCIM-
fixed, ICIM and CIM. For each simulated QTL, we counted the
samples in which the LOD score had passed 2.5. A detected QTL
within 5 cM of the simulated QTL was considered a true QTL.
The ratio of the number of such samples to the total number of
replicates represented the empirical power for this QTL. To
measure the bias of QTL effect and position estimates, mean
squared error (MSE) and MAD were defined as MSE ¼ 1

200

P200
i¼1

ðbb i � bÞ2 and MAD ¼ 1
200

P200
i¼1 jbb i � bj, respectively, where bb i is the

estimate of QTL effect (or position) in the ith sample.
In the second Monte Carlo simulation experiment, additive

polygenic background (r2 ¼ 0.05) was added to the first simulation
experiment to investigate the effect of polygenic background on
the new method. The polygenic effect ua was simulated by multi-
variate normal distribution MVNnð0; r2

pgKaÞ, where r2
pg ¼ 3:846,

and Ka was the kinship coefficient matrix between a pair of indi-
viduals. The other parameter values were the same as those in
the first experiment. All the F2 individual phenotypes were simu-
lated by the model: y ¼ 1lþ

P19
i¼1ðxaibai þ xdibdiÞ þ ua þ e, where

e �MVNnð0;10� InÞ.
To investigate the effect of a skewed distribution on the new

method, normal distribution for residual error in the first ex-
periment was replaced by log-normal distribution with the
1.144 SD and the zero mean in the third Monte Carlo simulation
experiment. The other parameter values were the same as
those in the first experiment.

A series of pseudo markers was inserted in the middle of a
marker interval. As a result, the total number of pseudo and
true markers was 2856. For the pseudo markers, the missing
genotype variable for every individual was replaced by its condi-
tional expectation.

To verify the differences of mapping QTLs in F2 and IMF2

using the new methods, IMF2-DH and IMF2-RIL populations
were simulated. All the simulation parameters were the same
as those in the first experiment (Supplementary Table S7). Each
simulated data set was analyzed by GCIM-random and GCIM-
fixed. All the results were compared with those in the first
simulation experiment.

Key Points

• QTL mapping has been widely used to identify
many genes for complex traits, metabolites, gene

expression levels, RNA editing levels and DNA
methylation.

• Although these complex and omics-related traits are
mainly controlled by a series of minor genes, studies to
design an efficient framework for the detection of the
minor and linked genes are limited.

• We assess four QTL mapping methodologies using both
simulated and real data sets. In the newly developed
GCIM-random method, QTL effects are viewed as being
random, polygenic background is estimated by polygen-
ic variance in GWAS, FASTmrEMMA is used to separate-
ly conduct genome scanning for additive or dominant
effect in F2, all the peaks of negative logarithm P-value
curve against genome position are picked up as poten-
tial QTLs in a multi-locus model and all the effects in
the model are estimated by adaptive lasso.

• GCIM-random is more powerful than the widely used
methods for the detection of closely linked and small-
effect QTLs.

Supplementary Data

Supplementary data are available online at https://academ
ic.oup.com/bib.
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