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SUMMARY

Recent studies have shown that mutations at non-coding elements, such as promoters and 

enhancers, can act as cancer drivers. However, an important class of non-coding elements, namely 

CTCF insulators, has been overlooked in the previous driver analyses. We used insulator 

annotations from CTCF and cohesin ChIA-PET and analyzed somatic mutations in 1,962 whole-

genomes from 21 cancer types. Using the heterogeneous patterns of transcription-factor-motif-
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disruption, functional impact and recurrence of mutations, we developed a computational method 

that revealed 21 insulators showing signals of positive selection. In particular, mutations in an 

insulator in multiple cancer types, including 16% of melanoma samples, are associated with 

TGFB1 up-regulation. Using CRISPR-Cas9, we find that alterations at two of the most frequently 

mutated regions in this insulator increase cell growth by 40-50%, supporting the role of this 

boundary element as a cancer driver. Thus, our study reveals several CTCF insulators as putative 

cancer drivers.

Graphical Abstract

In Brief

We developed a computational method that combines recurrence and functional impact of 

mutations to identify cancer drivers. Application of the method on 1,962 cancer whole-genomes 

reveals putative drivers at CTCF insulators. In particular, mutations in an insulator on chr19 are 

associated with TGFB1 up-regulation and may point to a novel mechanism of TGF-β signaling 

modulation in multiple cancer types.

INTRODUCTION

Whole-genome sequencing (WGS) of tumors has revealed that most somatic mutations 

occur in non-coding regions (Khurana et al., 2016). Although most of these mutations do not 

impact tumor growth and are called passengers, some of them can act as cancer drivers by 
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conferring growth advantage to promote tumorigenesis. Non-coding cancer driver mutations 

can be identified by detecting signals of positive selection in WGS data.

Non-coding drivers at transcription factor (TF) binding sites in promoters and enhancers 

play a role in tumorigenesis by dysregulating gene expression. The most prominent example 

is the TERT promoter, which is mutated in many cancers (Vinagre et al., 2013). In other 

prominent examples, promoter and enhancer mutations in breast cancer can lead to FOXA1 
(Rheinbay et al., 2017) and ESR1 (Bailey et al., 2016) overexpression, respectively. Most 

efforts to identify cis-regulatory regions under positive selection in cancer have focused on 

promoters and enhancers and a key functional element, namely CTCF/cohesin insulators, 

has been overlooked.

It is known that promoter and enhancer interactions are facilitated by partitioning of the 

human genome into DNA loops (Gibcus and Dekker, 2013; Gorkin et al., 2014; Rao et al., 

2014). The loops that act as insulated neighborhoods preventing the interactions of 

promoters and enhancers across their boundaries are predominantly mediated by CCCTC-

binding factors (CTCF) and cohesin (SMC1, SMC3, RAD21 and either STAG2 or STAG1) 

bound at the loop ends (Dowen et al., 2014; Hnisz et al., 2016; Ji et al., 2016; Tang et al., 

2015). Emerging evidence from Hi-C and ChIP-seq assays suggest that other proteins, such 

as BRD2 (Hsu et al., 2017) and ELK4 (Mourad and Cuvier, 2018), can also co-localize with 

CTCF at loop anchors to affect long-range chromatin interactions. Disruption of the loop 

anchor regions, called CTCF/cohesin insulators (hereafter referred to as insulators), can lead 

to de novo enhancer-promoter interactions and the subsequent dysregulation of associated 

genes (Giorgio et al., 2015; Lupiáñez et al., 2015). Furthermore, smaller loops can cluster to 

form larger megabase-sized loops called topologically associated domains (TADs) 

(Bouwman and de Laat, 2015; Phillips-Cremins et al., 2013; Rao et al., 2014; Vietri Rudan 

et al., 2015).

It has been previously reported that CTCF/cohesin binding sites are highly mutated in 

several cancer types, including gastrointestinal cancers and melanoma (Guo et al., 2018; 

Kaiser et al., 2016; Katainen et al., 2015; Poulos et al., 2016). Although the reasons for the 

high mutation rates are not completely understood, these studies noted that most of these 

mutations are likely passengers and do not drive tumor growth. However, Hnisz et al. found 

the CTCF insulators of DNA loops show recurrent deletions that alter the expression of 

LMO2 and TALI oncogenes in T cell acute lymphoblastic leukemia (Hnisz et al., 2016). 

Thus, some variants at insulators may have a functional role and drive the growth of cancer 

cells. It is well appreciated that systematic genome-wide identification of a few drivers 

among tens of thousands of passengers is a challenging task. This is because computational 

methods to detect drivers need to account for heterogeneous mutation rates along the 

genome. The heterogeneous rates are a result of mutational co-variates, some of which may 

be specific for the type of cancer and functional element analyzed (Cuykendall et al., 2017; 

Khurana et al., 2016; Perera et al., 2016; Polak et al., 2015; Sabarinathan et al., 2016; Supek 

and Lehner, 2015). While several methods have been developed to predict non-coding 

drivers at promoters, enhancers, or TF binding sites in general in multiple cancer types 

(Araya et al., 2015; Juul et al., 2017; Lanzós et al., 2017; Lochovsky et al., 2015; Melton et 
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al., 2015; Mularoni et al., 2016), these methods have not been developed for or applied on 

insulator regions.

Here, we first analyze the mutations at insulators to identify novel mutational rate covariates 

at these regions. We used insulator annotations obtained using ChIA-PET assays that can 

map long-range chromatin interactions mediated by specific proteins and therefore enable 

identification of chromatin loop anchor regions that are associated with CTCF and cohesin 

(Heidari et al., 2014; Hnisz et al., 2016; Ji et al., 2016; Tang et al., 2015). We then developed 

a computational method, CNCDriver (Cornell Non-Coding Driver), that incorporates the 

mutational rate covariates to identify insulator drivers. Out of 5,042 insulators that show 

recurrent mutations (i.e., present in 2 or more samples) in 1,962 whole-genomes from 21 

cancer types, our method identifies 21 putative drivers. We postulate that alterations of these 

insulators can elicit oncogenic impact via chromatin loop rewiring. Functional validation of 

a predicted driver using CTCF ChIP-seq, 3C and CRISPR mutagenesis supports our 

computational predictions in human melanoma cells.

RESULTS

Determining mutational rate co-variates at insulators

Analysis of loop anchor regions from seven cohesin (Heidari et al., 2014; Hnisz et al., 2016) 

and CTCF (Li et al., 2012a; Tang et al., 2015) ChIA-PET datasets shows that the majority of 

them are conserved in more than one cell-type (Figure S1B, 73% insulators are conserved in 

more than one cell-type), as also noted by previous studies (Heidari et al., 2014; Hnisz et al., 

2016; Tang et al., 2015). We only include those insulators that are conserved in at least four 

out of five different cell-types (GM12878, K562, Jurkat, MCF-7 and HeLa-S3) as the 

constitutive set in our analysis. We analyzed the patterns of somatic single nucleotide 

variants (SNVs) in 1,962 genomes from 21 cancer types (Table S1) at constitutive insulators. 

We identified the mutations predicted to disrupt CTCF binding by comparing the TF motif 

position weight matrix (PWM) score of the mutated vs. the reference sequence (Fu et al., 

2014; Khurana et al., 2013; Mu et al., 2011) (Figure S2A and Table S14). We observe 

significant enrichment of CTCF motifs predicted to be disrupted due to mutations in 15 out 

of 21 cancer types analyzed (Figure S2B). Next, we extracted the tri-nucleotide context of 

the mutations predicted to disrupt CTCF motifs and compared the distributions of the 96 

possible contexts with known signatures of mutational processes in human cancer from 

COSMIC (Alexandrov et al., 2013) as a reference control using cosine similarity as the 

quantitative metric (Figures S2C and S2D). We find that the tri-nucleotide distributions for 

CTCF motif-disrupting mutations vary considerably across cancer types and interestingly 

match the corresponding cancer-specific COSMIC mutational signatures in 9 cancer types 

(Figure S2D). As seen in Figure S2B, these 9 cancer types are also enriched for CTCF motif 

disruption. Thus, our results show that enrichment of CTCF motif disruption in multiple 

cancer types is likely due to neutral mutational processes operative in those cancers. For the 

remaining 6 cancer types that show enrichment of CTCF motif disruption, but do not closely 

match any single mutational signature identified in that cancer type, we expect the motif-

disrupting mutations are likely either a combination of multiple signatures or may 

correspond to unknown signatures of longer sequence context (Fredriksson et al., 2017). 
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Besides CTCF, we find that the fraction of the other 549 TFs, whose motif-disruption 

enrichment can be explained by known mutational processes acting in that cancer type, 

varies from 4% in brain low-grade glioma (LGG) to 86% in melanoma (Table S2B, Top). 

We provide the lists of TFs showing enriched motif disruption due to specific mutational 

signatures for each cancer type (Tables S2A and S2B). Our observations are consistent with 

those of Kaiser et al., who noted that enrichment of functional mutations at binding sites of 

CTCF and other TFs are likely due to neutral mutational processes, though they did not 

make a one-to-one comparison with the 30 mutational signatures from COSMIC (Kaiser et 

al., 2016). Thus, these results demonstrate that in the computational models for cancer driver 

detection at CTCF insulators, there is a need to balance the higher functional impact of 

motif-disrupting mutations and their higher frequency (Figure S3) due to background 

mutational processes.

Computational method to identify cancer drivers

We report a novel computational method, CNCDriver, which combines the functional impact 

of mutations and their recurrence across multiple cancer samples to identify the elements 

that show signals of positive selection. CNCDriver aims to identify the regions that show 

significantly more functional mutations than expected randomly. The functional impact of 

mutations is computed using the FunSeq2 algorithm (Methods) (Dhingra et al., 2017; Fu et 

al., 2014; Khurana et al., 2013). A CNCDriver score is computed for each element, which 

sums the functional impact and recurrence of all the mutations in the element (Figure 1A 

and Methods). The P value for each element is then computed by comparing its CNCDriver 

score to the scores in a null distribution built by repeatedly drawing the same number of 

mutated positions from the same element type. This framework allows us to account for 

previously reported covariates of mutation rates, including replication timing, mutational 

sequence context, DNase I hypersensitive sites (DHSs) and histone modification marks 

(Alexandrov et al., 2013; Polak et al., 2015). Besides insulators, it also allows identification 

of drivers in coding genes, promoters, enhancers and lncRNAs. To identify the insulators 

under positive selection, CNCDriver also incorporates the ratio of CTCF motif–disrupting to 

motif–preserving mutations in the null model, thus balancing the opposite effects of 

predicted higher functional impact of these mutations with their higher frequency (Figure S3 

and Methods).

Application of CNCDriver to coding regions demonstrates that it identifies well-known 

cancer genes with improved performance compared to other methods that are based solely 

on mutational functional bias (Mularoni et al., 2016) or burden (Lochovsky et al., 2015), 

demonstrating the validity of the statistical framework (Figure S4 and Table S3). 

Furthermore, the P values from CNCDriver follow the expected uniform distributions for all 

elements (Figures S4 to S8 and Tables S4 to S11), and the well-known TERT promoter is 

identified as a candidate in 3 cancer types (Figure S5A). We note the unique scoring scheme 

of CNCDriver, which includes nucleotide level impact of TF motif-disruption, allows 

prediction of candidate promoter drivers in melanoma where OncodriveFML gives inflated 

QQ plots due to hypermutated TF binding sites (Khurana et al., 2016; Mularoni et al., 2016; 

Perera et al., 2016; Sabarinathan et al., 2016) (Figure S5B).
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Putative insulator drivers identified by CNCDriver

Using CNCDriver, we identify 21 putative insulator drivers across individual cancer types 

and in the joint pan-cancer analysis (Table 1 and Figure S8A). We note that only 21 

insulators are predicted to be under positive selection even though many insulators show 

high mutational frequencies (Figure S9: grey bars in circles for each cancer type). In 

contrast, OncodriveFML (Mularoni et al., 2016), a method that uses only mutational 

functional bias to identify drivers produces high numbers of false positive hits (Figure S8B 

and Table S12), likely because it does not account for the higher background rates of CTCF 

motif-disrupting mutations associated with neutral processes. Other methods that use only 

high mutational burden to detect positive selection are also likely to perform poorly for 

CTCF insulators due to their increased mutational rates relative to flanking regions (Lanzós 

et al., 2017; Rheinbay et al., 2017; Weinhold et al., 2014).

Among all cancer types analyzed, ovarian cancer has the maximum number of candidate 

drivers (i.e. four), while melanoma, esophageal, endometrial, renal, and bladder cancer 

follow with two candidates each (Figure S9). We find that one insulator candidate is 

common to both renal and ovarian cancers, while nine predicted drivers are identified in the 

joint pan-cancer analysis. Among these nine insulators identified in the pan-cancer analysis, 

four candidates are also detected to be significantly mutated in single cancer types. The 

remaining five candidate drivers identified via the pan-cancer analysis are likely to be 

important in multiple cancer types, though they do not reach statistical significance in 

individual cancer types due to limited cohort sizes.

To further interpret the tumorigenic role of mutations at insulator regions, we examined their 

clonality status. We performed integrative analysis of tumor purity, copy number alterations 

and read depth at mutated loci using an approach similar to the one in previous studies 

(Landau et al., 2013; McGranahan et al., 2015) (Figures S10A and S10B). We find that the 

majority of mutations in both coding and non-coding drivers tend to be clonal, likely 

pointing to their roles during the early stages of tumor development (Figure S10C and 

S10D). This result is in concordance with previous studies of coding driver genes from 

TCGA (The Cancer Genome Atlas) whole-exome sequencing data (McGranahan et al., 

2015). However, the fraction of clonal mutations in insulators (0.60) is significantly lower 

than that observed in promoters (0.79) (P value = 0.049, Fisher’s exact test) suggesting the 

possibility that mutations at insulators may play a stronger role at later stages in cancer 

progression.

Predicted rewiring of chromatin loops around insulator drivers and associated genes

ChIA-PET assays provide the locations of paired loop anchors, enabling the prediction of 

potential loop rewiring events associated with the perturbation of the anchor regions. 

Perturbation of loops associated with mutations at the insulators may alter the anchor contact 

frequency and hence the strength of loops in the vicinity. Based on previous studies, the 

majority (~80%) of the loop anchors bound by CTCF and cohesin contain CTCF motifs in 

convergent orientations (i.e. forward-reverse) (Hnisz et al., 2016; Ji et al., 2016; Tang et al., 

2015). This helps us to predict how the mutations at insulators could alter the conformations 

of the loops in the region leading to their rewiring. We determined the potential rewiring 
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events by requiring that new loops: 1) contain convergent CTCF motifs at anchors within 

360 kb of each other (which corresponds to the 75th percentile of CTCF-CTCF loop length 

distribution), and 2) if the predicted insulator driver is located within a TAD, the predicted 

new loops will be within the same TAD (Figure 1C and Figure S11). For example, in Figure 

1C, mutations at the driver insulator with the reverse CTCF motif are predicted to weaken a 

constitutive loop (red), thereby strengthening an alternate constitutive loop (gray) and a 

predicted new loop (dotted) through the pairing of the forward CTCF motif with other 

reverse motifs in the vicinity.

We analyzed the genes whose expression may be altered due to the loop rewiring events. 76 

genes are located within the predicted weakened or strengthened loops associated with the 

insulator drivers. Among these 76 genes, TGFB1, HES1, CUL1 and CDKN2A are involved 

in curated cancer pathways (Figures 1C, S11C, S11K and S11M) (Knijnenburg et al., 2018; 

Sanchez-Vega et al., 2018). Next, we asked whether these 76 genes exhibit differential 

expression in patients with insulator mutations vs. those without. Since RNA-seq data is not 

available for the esophageal cancer samples analyzed in this study (Methods), we were only 

able to analyze the expression of associated genes for 19 out of 21 significantly mutated 

insulators. We found that the expression of two neighboring genes is associated with 

mutations in one insulator driver candidate: TGFB1 (in melanoma and pan-cancer analysis) 

and CYP2S1 (in melanoma) (Figure 1D and Figure S12A). Thus, mutations in only one out 

of 19 insulator candidates analyzed are associated with differential expression of at least one 

gene (Benjamini and Hochberg method for multiple hypothesis correction, Q value ≤ 0.1). 

We note that this result is likely due to the small number of samples with matched WGS and 

RNA-seq data in the majority of cancer types. The mutational frequency of candidate drivers 

is also lower in other cancer types relative to melanoma, which further decreases the 

statistical power to detect significant differences in gene expression. For example, matched 

WGS and RNA-seq data is available for only 3 samples with mutations and 93 without for 

the candidate driver on chr12 in breast cancer, while it is available for 12 samples with 

mutations and 68 without for the candidate driver in melanoma.

The driver candidate (chr19:41,767,305-41,771,623) identified in melanoma and in pan-

cancer analysis where mutations are associated with TGFB1 up-regulation (Figures 1B, 1C, 

1D and S12 and Table S13) is of particular interest. TGFB1 is involved in the transforming 

growth factor-β (TGF-β) signaling pathway and promotes angiogenesis and tumor cell 

migration in melanoma (Perrot et al., 2013). We find that the mutation frequency of this 

insulator is higher in metastatic (19%) relative to primary samples (12%) (Figure S12F), 

which is consistent with the known role of TGFB1 in melanoma metastasis (Javelaud et al., 

2008; Padua and Massagué, 2009). Furthermore, this trend is even stronger when analyzing 

the samples with recurrent mutations (since they are likely the ones under stronger positive 

selection than non-recurrent mutations), with mutation frequency of 17% for metastatic and 

8% for primary melanoma samples (Figure S12F). Besides melanoma, the TGF-β pathway 

is important in multiple cancer types and is a target for drug development (Akhurst, 2017; 

Seoane and Gomis, 2017). The mutations of this insulator in other cancer types (lung 

adenocarcinoma, endometrial carcinoma, prostate adenocarcinoma and liver hepatocellular 

carcinoma) and in particular the relatively high mutational frequency of 9% in colon cancer 

and 3% in esophageal adenocarcinoma may provide complementary mechanisms to the 
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known genomic alterations (protein-coding mutations and copy number alterations) for 

modulation of TGF-β signaling, especially in gastrointestinal cancers (Korkut et al., 2018).

Functional validation of predicted driver insulator associated with differential expression 
of TGFB1

We performed functional validation for the tumorigenic role of the predicted insulator driver 

(chr19:41,767,305-41,771,623) in melanoma using multiple assays. We used human 

melanoma A375 cells and sequenced the insulator to verify the absence of mutations. We 

performed CTCF ChIP-Seq in A375 cells to show that the predicted driver (insulator B) is 

bound by CTCF (Figure 2A). Next, we performed chromosome conformation capture (3C) 

to confirm the presence of the relevant chromatin loop in melanoma (Figure 2B, loop A-B). 

We used primers on CTCF insulator ‘A’ and the insulators ‘B’ and ‘C’, which form 

constitutive loops in the conserved annotations, as well as a random non-insulator region B’ 

of similar linear distance that served as a negative control (Figure 2A). Our results show that 

the contact frequency of both A-B and A-C is significantly higher than the negative controls 

(A-B’ and naked genomic DNA) (Figure 2B) and at similar levels compared to K562 cells, 

one of the cell lines in which these loops were initially detected by ChIA-PET. These results 

validate the existence of the loop A-B in melanoma cells and support that they potentially 

insulate the enhancer activity from promoters outside the loops.

Six out of 48 mutations in this insulator are located within the regions bound by CTCF 

(SNV4, 5, 19, 20, and 21 in Figure S12E), while 39 out of 48 mutations occur at the ChIP-

seq peaks of other TFs. In particular, there are six hotspots (SNV8, 9, 11, 12, 14 and 18 in 

Figure S12E) where many TFs bind, including ELK4 (Table S13). Among these six SNVs, 

SNV8 (chr19:41,769,771) is the most recurrent mutation with a mutational frequency of 8% 

and is predicted to disrupt the ELK4 motif. Notably, by analysis of Hi-C data, Mourad et al. 

showed that besides CTCF, ELK4 is one of the TFs that show a blocking effect between 

long-range contacts in the genome (Mourad and Cuvier, 2018). Besides ELK4, YY1 is 

another prominent TF known to cooperate with CTCF for long-distance interactions 

(Atchison, 2014) and has been implicated for the establishment of TAD boundaries (Moore 

et al., 2015; Schwalie et al., 2013). Many SNVs, including recurrent mutations (SNV8, 9, 

11, 12, 14 and 18) are located at an YY1 ChIP-seq peak. We find that the region spanned by 

SNV8 to SNV21 bound by many TFs also shows the highest mutational density in other 

cancer types aside from melanoma (Figure S12B). Thus, our results support the previous 

observation that, in addition to CTCF, other TFs may also play an important role in the 

maintenance of CTCF-CTCF loops.

In order to experimentally test the potential role of this insulator region in tumorigenesis, we 

designed CRISPR-Cas9 guide RNAs to target SNV4 and SNV8 (Figure 3). We chose to edit 

the nucleotides at SNV4 and SNV8 positions because they constitute two of the most 

frequently mutated hotspots in this insulator and may represent two different mechanisms 

for insulator disruption by altering the binding of CTCF (SNV4) or ELK4 (SNV8). We 

lentivirally transduced A375 cells with 2 different guide RNAs targeting each hotspot 

(SNV4 and SNV8) and 2 different non-targeting (control) guide RNAs. A high rate of 

editing was achieved for both SNV4 and SNV8 regions (Figure 3B) and deep sequencing of 
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the locus confirmed indels of varying lengths with the expected bias towards deletions 

(Figure 3C and Figure S13). We compared proliferation over a 2-week period of SNV4- and 

SNV8-edited cells to control cells transduced with non-targeting guide RNAs. We found 

increased proliferation in the SNV-edited melanoma cells — 139.8% +/− 7.3 for SNV4 and 

149.8% +/− 1.7 for SNV8 — when compared to cells transduced with non-targeting guides 

(Figure 3D), suggesting that mutations in these regions confer a growth advantage in 

melanoma.

DISCUSSION

This study presents a comprehensive analysis of CTCF/cohesin insulator mutations from 

WGS of 1,962 patients in 21 cancer types. We find that background mutational processes in 

different cancers lead to differential enrichment of mutations predicted to disrupt CTCF 

motifs; the majority of which are likely to be passengers. Using the predicted functional 

impact of mutations, their frequency and the patterns of CTCF motif-disruption, we 

developed a computational approach (CNCDriver) to identify insulator regions under 

positive selection. Benchmarking the statistical framework of CNCDriver on other types of 

known cancer drivers (coding genes and promoters) demonstrates its validity. We identify 21 

candidate insulators showing signals of positive selection. Mutations in one of these 21 

candidates are associated with differential gene expression that may play a role in 

tumorigenesis by interfering with the TGF-β pathway in melanoma and other cancers, 

especially gastrointestinal. Our hypothesis is supported by functional validation using 

CRISPR-Cas9 which shows that two of the most frequent mutations increase cell growth by 

1.4- and 1.5-fold in melanoma cells. While our study clearly shows the importance of this 

region as cancer driver, high-throughput genome editing approaches such as the one used 

recently to assay the SNVs in 13 exons of BRCA1, can be used to elucidate the role of all 

individual mutations in tumorigenesis (Findlay et al., 2018). Thus, our study reveals several 

CTCF insulators as putative drivers and opens the door to multiple experimental validation 

and mechanistic studies of the tumorigenic impact of mutations in these elements.

With increasing numbers of cancer whole genomes sequenced and improved maps of cell-

type specific annotations of insulator elements, we expect additional insulator drivers will be 

discovered in the future. The latest developments in genomic technology, such as the HiChIP 

assays, promise to reveal high-resolution maps of insulator regions (Mumbach et al., 2016). 

We expect that as the resolution of functional genomics assays improves, the statistical 

power to identify signals of positive selection in non-coding regions will also improve 

(Kumar and Gerstein, 2017). The framework developed in this study will guide the 

integration of genomic structure maps generated by the 4D Nucleome project with large-

scale cancer WGS (Dekker et al., 2017).

Our study also highlights the challenge of associating CTCF-CTCF loop disruption to the 

affected genes in the absence of large sample sizes with matched WGS and RNA-seq data. 

In order to have sufficient statistical power to detect significant associations between gene 

expression and mutations, we estimate that we would need at least ~300 samples with 

matched RNA-seq data for the other cancer types in this study (Methods). Finally, while we 

analyzed the impact of SNVs in insulators, CTCF-CTCF loops may also be perturbed by 
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DNA methylation, small insertions or deletions, and structural variations at insulators 

(Flavahan et al., 2015; Hnisz et al., 2016). Overall, identification of significantly disrupted 

CTCF/cohesin insulators complements the identification of other types of non-coding cancer 

drivers (promoters, enhancers and ncRNAs) and enables a fuller understanding of the role of 

non-coding alterations in tumorigenesis.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Ekta Khurana (ekk2003@med.cornell.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human melanoma cells (A375) were used for CTCF ChIP-seq, chromosome conformation 

capture (3C) and CRISPR-Cas9 functional validation assays. Human leukemia cells (K562) 

were used as control in chromosome conformation capture (3C) assay. HEK293FT cells 

were transfected for lentiviral vector production.

METHOD DETAILS

Data used

Somatic single nucleotide variants (SNVs) from WGS data: We collected somatic SNVs 

from 1,962 whole-genome sequencing (WGS) samples across 21 cancer types (Table S1). 

1,332 samples are from Alexandrov et al. (Alexandrov et al., 2013), Fredriksson et al. 
(Fredriksson et al., 2014), and Perera et al. (Perera et al., 2016). These include hepatocellular 

carcinoma (liver), pancreatic adenocarcinoma (pancreatic), medulloblastoma, pilocytic 

astrocytoma, renal cell cancer (RECA-EU), ovarian serous cystadenocarcinoma (ovarian), 

colon adenocarcinoma (colon), skin cutaneous melanoma (melanoma), malignant lymphoma 

(MALY-DE), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), breast 

invasive carcinoma (BRCA), brain low grade giloma (LGG), glioblastoma multiform 

(GBM), head and neck squamous cell carcinoma (HNSC), thyroid carcinoma (THCA), 

uterine corpus endometrial carcinoma (UCEC), and bladder urothelial carcinoma (BLCA). 

119 esophageal adenocarcinoma samples (ESAD-UK), 150 chronic lymphocytic leukemia 

samples (CLLE-ES) and 124 prostate adenocarcinoma samples (PRAD-CA) were obtained 

from ICGC (International Cancer Genome Consortium) data portal (release 21). 183 

melanoma samples (MELA-AU) were obtained from ICGC data portal (release 25). 16 of 

183 melanoma patients have both primary and non-primary (9 metastasis and 7 relapse) 

WGS specimens. We used metastasis and relapse specimens for these 16 patients in 

melanoma. 57 prostate adenocarcinoma samples are from Baca et al. (Baca et al., 2013) and 

seven are from Berger et al (Berger et al., 2011).

A set of 226 ultra-high signal artifact regions (https://sites.google.com/site/anshulkundaje/

projects/blacklists) was obtained from the ENCODE project (Dunham et al., 2012). The 

annotated regions are based on known sequence repeats and are characteristic of high 

variance in read mappability. We removed somatic mutations that overlapped with ultra-high 

signal artifact regions to avoid possible false mutation calls in the dataset.
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Constitutive CTCF/cohesin insulator annotations: We obtained all publicly available 

sources of cohesin ChIA-PET data (SMC1 ChIA-PET and RAD21 ChIA-PET) and CTCF 

ChIA-PET data to build the constitutive CTCF/cohesin insulator annotations across five cell 

lines (Jurkat, K562, GM12878, MCF-7 and HeLa) (Figure S1B). The SMC1 ChIA-PET data 

is available in Jurkat cell line from Hnisz et al. (Hnisz et al., 2016) and the RAD21 ChIA-

PET data are available in K562 and GM12878 cell lines from Heidari et al. (Heidari et al., 

2014). The data in SMC1 ChIA-PET of Jurkat and RAD21 ChIA-PET data of K562 and 

GM12878 were processed by Mango pipeline (Phanstiel et al., 2015) at FDR threshold of 

0.2. Only those anchors in the ChIA-PET loop that overlapped with corresponding cell type 

specific CTCF ChIP-seq peaks from ENCODE were kept as CTCF/cohesin insulators. The 

CTCF ChIA-PET data in K562 and MCF-7 cell line are obtained from ENCODE website 

and were processed by ChIA-PET v1 as described in Li et al. (Li et al., 2012a). The CTCF 

ChIA-PET data in GM12878 and HeLa cell line are obtained from Tang et al. (Tang et al., 

2015) and were processed by ChIA-PET v2 as described in Tang et al. (Tang et al., 2015). 

Only those anchors of the ChIA-PET loops that co-occupied corresponding cell-type 

specific RAD21 and SMC3 ChIP-seq peaks from ENCODE were kept as CTCF/cohesin 

insulators. These CTCF/cohesin sites (loop anchors) have distinct functional role from the 

peaks identified by CTCF ChIP-seq or RAD21 and SMC3 ChIP-seq alone (non-loop CTCF 

or cohesin sites) and are highly likely to function as insulators. We intersected CTCF/

cohesin insulators that are either from cohesin ChIA-PET or CTCF ChIA-PET in at least 5 

out of 7 ChIA-PET data as constitutive CTCF/cohesin insulator annotations for the analysis 

in this study. There are 10,654 constitutive CTCF/cohesin insulators and their median length 

is around 2kb (Figure S1A). This length is comparable to the length of promoters (2.5kb) 

used by us and others for the studies of cancer drivers (Hornshøj et al., 2018; Mularoni et al., 

2016; Weinhold et al., 2014).

Motifs of CTCF and other TFs and CTCF motif orientations: We used motifs for 549 

TFs from the ENCODE project (http://compbio.mit.edu/encode-motifs/motifs.txt, Table 

S14) (Dunham et al., 2012), including TRANSFAC and JASPAR motifs, located within 

potentially functional regions such as DHSs or ChIP-Seq peaks. The motif models for CTCF 

are derived from human ChIP-seq data using curated motif models from literature and de 
novo motif models discovered from five motif discovery tools (AlignACE, MDscan, MEME, 

Trawler and Weeder) in the ENCODE project (Kheradpour and Kellis, 2014). In particular, 

for CTCF, we analyzed 12 CTCF motif models. We do not use RAD21 and SMC3 motif 

models from the ENCODE project since RAD21 and SMC3 are architectural proteins and 

they do not bind DNA directly.

CTCF binds DNA asymmetrically as revealed by previous study (Phillips and Corces, 2009; 

Rhee and Pugh, 2011). We first define the orientation of CTCF motif (MA0139.1) from the 

JASPAR 2018 CORE vertebrate (MA0139.1) as CTCF forward direction and the reverse-

complement model as CTCF reverse direction (Figure S2A). We used FIMO to identify the 

location and orientation of CTCF motif at P-value threshold of 10−6. The identified locations 

of CTCF motif are further overlapped with locations of CTCF/cohesin insulators in 7 ChIA-

PET datasets.

Liu et al. Page 11

Cell Syst. Author manuscript; available in PMC 2020 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://compbio.mit.edu/encode-motifs/motifs.txt


Annotations of coding sequence (CDS), ncRNAs, promoters and enhancers: The 

GENCODE v19 annotations were used to define the locations of protein-coding sequence 

(CDS) and lincRNAs (long intergenic non-coding RNAs). Promoters were defined as 2.5 kb 

upstream from the transcription starting site (TSS). Our enhancer set is obtained by the 

union of TF binding peaks and DHSs from ENCODE, and Segway/ChromHMM-predicted 

enhancers, which were defined from histone marks (H3K4me1, H3K4me2 and H3K27ac) 

(Fu et al., 2014). All enhancers are at least 1kb away from the TSS of the nearest gene. To 

associate potential regulatory targets of each enhancer, we consider all candidates genes 

within 1 Mb of an enhancer (Fullwood et al., 2009; Yip et al., 2012). Then, correlations 

between enhancer activity/inactivity signals and gene expression across multiple tissue types 

are computed using DNA methylation, H3K4me1, H3K27ac and RNA-seq data from the 

Roadmap Epigenomics project (Fu et al., 2014; Kundaje et al., 2015). H3K4me1 and 

H3K27ac data were considered as activity signals, and DNA methylation as inactivity signal. 

Significant correlation between the enhancer signal and the target gene expression was used 

to call enhancer-target gene pairs (see Fu et al. (Fu et al., 2014) for more details).

Replication timing data: We obtained wavelet-smoothed Repli-seq track data for 7 cell 

lines (HepG2, MCF-7, SK-N-SH, GM12878, BJ, K562 and IMR-90) from the University of 

Washington ENCODE group (http://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeUwRepliSeq). We used HepG2 to represent replication timing in 

liver, MCF-7 for breast, GM12878 for malignant lymphoma, K562 for CLL, BJ for 

melanoma, IMR-90 for lung, SK-N-SH for glioblastoma, medulloblastoma and pilocytic 

astrocytoma. For pancreatic, kidney, ovarian, colon, esophageal, and prostate, we used the 

average replication timing signal from HepG2, MCF-7, GM12878, K562, BJ, IMR-90 and 

SK-N-SH. The replication timing tracks were further divided into 1Mb bins for each cell 

line. For a given functional element, we assigned a replication timing value corresponding to 

its overlapping 1Mb bin. If it overlapped with two bins, we took the average.

Copy number alteration data: For TCGA data, the copy number was obtained using 

TCGA SNP array data from Broad GDAC Firehose website (https://

gdac.broadinstitute.org/). CNVKit (CNVKit version 0.9.5) was used with default parameters 

to get integer copy number segmentations. We used ASCAT (ASCAT version 2.4.2 ) with 

default parameters to identify copy number alterations, ploidy and purity for the WGS 

samples in the ICGC MELA-AU project.

YY1 and ELK4 ChIP-seq data: The YY1 ChIP-seq track shown in the figure (Figure 

S12D) is from melanoma MELAME-3M cells (Li et al., 2012b). YY1 binds the same region 

in MELAME-3M, K562, SKNSH and GM12878 cells (chr19:41,769,535-41,770,722). 

ELK4 ChIP-seq data shown in the figure (Figure S12D) is from HeLa-S3 cells from 

ENCODE, the same binding region is found in HEK293 cells.

Functional validation assays

CTCF ChIP-seq on A375 cells: A375 cell line was obtained from Dr. Joan Massagué 

(Memorial Sloan Kettering Cancer Center) and cultured in DMEM supplemented with L-

glutamine (2mmol/L), penicillin (100U/ml), streptomycin (100ug/ml) and 10% heat-
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inactivated FBS. Cell line was cultured at 37°C with 5% CO2 and has been tested negative 

for mycoplasma (MycoAlert PLUS Mycoplasma Detection kit; Lonza). ChIP-Seq was 

performed as previously described (Chi et al., 2010). In brief, 15 million A375 cells were 

harvested and cross-linked with 1% paraformaldehyde for 10min at room temperature. 

Cross-linking was quenched with a final concentration of 0.2M glycine for 5min. Cells were 

washed with PBS and lysed with 0.1% SDS, 1% Triton X-100, 2mM EDTA, 150mM NaCl 

and 20mM Tris-HCl, pH 8.1. Chromatin was sheared to around 150bp to 600bp using 

Covaris E220 machine and incubated with 6ul CTCF antibody (Cell Signaling Technology; 

#3418) overnight at 4°C with rotation. 20ul Pierce ChIP-grade protein A/G magnetic beads 

was used for immunoprecipitation. The immunoprecipitated complex was washed with 

lithium wash buffer (0.7% sodium deoxycholate, 1% NP-40, 1mM EDTA, 500mM LiCl, 

50mM HEPES-KOH, pH 7.6), reverse cross-linked and purified with Qiagen minielute 

column. ChIP library was constructed using KAPA HTP library prep kit and sequenced on 

Illumina 2500 platform for single read 50bp.

Chromosome conformation capture (3C) assays: Chromosome conformation capture (3C) 

was performed as described previously with some modifications (Dekker, 2006). Briefly, 

A375 cells and K562 cells were crosslinked in 1% formaldehyde for 10 minutes at room 

temperature. Cells were lysed for 20 minutes in lysis buffer (10mM Tris-HCl, 10mM NaCl, 

0.2% Igepal CA630) on ice, resuspended in 0.5% SDS, quenched with Triton X-100 and the 

remaining nuclei were resuspended in the appropriate restriction enzyme buffer. Cells were 

incubated overnight at 37C and 700rpm rotation with NlaIII restriction enzyme (NEB 

R0125) and subsequently ligated for 4 hours at room temperature with T4 DNA ligase (NEB 

M0202). Crosslinks were reversed and DNA was purified using 

Phenol:Chloroform:Isoamylalcohol (25:24:1) purification. Human genomic DNA was 

digested, ligated and purified and used as a negative control. Quantification of the data was 

performed by qPCR using SybrGreen Supermix (Biorad 172-5270).

The primer sequences for PCR are:

3C region A CTGCTTCTCTGTATGTTACCTCATTCGATTGTCC

3C region B CCTTTGTCTGAGTAGAGATAGTGTGTGGCTTTTG

3C region C CTCCTTTATTCTGAAGGGAGTGGGCATCAAG

3C region A’ CAAGTTAGTTCCTGGTCACCTTAGATTGATGGG

To further confirm that the 3C product indeed consisted of the assessed regions, the PCR 

products were run on an agarose gel to assess the predicted amplicon size, then gel-extracted 

and Sanger sequenced.

CRISPR guide RNA design, cloning and lentivirus production: To design the guides 

targeting the 3kb insulator region on chr19 (41,767,305-41,771,623) we selected regions that 

were most frequently mutated in human melanoma samples. We focused on two regions 

(termed SNV4 and SNV8). We first performed Sanger sequencing in the A375 human 

melanoma cell line (ATCC CRL-1619) to ensure that no mutation exists in the 3kb insulator 
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region. We identified all possible Cas9-targetable sites on both strands in SNV4 and SNV8 

and eliminated single-guide RNAs (sgRNAs) with predicted off-target binding (Benchling) 

which yielded 4 sgRNAs total (2 for SNV4 and 2 for SNV8). The sgRNA sequences were 

synthesized as single-stranded oligonucleotides (Integrated DNA Technologies).

SNV4-1 GCCGCCACTGGAGGGCGTCC

SNV4-2 AGCCGCCACTGGAGGGCGTC

SNV8-1 CTGGTGAATTCATCTCTTTC

SNV8-2 ATCTCTTTCCGGTTTCTTAA

NT1 CCAATACGGACCGGATTGCT

NT2 GTAGCGCACGATATTAGTTC

To clone the sgRNA guide sequences, the lentiCRISPRv2 plasmid (Addgene #52961) was 

digested and dephosphorylated with FastDigest BsmBI (Thermo) and FastAP (Thermo) at 

37 °C for 45 minutes (Sanjana et al., 2014). The sgRNA guide sequence oligonucletodies 

were phosphorylated using polynucelotide kinase (New England Biolabs) at 37 °C for 30 

minutes and then annealed by heating to 95 °C for 5 minutes and cooling to 25 °C at a rate 

of 1 °C/5 seconds. We used T7 ligase (Enzymatics) to ligate annealed oligos into purified 

digested vectors at 22 °C for 10 minutes. Cloned plasmids were transformed into Stbl3 

(Thermo) and purified using a QIA-prep spin mini-prep kit (Qiagen).

To make lentivirus, plasmids were co-transfected with packaging plasmids pMD2.G and 

psPAX2 (Addgene #12259 and #12260). For each construct, a T-75 flask of 95% confluent 

HEK293FT cells (Thermo) in 5 ml of D10 media and transfected in OptiMEM (Thermo) 

using 8.3 ug of Cas9 construct, 4.6 ug of pMD2.G, and 6.6 ug of psPAX2, and 45.6 ul of 

PEI. D10 media consists of DMEM (Caisson Labs) supplemented with 10% FBS (Atlas 

Biologicals). After 4-6 hours 5 ml of D10 media with 1% bovine serum albumin (Sigma) 

was added to the flask to improve virus stability. After 48 hours, viral supernatant was 

harvested and centrifuged at 3000 rpm at 4 °C for 10 min to get rid of cell debris.

Cell culture, viral transduction and proliferation assay: For each viral construct, 1×104 

A375 cells (ATCC CRL-1619) were transduced during plating with 200 ul of viral 

supernatant in each well of a 24 well plate in 1 ml of D10 media. Each construct was 

transduced in duplicate. Cells without virus were also plated in duplicate in a 24 well plate 

with 1 ml of D10 media as controls for puromycin selection.

At 24 hours post-transduction media was changed to D10 with 1 ug/ml puromycin (Sigma) 

for all wells. At 48 hours cells were fully selected, as determined by a non-transduced 

control well. At 2 weeks post-transduction, cells were plated in 96 well clear bottom plates 

(Corning) at 2,000 cells/well to measure cell viability using CellTiter Glo (Promega). 

Briefly, cells were equilibrated to room temperature for 30 minutes. Then, culture media was 

aspirated and 100 ul of CellTiter Glo reagent diluted 1:4 in PBS phosphate-buffered saline 

(Caisson Labs) was added to each well. Plates were then placed on orbital shaker for 2 
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minutes and then incubated for 10 minutes at room temperature. Luminescence was 

measured on an Infinite F200 Pro plate reader (Tecan) using a 1s integration time.

Deep sequencing to determine indel spectrum: To extract genomic DNA, we used 

QuickExtract DNA Extraction Solution (Lucigen), following the manufacturer’s protocol. 

To prepare samples for Illumina sequencing, a two-step PCR was performed to amplify the 

region of interest. For each sample, we performed 2 seperate 100 ul reactions (25 cycles 

each) with 250 ng of input gDNA using PfuX7 polymerase (Nørholm, 2010) and the 

resulting products were pooled.

The primers for the first PCR are:

F1_SNV4 TCTTGTGGAAAGGACGAAACACCGAAGACCAGCCCACCGTGTC

R1_SNV4 CCGACTCGGTGCCACTTTTTCAATGCTTTGGGTAAGGCACCCC

F1_SNV8 TCTTGTGGAAAGGACGAAACACCGATGAGCCATCGCTACCAGCTT

R1_SNV8 CCGACTCGGTGCCACTTTTTCAACTAGCCAATCAGAGCGCCGT

The second PCR was performed to attach Illumina adaptors and to barcode individual 

samples. The PCR was done in a 50 ul reaction with 5 ul of PCR1 product using Q5 

polymerase (New England Biolabs). Amplification was carried out with 10 cycles.

The primers for the second PCR are:

F2 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CT (1-9bp stagger sequence)(8bp barcode)TCTTGTGGAAAGGACGAAACACCG

R2 CAAGCAGAAGACGGCATACGAGAT (8bp 

barcode)GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT(1-9bp 

stagger)CCGACTCGGTGCCACTTTTTCAA

PCR2 products were pooled in an equimolar ratio, purified, gel extracted, and sequenced 

using a MiSeq 300 cycle v2 kit (Illumina). Before determining the length of indel mutations, 

we first filtered out primer-dimers or unrelated amplicons by removing any reads that did not 

contain the designed PCR1 primers and at least 5 bases beyond the 3’ end of each primer 

matching the intended amplicon. Reads that met this criteria were then used to measure the 

distance between primer pairs. This distance between primer pairs in cells transduced with 

sgRNAs targeting SNV4 or SNV8 regions was compared to the same distance in cells 

transduced with a nontargeting control sgRNA.

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess the landscape of mutations at CTCF/cohesin insulators

Motif-disrupting vs. preserving mutations: To define whether a SNV disrupts a TF motif, 

we compute the statistical significance of the position weight matrix (PWM) score for the 
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sequence change (alternative relative to reference). When the alternative sequence decreases 

the PWM score in the TF motif, we define it as a motif-disruption using a P-value threshold 

of 4×10−8. This approach is the same as is used in FunSeq2 (Fu et al., 2014).

Enrichment/Depletion of TF motif-disruption: To assess the enrichment of CTCF and 

other TF motif-disruption events within a specific cancer type, we performed a binomial test 

to compare the fraction of disrupted TF motifs to the corresponding proportion of the TF 

motifs abundance.

Deciphering the signatures of mutational processes operative in TF motif 
disruption: To decipher the signatures of mutational processes operative in the TF binding 

site regions, we used the FunSeq2 annotation of the SNVs that disrupt TF motifs and 

computed their normalized tri-nucleotide distributions, which determined the motif-

disruption signature for each TF for each cancer type (frequency of 96 mutation types 

equivalent to the six substitution changes and their immediate 5’ and 3’ sequence context). 

To assess the similarity between motif-disruption signatures and the COSMIC signatures of 

mutational processes, we used a threshold of 70% cosine similarity, which is the same 

metric used for defining the mutational signatures by Alexandrov et al. (2013) (Alexandrov 

et al., 2013). We note that any previously described signature in liver cancer does not reach 

the 70% similarity to the CTCF motif-disrupting tri-nucleotide distribution. likely because 

liver cancer does not show prevalence of a single unique signature. In fact, liver cancers 

harbor five ubiquitous signatures (S1, S4, S5, S12, S16) with high mutation burden as has 

also been reported in Letouze et al. (Letouzé et al., 2017).

Estimation of observed and expected aggregated mutational rate for CTCF 
motif-disruption within insulators—In order to compute the rate of mutations 

predicted to cause CTCF motif-disruption within insulator regions, we considered the CTCF 

motif annotations from FunSeq2 within the flanking stretches of 2,500 nucleotides on both 

sides of the insulator mid-point. To exclude regions that could bias the mutation rate 

analyses, we filtered out any mutations annotated in coding sequences. The mutations that 

fall into CTCF binding sites were split into motif-disrupting or non-disrupting groups and 

overlapped with the insulator regions (5 kb windows). Then the 5kb windows across the 

genome were aligned to each other using their mid-points as reference. The aggregate 

mutation rate of every position within the insulator window was calculated as the total 

number of mutations at this position divided by the total number of nucleotides considered. 

In order to compute the expected CTCF motif-disruption mutation rate within insulators, we 

randomly introduced the same number of mutations as observed in CTCF motifs at each 

insulator window. The CTCF motif-disruption mutation rate of each randomly generated set 

of changes was computed as explained above and this procedure was repeated 100 times. 

Finally, the estimate of the expected rate of mutations predicted to cause CTCF motif-

disruption was computed as the mean random mutation rate of every position within the 

windows of insulator regions. This was done for 12 cancer types that have more than 500 

SNVs predicted to cause CTCF motif-disruption. The same steps were used for mutations 

that are not predicted to disrupt CTCF motifs.
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Details of CNCDriver

Identification of mutation clusters: The clustering of mutations has been suggested to 

indicate signal of positive selection in cancer (Rheinbay et al., 2017; Wagner et al., 2007). 

We perform “density-based spatial clustering of applications with noise (DBSCAN)” 

algorithm to exclude mutations that are not located within mutation clusters. We use 

DBSCAN since the mutation clusters identified are not restricted by fixed window size or 

fixed number of clusters. The DBSCAN algorithm needs two values of parameters “minPts” 

and “ε” to detect clusters. The minPts was chosen as 2 samples or 2% of sample size, 

depending on which number is larger in the cohort of each cancer type. We use ε value as 50 

bases by considering the length of the longest TF motif (20 bases) with 15 flanking bases in 

two directions.

Method framework for driver identification: To identify significantly mutated elements 

(CDS, promoters, enhancers, lincRNAs and CTCF insulators), we developed CNCDriver 

(Cornell Non-Coding Driver), which combines mutational recurrence and functional impact 

of variants to discern signals of positive selection.

First, CNCDriver defines a positional CNCDriverpos score for each mutated position (i) by 

multiplication of positional recurrence (Wi) and functional impact score (FSi).

CNCDriverpos = Wi × FSi

The positional recurrence of a variant is defined as the number of mutated samples at the 

same position divided by the total number of samples in the cohort. For each variant, 

CNCDriver uses FunSeq2 to integrate functional annotations and assign a functional impact 

score (Fu et al., 2014; Khurana et al., 2013). The weighted functional impact-scoring 

scheme from FunSeq2 incorporates features such as the presence of variants in annotated 

regions (e.g. DHSs, histone modification marks, sensitive, ultra-sensitive, conserved, and 

highly occupied by transcription factor (HOT) regions) and the predicted impact of variants 

on TF binding. While for promoters and enhancers, a variant’s impact on TF binding is 

assessed for all TF motifs (549 TFs from ENCODE), only motifs for CTCF were used for 

variants in CTCF insulators. For all variants within an element, a CNCDriver score (Sj) is 

defined by summation of all positional CNCDriverpos scores within the element:

S j = ∑i = 1
n Wi × FSi

where n is the number of mutated positions within an element.

The method compares the observed CNCDriver score of an element to the null model and a 

P value is computed to evaluate the significance of the observed CNCDriver score. To build 

the null background model, a simulated CNCDriver score (Sjk) is computed by sampling n 
mutations from other mutations in the same element type and with similar properties, such 

as replication timing. The probability of drawing a mutation is determined by its tri-
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nucleotide sequence probability across all samples in a given cancer type. The sampling 

process is repeated N times (N = 105).

For CDS, promoters, enhancers and lincRNAs, replication timing threshold is chosen as the 

nearest 20% range between background scores and CNCDriverpos scores in the test element, 

so that mutations in a test element are compared with other mutations in a similar stage of 

the cell cycle in the Repli-seq profile (Hansen et al., 2010). For CTCF/cohesin insulators, we 

found the correlation (R-squared value of Pearson correlation) between CNCDriverpos score 

per Mb and replication timing varies substantially across cancer types. Therefore, in order to 

choose the best replication timing threshold for the background model of CTCF/cohesin 

insulators in each individual cancer type, we used the relationship between optimal threshold 

and R-squared value in CDS driver prediction as reference. First, when COSMIC cancer 

gene list was used as the gold standard for benchmarking, there is an optimal replication 

timing threshold in each cancer type that maximized the AUROC (area under the receiver 

operator characteristic curve) in the CDS driver prediction. Thus, we can learn the 

relationship between R-squared value and optimal replication timing threshold from CDS 

driver benchmarking. This relationship is then used to decide the replication timing 

threshold for significantly mutated insulator prediction.

For CTCF insulators, we also keep the same ratio of mutations predicted to disrupt CTCF 

motif or not during null background model generation.

For all elements, a pseudo-count is added to the numerator and the denominator. The P value 

of the tested element is determined by

P =
1 + count(S jk ≥ S j)

N + 1

where N is the number of sampling iterations, Sjk is a simulated CNCDriver score in each 

sampling iteration and Sj is the observed CNCDriver score of an element. We use the 

Benjamini and Hochberg method to correct for multiple hypothesis testing (Q value ≤ 0.1).

Filter for AID somatic hyper-mutation in CNCDriver: APOBEC and AID are cytidine 

deaminases, which convert cytosine to uracil, resulting in C -> T/G mutations. The 

APOBEC motif consists of three nucleotides and has been associated with characterized 

mutational signatures (Alexandrov et al., 2013). AID is expressed in several types of B cell 

lymphomas (Kotani et al., 2007), but in contrast to APOBEC, the AID motif consists of 4 

nucleotides, [(A∣T)(A∣G)C(T∣C)] (Rogozin and Diaz, 2004) and has not been associated 

with a characterized signature in Alexandrov et al. (2013). Alexandrov et al. noted that 

signature 9, which is observed in lymphoma, does not exhibit the mutational pattern of AID 

likely because the AID signal is obscured by mutations caused by the error-prone 

polymerase η. In order to identify elements whose mutations are primarily caused by AID 

somatic hypermutation, we use the following formula from Roberts et al. (Roberts et al., 

2013) to calculate enrichment of AID signature mutations in candidate elements,

Liu et al. Page 18

Cell Syst. Author manuscript; available in PMC 2020 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AID Enrichment =
mutationsmoti f × contextc
mutationsC × contextmoti f

where mutationsmotif is the number of mutations in the AID motif, mutationsC is the number 

of mutated cytosines, contextC is the total number of cytosines, and contextmotif is the total 

number of occurrences of the AID motif. We use the Fisher’s exact test to determine 

significance. In CNCDriver, this filter allows the user to identify whether the signals in 

lymphoma are predominantly due to AID somatic hypermutations.

Estimation of intra-tumor heterogeneity—We collected tumor purity estimates (p) 

and absolute somatic copy numbers (cn) for TCGA samples which are derived from the 

consensus of four methods (ABSOLUTE, ESTIMATE, LUMP and IHC) from Aran et al. 

(Aran et al., 2015). Following the method previously described (Landau et al., 2013; 

McGranahan et al., 2015), we computed the expected VAFexp given a CCFi over the entire 

range of CCF (cancer cell fraction) assuming a uniform prior, with CCFi ∈ [0.01, 1].

VAFexp(CCFi) =
p × CCFi

2(1 − p) + p × cn

For a given mutation with alternative read counts (a), reference read counts (r) and total read 

depth (r + a), the probability of a given CCFi can be estimated from binomial distribution,

VAFobs = a
r + a

P(CCFi) = 1
C × binomial(VAFobs, VAFexp(CCFi))

Then, for a given mutation with VAFobs, we computed the distribution of posterior 

probability P(CCFi) over 100 grid points of CCFi uniformly spanned between 0.01 to 1. The 

distribution over CCF was normalized by dividing them by their sum, which is the constant 

(C). Mutations were classified as clonal if the maximum probability of CCFi is in the top 

quartile of cancer cell fraction (max(P(CCFi))≥0.75); otherwise mutations were classified as 

subclonal.

Analysis of interactions between insulator mutations and CTCF Zn finger 
binding domains—Hashimoto et al. indicated CTCF Zn finger domains 3-7 (ZF3-ZF7) 

are critical for its binding to 15 bp core DNA motif in the CTCF-DNA binding co-crystal 

structure (Hashimoto et al., 2017). In addition to the core sequence, Yin et al. showed ~15% 

sequence in CTCF binding sites is recognized by Zn finger domains 8-11 (ZF8-ZF11) from 

the crystal structure, although they have 5 fold weaker binding affinity than ZF3-ZF7 (Yin et 

al., 2017). CTCF ZF8 servers as a spacer element with a variable length between ZF3-ZF7 

and ZF9-ZF11. Schmidt et al. propose a 9 bp CTCF M2 motif to represent the consensus 
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sequence that binds ZF9-ZF11 upstream of core motif (Schmidt et al., 2012). In this study, 

293 out of 462 mutations (63%) in the 21 insulators identified to be significantly mutated 

locate within CTCF ChIP-seq peaks. 23 out of these 293 mutations (8%) occur in the core 

motif that binds ZF3-ZF7. Although we did not find CTCF M2 motif matched by FIMO (P 
value: 10−4) upstream of the core motif, 12 mutations are within the window that would bind 

other domains (ZF9-ZF11) (Supplementary Table S15).

Additionally, our major insulator candidate in melanoma has three mutated positions within 

the CTCF motif (SNV4, chr19:41,768,332 mutated in two patients; SNV10, 

chr19:41,768,799 in one patient and SNV11, chr19:41,769,800 in two patients, Figure 

S12E). SNV4 occurs at position 6 in the 19 bp CTCF motif (reverse orientation), overlaps 

with CTCF ChIP-seq peak in human melanoma A375 cells (Figure 2A), is predicted to 

interact with ZF4 in the CTCF protein structure and increases cell growth by 1.4 fold in 

melanoma cells by CRISPR experiment (Figure 3D).

Assignment of possible new CTCF-CTCF chromatin loops—Prior studies have 

shown that the majority (~80%) of the CTCF motifs within the two anchors of CTCF-CTCF 

chromatin loops are in the convergent orientation (forward-reverse) (Hnisz et al., 2016; Ji et 

al., 2016; Tang et al., 2015). Additionally, in the set of constitutive CTCF-CTCF chromatin 

loops we built from publicly available ChIA-PET datasets (Heidari et al., 2014; Hnisz et al., 

2016; Li et al., 2012a; Tang et al., 2015), 75% are within the range of 360KB. We 

determined the number of potential rewiring events by requiring that new loops: 1) contain 

convergent CTCF motifs at anchors within 360 kb of each other, and (2) if the predicted 

insulator driver is located within a TAD, the predicted new loops will also be within the 

same TAD. When the predicted driver is located at a TAD boundary, we do not predict loop-

rewiring events due to the possibility of formation of new TADs. Most TADs are conserved 

across cell-types, and we used the hESC TADs from Dixon et al (Dixon et al., 2012).

Gene expression analysis for significantly mutated insulators—We evaluated the 

association between the presence of somatic mutations at CTCF insulators and mRNA 

expression of genes within the potential new CTCF-CTCF loops. There are 76 genes that 

may be impacted by the change of loops associated with 21 insulator candidates predicted 

by CNCDriver. We used matched RNA sequencing raw counts and copy number data in 

ICGC data release 24 (https://dcc.icgc.org/releases/release_24) for liver, pancreatic, renal, 

CLL and malignant lymphoma. We used matched RNA sequencing raw counts and copy 

number data from TCGA (Chang et al., 2013) for LUAD, LUSC, BRCA, LGG, GBM, 

HNSC, THCA and UCEC. Because matched RNA-seq data were not available for 

medulloblastoma, pilocytic astrocytoma and ESAD, these three cancer types were not 

included in the mRNA expression analysis. For each cancer type, mRNA raw counts were 

normalized by trimmed mean of M-values (TMM) using the edgeR package (Robinson et 

al., 2010). In pan-cancer analysis, the mRNA expression level of a given gene and cancer 

type was first transformed into Z score if at least 25% tumor samples contained non-zero 

expression value. Then, the mRNA expression (Z score scale) from each cancer was 

summed up as the gene expression in pan-cancer. The Wilcoxon rank-sum test was used to 

test the significance of the differential gene expression between tumor samples with 
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insulator mutations vs. those without. For gene expression analysis in pan-cancer, the Z 

score of a given gene in each group was summed across available cancer types followed by 

the Wilcoxon rank-sum test. Multiple hypothesis correction was done using the Benjamini-

Hochberg method.

We have also compared the expression of genes in tumor samples with insulator mutations 

versus normal samples, though we note that in melanoma, there is only one normal sample 

with RNA-seq data available. There are only 12 cancer types in our study with RNA-seq 

data from normal samples. Furthermore, only 5 out of 12 cancer types with RNA-seq data 

from normal samples have at least one insulator candidate. Nevertheless, we find that the 

genes (FOXN4 and MYO1H) within the loops of insulator candidate in breast cancer 

(Supplementary Figure S11G) are enriched in the set of differentially expressed genes 

between tumor and normal samples (P value: 0.04, Fisher’s exact test).

Gene expression sample size estimation—We were able to detect significant 

difference in gene expression when there were 12 samples with mutations vs. 68 samples 

without mutations for ~2-fold change (CYP2S1) and ~3-fold change (TGFB1) in melanoma. 

While melanoma has mutation frequency of 16% or more in the candidate insulator drivers, 

the mutation frequency (2% to 4%) of candidate insulator drivers in other cancer types is 

lower. Thus, given a mutation frequency is 3% and assuming a minimum number of mutated 

samples needed with matched WGS and RNA-seq data is 10, we will likely need ~300 

samples with matched RNA-seq and WGS data to detect meaningful gene expression 

association in other cancer types with similar fold differences as observed for CYP2S1 and 

TGFB1.

DATA AND SOFTWARE AVAILABILITY

Software—The code of CNCDriver is freely available online at https://github.com/

khuranalab/CNCDriver.

Data Resources—The accession number for the A375 CTCF ChIP-seq data described in 

this study is GEO: GSE128346.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Enrichment of CTCF motif-disrupting mutations is associated with neutral 

signatures

• Novel computational method predicts 21 insulator drivers

• A predicted driver on chr19 is associated with TGFB1 up-regulation

• CTCF ChIP-seq, 3C and CRISPR-Cas9 support the computational predictions
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Figure 1. CNCDriver method overview and results in melanoma
(A) CNCDriver method. CNCDriver score (Sj) combines predicted functional impact scores 

(FSi) and recurrence (Wi) at each mutated position in insulator j. P-value for insulator j is 

estimated by comparing Sj with null distribution of (Sjk). Simulated CNCDriver scores (Sjk) 

are obtained by sampling n mutations from other insulators accounting for mutational 

covariates. (B) Circos plot shows the fraction of mutated samples per insulator (light grey 

bars) in melanoma. Inset: (Top) Zoom-in shows the fraction of mutated samples for chr19 

and the two candidate insulator drivers identified by CNCDriver in light blue bars; (Bottom): 

QQ-plot shows the P-value distribution and the two candidate insulator drivers in blue. (C) 

Predicted loop rewiring (red: original loop with significantly mutated anchor, grey: alternate 

constitutive loop, and dotted: predicted new loop) at the site of a candidate driver on chr19. 

Dark grey bars represent topological associated domains (TADs). Zoom-in needle plot 

shows the number of mutated samples at each position in the candidate driver. (D) 

Differential gene expression of TGFB1 and CYP2S1 between tumor samples with hotspot 

mutations (MUT) (n = 11) and those without mutations (WT) (n = 69) at candidate insulator 

shown in (C). See STAR Methods for CNCDriver method details. See also Figure S1-S12 

and Table 1, S1 to S15.
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Figure 2. Validation of loop conformation around TGFB1
(A) Top: Loop conformation around the TGFB1 associated insulator. Constitutive loop with 

the significantly mutated insulator (red), another constitutive loop (grey), and a negative 

control loop in chromosome conformation capture (3C) assays (light blue) are shown. CTCF 

motifs located at the two loop anchors are most likely to have forward-reverse orientation 

(faced arrows in black and white color). Bottom: CTCF ChIP–seq validation in A375 

melanoma cells. The zoom-in shows the corresponding CTCF peaks at loop anchors A, B 

and C. (B) 3C assays confirm the existence of constitutive CTCF-CTCF loops between two 

pairs of CTCF anchors that are 60kb and 105 kb apart (red: loop A-B and grey: loop A-C) in 

A375 melanoma cells. To compensate for relative interaction efficiency based on linear 

distance, looping of anchor A with a random region upstream that was in closer linear 

distance than the downstream CTCF anchors (40kb), was also interrogated (light blue: loop 

A-B’) as a negative control loop. K562 leukemia cells were used as a positive control and 

genomic DNA that was purified, digested and ligated was used as a negative control. 

Relative enrichment of all samples was normalized over intra-fragment PCR. Data are 

represented as mean ± SD.

See also Figure S12.
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Figure 3. Functional validation of mutations in the TGFB1 associated insulator using CRISPR-
Cas9 guide RNAs.
(A) Guide RNA design in the chr19 insulator region B. Needle plot shows mutations 

observed in B and zooms in on the sequence surrounding two of the most recurrent 

mutations in the region (SNV4 and SNV8). SNV4 is present in a CTCF motif and SNV8 is 

present in an ELK4 motif. Guide RNAs were designed to target 4 different positions 

(SNV4-1, SNV4-2, SNV8-1 and SNV8-2) surrounding SNV4 and SNV8. The guide RNAs 

are cloned into a lentiviral vector and transduced into human melanoma A375 cells. Cell 

proliferation is compared over a 2-week period between SNV4- and SNV8-edited cells to 

control cells transduced with non-targeting (NT) guide RNAs used as negative control. Deep 

sequencing readout characterizes the length of mutations in the selected cells. (B) Editing 

efficiency of each CRISPR guide RNA targeting SNV4 and SNV8. Data are represented as 

mean ± SEM. (C) Indel length distribution of each guide RNA that targets insulator region 

B. (D) Cell growth increases 40-50% in cells transduced with SNV4 and SNV8 guides. Data 

are represented as mean ± SEM. Cell count measurements are normalized to cells 

transduced with NT guide RNAs.

See also Figure S13.
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Table 1.
CNCDriver identified 21 putative insulator drivers, Related to Figure 1B

Hepatocellular carcinoma (Liver), bladder urothelial carcinoma (BLCA), ovarian serous cystadenocarcinoma 

(Ovarian), uterine corpus endometrial carcinoma (UCEC), esophageal adenocarcinoma (ESAD), kidney 

cancer (Renal), colon adenocarcinoma (Colon), breast invasive carcinoma (BRCA), pancreatic 

adenocarcinoma (Pancreatic), and skin cutaneous melanoma (Melanoma).

Chromosome Insulator coordinate Cancer Type

1 chr1:212206519-212210488 PanCancer

3 chr3:101946566-101949238 Liver

3 chr3:193851483-193857734 PanCancer

6 chr6:27762081-27764969 BLCA, PanCancer

6 chr6:28804618-28807508 Ovarian

6 chr6:36644706-36649293 UCEC

6 chr6:52859174-52860790 PanCancer

6 chr6:73119843-73123728 ESAD

7 chr7:148659158-148661781 Renal

7 chr7:86865236-86868101 Ovarian

7 chr7:96808154-96810356 Colon, PanCancer

8 chr8:114448350-114451616 ESAD

12 chr12:109830993-109832475 BRCA

14 chr14:21076653-21082688 Pancreatic

16 chr16:22206566-22208078 BLCA, PanCancer

16 chr16:22307639-22310495 Ovarian, Renal, PanCancer

17 chr17:8021414-8027560 PanCancer

19 chr10:103602281-103604334 UCEC

19 chr19:12901682-12905667 Ovarian

19 chr19:17969769-17971490 Melanoma

19 chr19:41767305-41771623 Melanoma, PanCancer
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-CTCF Cell Signaling Technology #3418 (lot 1)

Critical Commercial Assays

KAPA HTP library prep kit Roche #07961901001

NlaIII restriction enzyme NEB R0125

T4 DNA ligase NEB M0202

Sybr Green Supermix Bio-Rad 172-5270

QIAprep Spin Miniprep Kit Qiagen Cat#27106

CellTiter-Glo
Luminescence Cell
Viability Assay

Promega Cat#G7571

QIAquick gel extraction Kit Qiagen Cat#28704

MiSeq Reagent Kits v2 Illumina Cat#MS-102-2001

Deposited Data

GENCODE v19 (Harrow et al., 2012) https://www.gencodegenes.org/releases/19.html

Whole genome sequencing SNV data for LUAD, 
LUSC, BRCA, LGG, GBM, HNSC, THCA, 
UCEC, and BLCA projects

(Fredriksson et al., 2014) dbGaP: phs000178.v1.p1

Whole genome sequencing SNV data for Liver, 
Medulloblastoma, PilocyticAstrocytoma, Renal, 
Ovarian, Colon, SKCM, and MalignantLymphoma 
projects

(Perera et al., 2016) https://www.nature.com/articles/nature17437

Whole genome sequencing SNV data for MELA-
AU, CLLE-ES, ESAD-UK projects ICGC Data Portal release v21 https://dcc.icgc.org

TCGA Level 3 gene expression profiles for LUAD, 
LUSC, BRCA, LGG, GBM, HNSC, THCA, 
UCEC, and BLCA projects

The Broad Institute, 
Cambridge, MA https://gdac.broadinstitute.org

RNA-seq profiles for ICGC LIRI-JP, PACA-AU, 
PACA-CA, RECA-EU, OV-AU, CLLE-ES, 
MALY-DE

ICGC Data Portal release v21 https://dcc.icgc.org

RNA-seq profile for ICGC MELA-AU porject European Genome-phenome 
Archive https://www.ebi.ac.uk/ega/studies/EGAS00001001552

Prostate adenocarcinoma whole genome 
sequencing SNV data (Baca et al., 2013) dbGaP: phs000447.v1.p1

Primary prostate adenocarcinoma whole genome 
sequencing SNV data (Berger et al., 2011) dbGaP: phs000330.v1.p1

Ultra-high signal artifact regions (Dunham et al., 2012) https://sites.google.com/site/anshulkundaje/projects/
blacklists

Replication timing annotations (Thurman et al., 2007) http://genome.ucsc.edu/cgi-bin/hgFileUi?
db=hg19&g=wgEncodeUwRepliSeq

CTCF/cohesin insulator annotations (Hnisz et al., 2016)
http://science.sciencemag.org/highwire/filestream/
675217/field_highwire_adjunct_files/12/
aad9024_TableS8_160122.xlsx

TAD annotations (Dixon et al., 2012) https://www.encodeproject.org/comparative/
chromatin/

Tumor purity estimates for TCGA samples (Aran et al., 2015)
https://media.nature.com/original/nature-assets/
ncomms/2015/151204/ncomms9971/extref/
ncomms9971-s2.xlsx
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REAGENT or RESOURCE SOURCE IDENTIFIER

ENCODE motif models (Kheradpour and Kellis, 
2014) http://compbio.mit.edu/encode-motifs/motifs.txt

A375 CTCF ChIP-seq This paper GEO: GSE128346

Experimental Models: Cell Lines

A375, human malignant melanoma
Laboratory of Joan Massagué 
(Memorial Sloan Kettering 
Cancer Center)

N/A

A375, human malignant melanoma ATCC CRL-1619

K562, human AML leukemia ATCC CCL-243

HEK293FT ATCC CRL-3216

Recombinant DNA

pMD2.G Addgene Cat#12259

psPAX2 Addgene Cat#12260

lentiCRISPRv2 plasmid Addgene Cat#52961

Software and Algorithms

FunSeq2 (Fu et al., 2014) http://funseq2.gersteinlab.org/

featureCounts (Liao et al., 2014) http://bioconductor.org/packages/release/bioc/html/
Rsubread.html

CNCDriver This paper https://github.com/khuranalab/CNCDriver

edgeR (Robinson et al., 2010) http://bioconductor.org/packages/release/bioc/html/
edgeR.html

OncoDriveFML (Mularoni et al., 2016) https://bitbucket.org/bbglab/oncodrivefml.git

SomaticSignatures (Gehring et al., 2015) http://bioconductor.org/packages/release/bioc/html/
SomaticSignatures.html

Benchling (2019) N/A https://benchling.com/

Other

Infinite F200 Pro plate reader Tecan Cat#INF-MPLEX
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