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Birds are the most abundant terrestrial vertebrates and their diversity is greatly shaped by the feathers. 
How avian evolution is linked to feather evolution has long been a fascinating question. Numerous 
excellent studies have shed light on this complex relationship by investigating feather diversity and 
its underlying molecular mechanisms. However, most have focused on adult domestic birds, and the 
contribution of feather diversity to environmental adaptation has not been well-studied. In this review, we 
described bird diversity using the traditional concept of the altricial-precocial spectrum in bird hatchlings. 
We combined the spectrum with a recently published avian phylogeny to profile the spectrum evolution. 
We then focused on the discrete diagnostic character of the spectrum, the natal down, and propose a 
hypothesis for the precocial-to-altricial evolution. For the underlying molecular mechanisms in feather 
diversity and bird evolution, we reviewed the literature and constructed the known mechanisms for feather 
tract definition and natal down development. Finally, we suggested some future directions for research on 
altricial-precocial divergence, which may expand our understanding of the relationship between natal down 
diversity and bird evolution.

Key words:	Avian evolution, Feather, Altricial, Precocial, Development.

Citation: Chen CK, Chuang HF, Wu SM, Li WH. 2019. Feather evolution from precocial to altricial birds. Zool Stud 58:24. doi:10.6620/
ZS.2019.58- 24.

INTRODUCTION

Avian specialty and the precocial-altricial 
spectrum

Birds, with more than 10,000 known species, 
are the most abundant terrestrial vertebrates. They are 
highly diverse in body size, shape, and color (Wright 
2006). Bird evolutionary innovations include feathers, 
toothless beaked jaws, hard-shelled eggs, a higher 
metabolic rate, and a light but strong skeleton, enabling 
them to occupy different ecological niches. Thus, birds 
are an excellent model to study animal evolution and 
environmental adaptations.

The feathers  show the  h ighes t  degree  of 
complexity and diversity among the evolutionary 
novelties in birds (Chen et al. 2015, Prum 2005, Prum 
and Brush 2002, Strasser et al. 2015). For example, 
down feathers composed of barbs and barbules can keep 
the body warm, while contour feathers possessing rachis 
provide physical protection and attraction. Feather 
diversity has likely contributed to avian diversity. 

Avian hatchlings display variation in apparent 
maturity, which is called the altricial-precocial spectrum 
(Table 1). The hatchlings of altricial birds, such as 
Psittaciformes and Passeriformes songbirds, are close to 
the embryonic state, with almost naked skin and closed 
eyes. On the other hand, precocial hatchlings, such as 
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Galliformes and Anseriformes, are close to the adult 
state, with open eyes and feathers (Starck and Ricklefs 
1998). The functional maturity of the hatchlings 
determines the care they need from their parents and the 
environment to which they are going to adapt (Starck 
and Ricklefs 1998, Vleck and Vleck 1987).

Plumage is a main diagnostic feature in defining 
the altricial-precocial spectrum. However,  the 
definition is not clear-cut, and the underlying molecular 
mechanism is not well characterized. In this review, we 
first re-analyzed the evolutionary pattern of the altricial-
precocial spectrum using a recently published avian 
phylogeny. Second, we then surveyed the literature 
and hypothesized a scenario for the evolution feathers. 
Third, we reviewed the known molecular mechanisms 
responsible for the natal down divergence and discussed 
unresolved questions. Finally, we suggested possible 
research directions to uncover the mystery of feather 
evolution in modern birds. 

Definitions of precocial and altricial birds and 
their evolution

Altricial and precocial hatchling divergence has 
been thought to be associated with environmental 
adaptation. However, how to define the divergence 
is still debated (Starck and Ricklefs 1998). In habitat 
selection, most altricial birds tend to nest above ground, 
and their chicks need to spend more time growing 
before they can leave the nest on their own (Bicudo 
2010). In contrast, most precocial birds tend to be 
ground nesting, and their chicks can walk away from 
the nest soon after hatching. Several morphological 
and behavioral characters in hatchlings have been used 
as diagnostic features for the spectrum (Table 1), such 
as downy plumage, motor activity, locomotor activity, 
parental care, food search and feed alone, staying in the 
nest, eyes closed at hatching, without external feathers 
at hatching, no interaction with parents, and contour 

feathers in hatchlings (Bicudo 2010, Nice 1962, Skutch 
1976, Starck and Ricklefs 1998). A comprehensive 
analysis reorganizing and summarizing the spectrum is 
shown in table 1 (Starck and Ricklefs 1998). 

We then plotted the updated altricial-precocial 
spectrum to a recently published avian phylogeny that 
covers by far the most bird families (Fig. 1) (Hart et 
al. 2017, Prum et al. 2015, Starck and Ricklefs 1998). 
Due to limited data availability, we only mapped the 
avian species to four modes: precocial, semiprecocial, 
semialtricial, and altricial modes. Several patterns 
consistent with previous findings were revealed. First, 
the trend from precocial toward altricial avian evolution 
is supported by studies in both fossils and extant birds 
(Charvet and Striedter 2011, Starck and Ricklefs 1998, 
Xing et al. 2017, Zhou and Zhang 2004). The same 
trend is also seen in the phylogeny (Fig. 1). Second, the 
precocial toward altricial evolution occurred multiple 
times (Charvet and Striedter 2011, Chen et al. 2016, 
Starck and Ricklefs 1998). Some details are described 
below.

Palaeognathae and Galloanserae are two oldest 
avian lineages and all of their members belong to the 
precocial developmental mode (Fig. 1). Neoaves include 
most of the living bird lineages (Strisores, Columbaves, 
Gruiformes, Aequorlitornithes, and Inopinaces) (Fig. 
1). The most derived lineage, Inopinaves, belong 
to either the semialtricial or the altricial mode. 
Opisthocomus hoazin is the only exception. It belongs 
to the semiprecocial mode and is the most primitive 
Inopinaves (Fain and Houde 2004, Hackett et al. 2008, 
Jarvis et al. 2014). Therefore, our plotting implies that 
an altricial evolution event occurred after the emergence 
of Inopinaves. 

In Neoaves, Strisores and Columbaves are two 
basal lineages and have terrestrial life. Strisores is 
peculiar in that, despite its early emergence, all its 
members belong to either the semialtricial or altricial 
mode, implying that the earliest altricial mode evolution 

Table 1.  Diagnostic features of developmental modes in bird hatchlings

Developmental modea Plumage Eyes Nest attendance Parental care

P1 Contour feather Open Leave None
P2 Down Open Leave Brooding
P3 Down Open Leave Food showing
P4 Down Open Leave Parental feeding
SemiP Down Open Nest area Parental feeding
SemiA1 Down Open Stay Parental feeding
SemiA2 Down Closed Stay Parental feeding
A None Closed Stay Parental feeding

aP1: precocial 1; P2: precocial 2; P3: precocial 3; P4: precocial 4; SemiP: semiprecocial; SemiA1: semialtricial 1; SemiA2: semialtricial 2; A: 
altricial.
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Fig. 1.  The modified time calibrated Bayesian tree and a plot of four major avian developmental modes (Prum et al. 2015). The complete tree is 
divided into parts A and B. Scale in the Y-axis: millions of years ago.

(A)
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Fig. 1.  The modified time calibrated Bayesian tree and a plot of four major avian developmental modes (Prum et al. 2015). The complete tree is 
divided into parts A and B. Scale in the Y-axis: millions of years ago.

(B)
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event occurred in this lineage. Columbaves encompasses 
all four developmental modes. Among Columbaves, 
two distinct clades (Cuculiformes and Columbiformes) 
belong to the altricial mode, suggesting that at least two 
altricial mode evolution events occurred within this 
lineage. 

The remaining two lineages, Gruiformes and 
Aequorlitornithes, are mostly water birds, or land birds 
without good flying ability. According to the phylogeny, 
Gruiformes could be basal to Aequorlitornithes. All 
Gruiformes are water birds and belong to the precocial 
groups, whereas Aequorlitornithes are highly diverse 
in their developmental mode. Interestingly, within 
Aequorlitornithes, the developmental mode evolved 
from precocial toward altricial, resembling the whole 
avian evolutionary trend. At least one altricial evolution 
event occurred in this lineage. 

In summary, the plotting suggests that at least five 
independent altricial mode evolutionary events occurred 
during modern avian evolution. 

Trends of natal down evolution during avian 
evolution

Natal down is a diagnostic feature of the 
altricial-precocial spectrum. Natal down, evolved 
from environmental adaptation, provides insulation to 
keep hatchlings warm (Pap et al. 2017). However, the 
description of the downy plumage in bird hatchlings 
is still scarce, not to mention the underlying molecular 
mechanism. Here we reviewed published data to 
construct a possible scenario of natal down evolution 
during avian evolution.

According to previous studies, the plumage 
differences between altricial and precocial bird 
hatchl ings  could be  due to  macropat tern  and 
micropattern changes in feather development (Chen 
et al. 2016). Feather macropattern, or pterylosis, is the 
feather tract distribution of a bird (Fliniaux et al. 2004, 
Ho et al. 2019, Olivera-Martinez et al. 2004). In feather 
tracts, the follicles of contour feathers are concentrated 
in dense tracts called pterylae and are separated by 
bare areas called apteria (Fig. 2). The feather tract area 
is smaller in altricial birds than precocial birds, but 
the reason for the divergence is still not clear. Three 
explanations have been proposed: (1) The apterium 
may be an adaptation to reduce the total feather weight. 
(2) The movement of the body and the feathers could 
be better accommodated by an increase in apterium. 
(3) The apterium may aid birds in thermoregulation 
during flight or brooding (Chen et al. 2016, Stettenheim 
2015). In other words, flying ability contributes to the 
feather tract divergence and altricial birds are usually 
better in flight. Our previous data showed that feather 

tracts cover almost the entire body surface in chicken 
hatchlings, whereas in zebra finch hatchlings they only 
cover part of the body (Fig. 2) (Chen et al. 2016). This 
phenomenon implies a relationship between feather 
macropatterning and avian evolution.

Feather micropatterning is the development of 
individual feather buds. Feather diversity appears 
in different body regions in adult birds and at 
developmental stages of a bird. For example, flight 
feathers enable the bird to fly, body contour feathers 
provide physical protection and shape the body outline, 
and down feathers keep the body warm. Our previous 
studies revealed regulatory differences among different 
body feathers or among different parts of a feather 
in chickens (Ng et al. 2014 2015, Wu et al. 2015). 
However, most bird hatchlings only show natal down 
and we found differences in natal down growth patterns 
between the precocial chicken and altricial zebra finch, 
implying that feather micropatterning contributed to 
avian evolution.

To address the contribution of micropatterning 
to avian evolution, we reviewed the literature in 
natal down development. We considered four major 
developmental modes: precocial, semiprecocial, 
semialtricial, and altricial hatchlings. However, we 
found that the staging of semiprecocial bird embryos 
has never been characterized. Therefore, we focused on 
natal down development of a basal precocial bird (emu), 
a semialtricial bird (pigeon), and an altricial sister clade 
of finch (parrot). 

Emu, Dromaius novaehollandiae, is a member of 
Paleognathae, which also includes other ground living 
birds: ostrich, rhea, tinamou, kiwi, and cassowary (Nagai 
et al. 2011). Paleognathae is the basal lineage of modern 
birds and all the members belong to the precocial 
mode (Fig. 1). Compared to chicken hatchlings, emu 
hatchlings come from larger eggs, have a larger body 
size, require a longer incubation time, and develop 
peculiar limb types (Nagai et al. 2011). However, 
like chicken hatchlings, emu hatchlings are covered 
with natal down throughout the body surface and can 
feed by themselves soon after hatching (Nagai et al. 
2011). These observations imply that precocial birds 
share similar body natal down distribution and feeding 
behaviors. Strisores and Columbaves include the basal 
altricial and semialtricial lineages. Pigeon, Columba 
livia, belongs to Columbaves, but its developmental 
mode is debated. Some studies assign it as an altricial 
bird, while others classify it as a semialtricial bird 
(Dyke and Kaiser 2010, Łukasiewicz and Boruc 2014, 
Olea and Sandoval 2012, Starck and Ricklefs 1998). 
Although pigeon hatchlings demand much parental care, 
in the literature and our own breeding study, we found 
that natal down covers most of the body surface, except 
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the posterior ventral region (Fig. 3). Therefore, by using 
natal down as the indicator, we classify the pigeon to 
the semialtricial mode.

Zebra finch, Taeniopygia guttata, belongs to the 
most derived and diverse bird lineage, Passerineform. 
All passerines are classified as altricial birds. Their 
hatchlings show no or sparse natal down on the body 
surface and demand much parental care. We found 
that zebra finch hatchlings have two types of feather 
formation. In the pterylae region, Type I feather buds 
grow contour feather directly from the follicles without 
going through the natal down; that is, the natal down 
follicle forms, but feather filament does not. Type II 
feather buds, like the feather buds in precocial birds, 
develop into natal down feather filament and later grow 
contour feathers after replacing the natal down in the 
same follicles (Chen et al. 2016). The contour feathers 
grow from both types of feather buds at similar stages 
(D7, Fig. 2). 

Parrot (Myiopsitta monachus), a sister clade to 
finch, is an altricial bird (Carril and Tambussi 2015, 

Prum et al. 2015). However, its natal down development 
is different from that of zebra finch. According to 
previous studies and our observation, the hatchlings of 
both species show no natal down on ventral skin; on 
dorsal skin, zebra finch hatchlings show mature natal 
down, while parrot hatchlings show growing natal 
down, starting from naked-like hatchlings in newborns 
to downy feathers on dorsal skin in later stages (Fig. 
3). We can only find the Type I feather formation in the 
ventral region, and immature natal down forms in the 
dorsal region of parrot hatchlings. Thus, the natal down 
growth pattern may differ between parrot and zebra 
finch. 

By comparing the hatchlings of the above four 
avian species, we propose an evolutionary scenario of 
natal down plumage evolution during avian evolution: 
natal down initially covered the entire body in precocial 
hatchlings. After precocial birds occupied most of the 
land niches, semiprecocial and semialtricial birds with 
better flight ability evolved and extended their habitat to 
waters, oceans, or higher places. Semialtricial birds can 

Fig. 2.  Schematic diagram of feather tract and types of natal down formation in zebra finch and chicken. Zebra finch embryos show two types of 
feather formation: Type I feather formation (open circles), in which the feather buds do not develop into downy feather; Type II feather formation (black 
circles), in which the feather buds develop into downy feathers, which are later replaced by contour feathers. Chicken embryos exhibit only the Type 
II feather formation. E8, E9, and E12: embryo day 8, 9 and 12, respectively. D7: 7 days post-hatch. Scale bar = 0.1 cm. The figure was modified from 
our previous study (Chen et al. 2017).
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build nests in hidden places. Therefore, their hatchlings 
can snuggle in the nest and their ventral natal downs 
are no longer necessary. Finally, altricial birds evolved 
because they have higher intelligence and can build 
sophisticated nests, so the hatchlings needed less natal 
down and can re-allocate their saved energy to other 
organs, such as digestive organs (Blom and Lilja 2005).

In summary, although natal down plumage 
is a diagnostic character to distinguish between 
developmental modes, it is not a simple diagnostic 
character because of the diversity in semiprecocial, 
semialtricical and altricical bird lineages. Further study 
in natal down plumage classifications is needed.

Molecular mechanisms of feather development

The source tissues for feather tract development 
are embryonic somatopleure and somite (Fliniaux et al. 
2004). The proximal somatopleural mesoderm forms 
a feather-forming dermis at E2 (2 days of incubation) 
(Fliniaux et al. 2004). At the molecular level, like HOX 
gene clusters that define the animal body plan, feather 
macropatterns are defined by regional identity, and some 
regulators have been identified (Fliniaux et al. 2004, 

Ho et al. 2019, Houghton et al. 2005). The members 
of the ectodysplasin pathway, Ectodysplasin A (EDA), 
Ectodysplasin A receptor (EDAR) and ectodysplasin 
receptor associated death domain (EDARADD) are 
known to be involved in the patterning and could be 
directed by β-catenin signaling and/or BMP2 (Bone 
morphogenetic proteins 2) (Ho et al. 2019, Houghton 
et al. 2005). During chicken early skin development 
(E6.5), the expanding expression of EDA imposes the 
travelling wave of feather formation. The EDA wave 
spreads across a mesenchymal cell density gradient and 
lowers the threshold of mesenchymal cells required 
to begin the feather bud formation, further triggering 
the pattern formation. Interestingly, such waves and 
the precise arrangement of feather primordia are lost 
in the flightless emu and ostrich (Ho et al. 2019). In 
zebra finch, the expression pattern of EDA is unclear. 
We observed that the regular arrangement of feather 
primordia remains, but how the reduced feather tract 
formed is still unclear (Chen et al. 2017).

Once feather tracts are established, the feather 
micropatterning is initiated. Five properties, localized 
growth zone (LoGZ), invagination, branching, feather 
β-keratin, and dermal papilla (stem cell), have been 

Fig. 3.  Schematic diagram of bird hatchlings. Dorsal (upper row) and ventral (lower row) views of chicken (precocial), pigeon (semialtricial), parrot 
(altricial) and zebra finch.
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characterized in feathers (Fig. 4A) (Wu et al. 2018). 
To localize the growth zone, the spatial arrangement 
and regular outgrowth of feathers are regulated by the 
epithelio-mesenchymal molecular interactions between 
the dermis and the overlying epidermis (Chen et al. 
2015, Ho et al. 2019, Meinhardt and Gierer 2000, Mou 
et al. 2011, Wells et al. 2012). Many molecules that act 
with the process have been identified. For example, 
WNT/b-catenin signaling and TWIST2 are promoters at 
the early stages of skin patterning, not only for feather 
tract establishment but also for feather growth initiation 
(Hornik et al. 2005, Noramly et al. 1999, Widelitz et 
al. 2000). Some FGFs (fibroblast growth factors) and 
SHH (sonic hedgehog) are promoters or activators, 
while some BMPs (bone morphogenetic proteins) 
are inhibitors of feather placode formation (Jung et 
al. 1998, Mandler and Neubuser 2004, McKinnell 
et al. 2004, Song et al. 2004). Branching formation 

within a feather filament is formed by invagination of 
the multilayered filament epithelium surrounding the 
mesenchyme. This event takes place in the ramogenic 
zone, and NOTCH, FGF, GDF10 and GREM1 that 
modulate the BMP signaling were reported to regulate 
the periodic-branching process (Cheng et al. 2018, Li et 
al. 2017). Feather rachis is formed by the fusion of barb 
ridges at the anterior end of the feather, and BMP, NOG, 
SPRY, and FGF are known to regulate the periodic 
invagination that forms barb and rachis (Chen et al. 
2015, Chuong et al. 2014, Ng and Li 2018).

Although the feather developmental process and 
the underlying regulators are largely identified, all the 
researches related to it only have been done in domestic 
chicken. The regulatory mechanisms in diverse natal 
down growth in altricial birds are less studied. The 
genes underlying some chicken featherless mutants 
have been characterized. The regulatory differences in 

Fig. 4.  Five developmental stages of feathers and the regulators for natal down growth suppression in zebra finch. (A) Schematic diagram shows the 
five developmental stages of feathers: LoGZ, invagination, branching, feather β-keratin, and dermal papilla (Wu et al. 2018). (B) A summary of the 
mRNAs identified in Type I and Type II feather formations in zebra finch (Chen et al. 2016).

(A)

(B)

page 8 of 12Zoological Studies 58: 24 (2019)



© 2019 Academia Sinica, Taiwan

BMPs cause the naked neck phenotype in chicken, and 
a nonsense mutation in FGF20 is associated with the 
featherless trait (Mou et al. 2011, Wells et al. 2012). 
However, both chicken variants show no established 
feather buds on the naked region, unlike the Type I 
feather formation process we observed in zebra finch 
and parrot. By using comparative transcriptomics, we 
found that FGF16 and the mitogen-activated protein 
kinase (MAPK) signaling pathway are involved in natal 
down growth suppression in zebra finch (Fig. 4B) (Chen 
et al. 2016). However, how the regulation is achieved 
and whether it has been conserved in altricial birds, or 
natal down suppressed birds, need further study.

CONCLUSIONS AND PERSPECTIVE

The altricial-precocial spectrum traditionally 
describes the developmental modes of mammals 
and birds at birth (Augustine et al. 2019). The 
developmental modes are highly associated with 
parental care, habitat selection, and environmental 
adaptation. Natal down plumage is one of the indicators 
for the altricial-precocial spectrum and is strongly 
related to avian evolution. However, previous studies 
rarely described the natal down plumage precisely 
when analyzing the spectrum. In this review, we first 
plotted the altricial-precocial spectrum to the recently 
published avian phylogeny to explore the evolution of 
the developmental modes during avian evolution. We 
then focused on the natal down plumage differences 
in representative precocial, semialtricial, and altricial 
birds to construct the probable evolutionary steps for 
natal down plumage degeneration. Finally, we reviewed 
the molecular mechanism for feather development and 
described the possible mechanisms involved in natal 
down plumage diversification among birds.

The phylogeny of birds has been difficult to 
construct because of the rapid species radiation from 
the Cretaceous to Paleogene (K-Pg) (Jarvis et al. 2014). 
Jarvis et al. (2014) recently published a whole-genome-
based avian phylogeny. However, species phylogeny 
construction relies not only on the sequencing coverage 
of the genome, but also on the nodes of the species. The 
avian phylogeny including all major avian lineages with 
lower genome sequencing coverage was constructed 
(Prum et al. 2015). Although the two phylogenetic 
trees show some differences (for example, the position 
of birds of prey), both trees fit our model. Here we 
adopt a phylogeny with a lower genome coverage but 
a larger node number as our analysis backbone (Prum 
et al. 2015). However, as large scale bird genome 
sequencing is progressing rapidly, the phylogeny may 
soon be revised. A recent large scale genomic study 

in passerines revealed their precise phylogeny and 
an interesting evolutionary trajectory, and a similar 
study in semiprecocial and semialtricial species will 
largely improve the study of evolution of the altricial- 
precocial spectrum (Oliveros et al. 2019). Moreover, 
the accumulation of the morphological data can also 
alter the phylogeny. Most morphological data are from 
investigations and records from birds in the wild, so it 
is difficult to know whether the bird hatchlings were 
recorded at birth or several days after birth. We have 
observed that, at least in parrots, natal down grows 
vigorously after birth, so the spectrum should be 
characterized at birth.

Feather development involves the interaction of 
numerous molecules. The major regulators at different 
developmental stages were basically identified as 
mentioned above. However, how those regulators are 
regulated in feather development is still unclear. The 
phenotypic changes could have resulted from coding 
and/or non-coding sequence changes. Coding sequence 
variation is known to be a key factor in domestic 
chicken variation (Mou et al. 2011, Ng and Li 2018, 
Ng et al. 2012, Wells et al. 2012). However, such cases 
have rarely been identified in wild birds, and non-
coding sequence variation contributes more to the intra-
species variation (Küpper et al. 2016, Lamichhaney 
et al. 2015 2016). Indeed, despite the abundance of 
bird species, their chromosomal structures have been 
surprisingly well conserved over evolutionary time 
(Frankl-Vilches et al. 2015, Skinner and Griffin 2012). 
Also, coding sequence evolution is relatively slower in 
birds than other vertebrates (Nam et al. 2010, Weber et 
al. 2014). Therefore, coding sequence variation should 
not be the major evolutionary effector for bird diversity. 
Non-coding sequences can act as gene regulatory 
regions, such as promoters and enhancers, or non-
coding transcripts, such as non-coding RNAs. In mouse, 
regional specificity regulation has been characterized 
at the epigenetic level (Ezhkova et al. 2011, Fabre et 
al. 2017, Rodriguez-Carballo et al. 2017) and in non-
coding RNA (Caley et al. 2010). Similar mechanisms 
may act in the avian genome, but further studies will be 
needed.

Research on feather development and diversity 
expands our view of how complex structures can evolve 
to increase an organism’s survival and persistence. 
However, the importance of the “natal down diversity”, 
in terms of their types and topological distribution, 
could have long been underestimated. The evolution 
from precocial to altricial modes has been thought to 
be environmental adaptation. However, most of the 
diagnostic characters are difficult to qualify or quantify, 
so the spectrum evolution has been debated for a long 
time. Natal down is the only discrete character for 
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the diagnosis, and our view in that altricial-precocial 
spectrum evolution is based on our characterization 
of different types and patterns of the natal down. 
Furthermore, different developmental stages of bird 
exhibit different types of feather. Juvenile birds are 
ready to leave the nest and most natal downs are 
replaced by contour feathers (Podulka et al. 2004), 
which enable the birds to fly. After moulting several 
times, more functional feathers are derived from the 
juvenile feather follicles to achieve specific functions 
in adult birds (Terres 1991, National Audubon Society), 
including feathers used in camouflage, migration, 
overwintering, or courtship (Dunn et al. 2011). The 
hatchling (natal down) to juvenile (contour feather) 
plumage transition happens only once in most birds, 
but the mechanism has never been characterized. 
A continuous investigation of hatchling to juvenile 
plumage change will further help us explore the mystery 
of evolution from precocial to altricial modes in birds.
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