Table 1.
References | Model | Flip | Rot. | Trans. | Scale | Shear | Elastic | GAD | Pixel-wise |
---|---|---|---|---|---|---|---|---|---|
Albiol et al., 2019 | VGG, Inception, Dense | 3D affine transformations | |||||||
Benson et al., 2018* | CNN (encoder-decoder) | Yes | Random | ||||||
Carver et al., 2018 | U-Net | Yes | |||||||
Chandra et al., 2018 | V-Net, ResNet-18, FC-CRF | Yes | Yes | ||||||
Dai et al., 2018 | Domain-adapted U-Net | Yes | |||||||
Feng et al., 2018 | U-Net | Yes | |||||||
Gholami et al., 2018* | U-Net | PDE | |||||||
Isensee et al., 2018 | U-Net | Yes | Yes | Yes | Random | Gamma | |||
Kao et al., 2018 | DeepMedic, 3D U-Net | Yes | |||||||
Kermi et al., 2018 | U-Net | Yes | Yes | Yes | |||||
Lachinov et al., 2018* | Cascaded U-Net | Yes | B-spline | Gaussian | |||||
Ma and Yang, 2018 | 3D CNN | Yes | Yes | Yes | |||||
McKinley et al., 2018 | Dense CNN | Yes | Yes | Shift, scale | |||||
Mehta and Arbel, 2018 | U-Net | Yes | Yes | Yes | Yes | ||||
Myronenko, 2018 | CNN (encoder-decoder) | Yes | Yes | Shift | |||||
Nuechterlein and Mehta, 2018 | 3D-ESPNet | Yes | Yes | ||||||
Puybareau et al., 2018 | VGG-16 | Yes | Yes | ||||||
Rezaei et al., 2018† | Voxel-GAN | Yes | Yes | Gaussian | |||||
Sun et al., 2018 | CNN, DFKZ, 3D CNN | Yes | Gaussian | ||||||
Wang et al., 2018*† | CNN | Yes | Yes | Yes | Random | ||||
Number of methods utilizing this augmentation → | 15 | 8 | 2 | 9 | 1 | 2 | 1 | 8 | |
Percentage (%) of methods utilizing this augmentation → | 75 | 40 | 10 | 45 | 5 | 10 | 5 | 40 |
The top-performing techniques (over the unseen test set) are annotated with green.
The authors verified the impact of data augmentation of the generalization abilities of their deep models.
The authors used both training- and test-time data augmentation.