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Elimination of fukutin reveals cellular and molecular
pathomechanisms in muscular dystrophy-
associated heart failure

Yoshihiro Ujihara"?4, Motoi Kanagawa>, Satoshi Mohri'2, Satomi Takatsu', Kazuhiro Kobayashi?,
Tatsushi Toda3, Keiji Naruse® ' & Yuki Katanosaka® ™

Heart failure is the major cause of death for muscular dystrophy patients, however, the
molecular pathomechanism remains unknown. Here, we show the detailed molecular
pathogenesis of muscular dystrophy-associated cardiomyopathy in mice lacking the fukutin
gene (Fktn), the causative gene for Fukuyama muscular dystrophy. Although cardiac Fktn
elimination markedly reduced o-dystroglycan glycosylation and dystrophin-glycoprotein
complex proteins in sarcolemma at all developmental stages, cardiac dysfunction was
observed only in later adulthood, suggesting that membrane fragility is not the sole etiology
of cardiac dysfunction. During young adulthood, Fktn-deficient mice were vulnerable to
pathological hypertrophic stress with downregulation of Akt and the MEF2-histone deace-
tylase axis. Acute Fktn elimination caused severe cardiac dysfunction and accelerated mor-
tality with myocyte contractile dysfunction and disordered Golgi-microtubule networks,
which were ameliorated with colchicine treatment. These data reveal fukutin is crucial for
maintaining myocyte physiology to prevent heart failure, and thus, the results may lead to
strategies for therapeutic intervention.
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he dystrophin-glycoprotein complex (DGC) links the

intracellular cytoskeleton to the extracellular basement

membrane, thereby providing structural support for the
sarcolemmal2. Within this complex, dystroglycan (DG) links
intracellular dystrophin to the extracellular matrix3. As heavily
glycosylated a-DG binds tightly and with high affinity to lami-
nin, a  glycosylation  deficiency can  dissolve  the
DGC-extracellular matrix connection. Mutations of dystrophin
and the transmembrane sarcoglycans result in Duchenne/Becker
and limb girdle muscular dystrophies, respectively*-7. Many
patients with muscular dystrophies, particularly those with
defects in the DGC, develop cardiomyopathies with chamber
dilation and myocardial dysfunction®-12, which is the major cause
of death in these patients.

Recently, the full functional glycan structure of a-DG required
for its ligand binding activities was identified!3-1°, providing
insight into the pathogenesis and therapeutic strategies for a-DG-
associated diseases, including Fukuyama-type congenital mus-
cular dystrophy (FCMD)!6, muscle-eye-brain disease!’,
Walker-Warburg syndrome!8, congenital muscular dystrophy
types 1C and 1D'?, and limb girdle muscular dystrophy type 2120.
Although the causative genes for these diseases differ, one bio-
chemical feature that is common among them is abnormal gly-
cosylation of a-DG. Thus, these conditions are considered a-
DGpathies. FCMD is caused by mutation of the fukutin gene
(FKTN)!6, which encodes a Golgi-based ribitol phosphate trans-
ferase that catalyzes the biosynthesis of tandem ribitol phosphate
structures on a-DG by sequential action with fukutin-related
protein (FKRP)!3. Mutations in FKTN and FKRP-associated a-
DGpathy are both associated with cardiomyopathies?!22. How-
ever, the detailed molecular mechanisms for cardiac pathogenesis
in these conditions remain unknown.

In this study, we show a crucial role for FKTN in the main-
tenance of myocyte structure and function using cardiac-specific
Fktn knockout mice. The results from this study improve our
understanding of the pathomolecular mechanism underlying
muscular dystrophy-associated heart failure.

Results

Cardiac changes in MCK-Fktn-cKO (Fktnflox/flox; MCK-Cre™/™)
mice. To examine the effect of FKTN deficiency, we crossed
Fktnflox/flox (floxed) mice with a transgenic line expressing Cre
recombinase under the control of the MCK promoter?3. The
reduced expression of FKTN and DGC proteins in the hearts of
these MCK-Fktn-cKO mice was confirmed by immunoprecipi-
tation and immunoblotting (Supplementary Fig. 1a, b). The gly-
cosylated form of a-DG and DGC immunoreactivity increased in
the sarcolemma at 24 weeks after birth in normal control mice
(Fig. 1a), suggesting that the physiological contribution of DGC
proteins in the heart increases 6 months after birth. Notably,
FKTN deficiency not only resulted in a reduction of a-DG gly-
cosylation but also impaired the expression of DGC proteins in
the sarcolemma at all developmental stages (Fig. 1a). We next
examined global cardiac morphology and function in MCK-Fktn-
cKO mice at different time points after birth. Cardiac gross
morphology (Fig. 1b) and the heart-to-body weight ratio (Fig. 1¢)
were maintained in mice with Fktn deficiency. However, the
cross-sectional areas of cardiomyocytes and fibrosis were
increased in MCK-Fktn-cKO hearts 24-48 weeks after birth
(Fig. 1d-f). These mice also showed cardiac dysfunction and
chamber dilation during diastole at this age (Fig. 1g, h). Only one
or a few damaged areas were detected by anti-mouse IgG in 48-
week-old MCK-Fktn-cKO mice (Supplementary Fig. 2). The 48-
week-old heterozygous (Fktnflo¥/+; MCK-Cret/~) mice showed
no abnormalities in overall cardiac morphology and function

(Supplementary Fig. 3). Thus, Fktn deficiency leads to patholo-
gical cardiac remodeling in 24-48-week-old mice.

Impaired myocyte function in 10-month-old MCK-Fktn-cKO
mice. The subcellular structure of cardiomyocytes and the loca-
lization of Ca?* regulatory proteins are well suited to their cel-
lular functions?4, Well-ordered patterns of immunofluorescence
were observed for L-type Ca?t channels (LTCC), Nat/Ca2t
exchanger 1 (NCX1), and ryanodine receptor 2 (RyR2) in normal
hearts (Fig. 2a, left) but not in 10-month-old MCK-Fktn-cKO
hearts (Fig. 2a, right), suggesting a defect in intracellular Ca?*
handling. The myofilaments needed to generate force were
extensively disorganized in the MCK-Fktn-cKO hearts (Fig. 2b),
and cardiomyocytes from these hearts showed reduced short-
ening (Fig. 2c) and impaired Ca?* handling during
excitation—-contraction (E-C) coupling (Fig. 2d). This abnorm-
ality in Ca* cycling was most evident at 5 mM, the concentra-
tion at which Fktn-deficient myocytes also showed reduced
amplitude (Fig. 2e), longer time constants (i.e., slower decay
speed) (Fig. 2f), and increased time to peak (Fig. 2g). As a result,
Ca?T contents were lower in the sarcoplasmic reticula (SRs) of
MCK-Fktn-cKO myocytes than in those of floxed controls
(Fig. 2h). Thus, cardiac dysfunction in adult MCK-Fktn-cKO
mice occurred at the cardiomyocyte level.

Hypertrophic responses of hearts from MCK-Fktn-cKO mice.
As mentioned above, young-adult MCK-Fktn-cKO mice did not
exhibit significant cardiac dysfunction under physiological con-
ditions (Fig. 1). Consistently, isolated cardiomyocytes from 10-
week-old MCK-Fktn-cKO mice showed normal contractility and
Ca?* handling during E-C coupling (Supplementary Fig. 4). To
investigate the effect of FKTN deficiency under stress conditions,
we examined cardiac structure, function, and intracellular sig-
naling after inducing various hemodynamic stresses. Control
mice showed incremental changes in heart weight-to-body weight
ratios (Fig. 3a, b) and cross-sectional areas of cardiomyocytes
(Fig. 3c) without increased fibrosis (Fig. 3d) after administration
of the adrenergic receptor agonists isoproterenol and pheny-
lephrine as well as after prolonged pressure overload via 2-week
thoracic aortic constriction. Conversely, these treatments caused
chamber dilation and fibrosis with severe cardiac dysfunction in
the hearts of MCK-Fktn-cKO mice (Fig. 3a, d, e). These obser-
vations suggest that Fktn-deficient hearts are vulnerable to
hypertrophic stress and that FKTN in the heart is essential for
compensatory hypertrophic responses against hemodynamic
stress.

Next, in order to understand the molecular basis underlying
vulnerability, we analyzed the changes in intracellular signaling in
the hearts of Fktn-deficient mice treated with isoproterenol for
2 weeks. It is well known that Akt and Ca?t calmodulin-
dependent protein kinase II (CamKII) phosphorylation mediate
myocyte survival and apoptotic/necrosis pathways2°-27, respec-
tively. We found that isoproterenol increased the phosphorylation
of Akt in control hearts but not in Fktn-deficient hearts, which
instead showed increased phosphorylation of CamKII, suggesting
a downregulation of survival and upregulation of apoptosis/
necrosis signaling. Thus, Fktn-deficient hearts showed an
impaired hypertrophic response to stress.

It is also known that activation of protein kinase D (PKD) leads
to the phosphorylation of histone deacetylases (HDACs) in
myocyte pathological remodeling?8-30. Whereas isoproterenol
treatment slightly induced the phosphorylation of PKD in control
hearts, basal levels of PKD phosphorylation in the absence of
isoproterenol were already significantly higher in MCK-Fktn-cKO
hearts than in controls (Fig. 3f). Similarly, the phosphorylation of
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Fig. 1 Cardiac change in MCK-Fktn-cKO (Fktnflox/flox; MCK-Cre+/—) mice. a Representative immunofluorescent images of DGC complex and glycosylation
form of a-DG in control (floxed) and MCK-Fktn-cKO hearts. Anti-lIH6 (glycosylated form of aDG), BDG, dystrophin (Dys), aSG, pSG, and ySG antibodies
(green) and DAPI (blue). Scale bar, 10 pm. b Cardiac morphology in floxed and MCK-Fktn-cKO mice. Scale bar, 5 mm. ¢ Heart weight-to-body weight ratios
(HW/BW) (n =9 mice per group). d Masson's trichrome staining of the left ventricle. Scale bar, 50 pm. Cross-sectional areas (6w, n =259 and 268 cells;
16w, n =303 and 311 cells; 24w, n =266 and 287 cells; 48w, n = 283 and 256 cells measured from 3 hearts per group.) (e) and fibrosis percentages (n =3
mice per group) (f) from paraffin sections of left ventricles. Echocardiographic parameters of left ventricle diastolic dimension (g) and fractional shortening
(h) in floxed and MCK-Fktn-cKO mice (n =12 mice per group). Data are means +s.e.m; #P < 0.05 between indicated groups based on Student's t-tests.

HDACY9 in control hearts was increased by isoproterenol
treatment, while the basal phosphorylation in MCK-Fktn-cKO
hearts was already extremely high. These data indicate that Fktn
elimination enhanced the PKD signaling pathways, provoking

HDACY nucleocytoplasmic shuttling under physiological condi-
tions. Therefore, Fktn elimination accelerates the progression
from compensated cardiac hypertrophy to heart failure under
hemodynamic stress conditions.
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Fig. 2 Impaired myocyte function in 10-month-old MCK-Fktn-cKO (Fktnflox/flox; MCK-Cre/—) mice. a Representative immunostaining for NCX1, RyR2,
and LTCC (DAPI counterstain, blue) in hearts of 10-month-old mice. Scale bar, 100 pm. b Representative immunofluorescence (top: phalloidin, red; DAPI,
blue (scale bar, 100 pm)) and electron microscopy (scale bar, 5 um (middle) and 1Tpm (lower)) images of myofilaments. ¢ Frequency-dependent
shortening of cardiomyocytes (n =16 and 20 cells measured from 4 and 5 hearts, respectively). #P < 0.05 vs. floxed mice based on Student's t-tests.
(d) Indo-1 fluorescence in single cardiomyocytes stimulated at 1Hz (1.8 mM Ca2+, n=20 and 37 cells from 3 and 4 hearts, respectively; 5mM Ca2+,
n =20 cells from 3 hearts per group). Normalized peak amplitudes (e), decay time constants (obtained by fitting to the decline phase) (), and times to
peak (g) of Ca2* transients. h Estimation of sarcoplasmic reticulum (SR) Ca?* content (n=15 and 10 cells from 3 and 2 hearts, respectively). #¥P < 0.05

between indicated groups based on Student’s t-tests.

Impaired hypertrophic response in MCK-Fktn-cKO cardio-
myocytes. To more directly examine the hypertrophic responses
of MCK-Fktn-cKO cardiomyocytes, we analyzed cell growth
during culture with or without phenylephrine for 48 h. We con-
firmed successful Cre-lox recombination and expression of Cre
recombinase in the nucleus in cultured neonatal cardiomyocytes
from MCK-Fktn-cKO mice (Supplementary Fig. 5). We also
confirmed reduction of FKTN protein in 1-d-old MCK-Fktn-cKO
mice (Supplementary Fig. 5). In the presence of phenylephrine,
cardiomyocytes from control mice showed enhanced sarcomere
organization and upregulation of NCXI1 expression (Fig. 4a),
which are signs of myofibril maturation and intracellular Ca%*
handling during E-C coupling?®. By contrast, MCK-Fktn-cKO
cardiomyocytes treated with phenylephrine had immature and
tangled myofilaments (Fig. 4b) and showed no increase in cell
area (Fig. 4c). We confirmed that all cKO myocytes treated with
phenylephrine were alive using a LIVE/DEAD assay (Fig. 4d).
Remarkably, cKO myocytes did not show spontaneous hyper-
trophy (at 48 h in the absence of phenylephrine; Fig. 4c). These
myocytes exhibited no sarcomere formation, cell-cell interaction
(Fig. 4a, upper right panels), or spontaneous beating, suggesting
that Fktn deficiency also affects myocyte maturation in cKO cells.
Ca’t content in the SRs of control cardiomyocytes increased

during culture with phenylephrine (Fig. 4e), whereas no such
increase was observed in cardiomyocytes from MCK-Fktn-cKO
mice. However, caffeine-induced release was still present, sug-
gesting that these cells had functions characteristic of cardio-
myocytes. As a control, mixed fibroblasts in the cultured myocyte
preparation showed no response to caffeine (Fig. 4e). These
observations suggest that Fktn elimination in myocytes impairs
hypertrophic responses.

Using these cell models, we examined the subcellular
localization of MEF2, which acts with class Ila HDACs, such as
HDACY, in myocyte differentiation and compensative hyper-
trophic responses3!. MEF2 underwent nuclear translocation in
control cardiomyocytes but not in MCK-Fktn-cKO cardiomyo-
cytes cultured with 10% fetal calf serum (FCS) or 10uM
phenylephrine for 48h (Fig. 5a). In control cardiomyocytes,
serum (as well as adrenergic agonists) induced the nuclear export
of HDACY, which relieves transcriptional repression?8. This
phenomenon was not observed in MCK-Fktn-cKO cardiomyo-
cytes (Fig. 5b). These observations suggest that MEF2 and
HDACY translocation are impaired in FKTN-deficient
cardiomyocytes.

Phosphatidylinositol 4-phosphate (PI4P) in the Golgi appara-
tus is required for PKD activation in pathological hypertrophic
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Fig. 3 Hypertrophic responses of 10-week-old MCK-Fktn-cKO (Fktnflox/flox; MCK-Cre*/~) hearts. a Cardiac morphology and histology following

isoproterenol (Iso) or phenylephrine (PE) administration or thoracic aortic constriction (TAC) for 2 weeks in control (floxed) and MCK-Fktn-cKO mice.
Scale bar, 5mm (top) and 50 pm (bottom). b Heart weight-to-body weight ratios (HW/BW) (n =9 mice per group). Cross-sectional areas (vehicle, n=
252 cells; +1so, n =283 cells; +PE, n =249 cells; TAC, n = 264 cells from 3 control (floxed) mice. Vehicle, n = 315 cells; +Iso, n =250 cells; +PE, n =229
cells; TAC, n=274 cells from 3 MCK-Fktn-cKO mice) (c) and fibrosis percentages (n =3 mice per group) (d) from paraffin sections of left ventricles.
e Fractional shortening in hearts of treated and untreated control (n =12 mice per group). *P <0.05 vs. vehicle-treated floxed mice; #P < 0.05 between
indicated groups based on Tukey-Kramer tests. f Representative immunoblots for total and phosphorylated Akt, CamKIl, PKD, and HDACO levels in control
and MCK-Fktn-cKO mice after Iso (or vehicle) treatment. GAPDH was used for a loading control (n =6 per group). *P < 0.05 vs. vehicle-treated floxed

mice; #P < 0.05 between indicated groups based on Tukey-Kramer tests.

remodeling3>33.  Fktn-deficient myocytes showed abnormal
accumulation of PI4P (Fig. 5¢) and surprisingly, fragmentation
of the Golgi apparatus under basal conditions, as revealed by
staining with the cis-Golgi marker protein GM130 (Fig. 5d).
These phenotypes may be indicative of PKD hyperactivation,
which subsequently impairs the MEF2-HDAC axis following
hypertrophic stimulation. Furthermore, PKD hyperactivation also
may be associated with Golgi fragmentation. Treatment of HEK
cells with the marine sponge metabolite ilimaquinone (a PKD
activator) induced the vesiculation of the Golgi, as observed via
GM130 staining (Fig. 5e, top middle). Alternatively, Fktn
elimination per se may affect Golgi structure. Remarkably, we
found that untreated FKTN-deficient HEK cells showed an
elongated pattern of GM130 staining, suggesting that FKTN is

involved in maintaining the structure of the Golgi apparatus
(Fig. 5e, bottom left). In support of this notion, treatment with
ilimaquinone or the PKD inhibitor CID755673 did not result in
further disruption (Fig. 5e, bottom panels). In HAP cells, the
structure of the Golgi apparatus was changed in an FKTN-
dependent manner (Fig. 5f). These observations suggest the
possibility that FKTN contributes to the maintenance of the Golgi
architecture in these cells.

Acute elimination of Fktn results in severe cardiac dysfunction.
Although FKTN protein is likely involved in the maintenance of
myocytes, we did not observe structural and functional defects in
cardiomyocytes from young-adult mice. To examine the direct
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45 cells; +PE-FB, n =23 cells from 10 hearts isolated from MCK-Fktn-cKO mice.). CM cardiomyocytes, FIB fibroblasts. *P < 0.05 vs. cardiomyocytes before
treatment with PE (Pre) isolated from floxed mice; #P < 0.05 between indicated groups based on Tukey-Kramer tests.

effect of Fktn elimination in young-adult mice, we generated
temporally controlled cardiomyocyte-specific ~Fktn-deficient
[aMHC-MerCreMer (MCM)-Fktn-cKO] mice (Supplementary
Fig. 6). The treatment of 10-week-old aMHC-MCM-Fktn-cKO
(Fktnflox/flox, o MHC-MCM*/=) mice for 4d with tamoxifen-
induced chamber dilation and severe cardiac dysfunction (Fig. 6a,
b). Surprisingly, ~50% of these mice died within 1 week after
initiating tamoxifen treatments (Fig. 6c), suggesting an indis-
pensable role for FKTN in the working heart. Fktn/0¥/+; aMHC-
MCM/~ (hetero) mice showed no abnormalities in overall car-
diac structure and function or mortality rate after tamoxifen
treatment (Supplementary Fig. 7). As previously mentioned
(Fig. 1a), the glycosylation of a-DG (as detected with the ITH6
antibody) increases with age, such that levels are barely detectable
in hearts from 10-week-old mice. The hearts of tamoxifen-treated
aMHC-MCM-Fktn-cKO mice showed normal DGC protein
localization and levels of glycosylated a-DG (Supplementary
Fig. 8); this suggests that cardiac dysfunction at this stage (4d
after tamoxifen injection) is independent of a-DG glycosylation

and DGC proteins in the sarcolemma. Cardiomyocytes isolated
from tamoxifen-treated oMHC-MCM-Fktn-cKO mice had
severely impaired contractility and Ca?* handling during E-C
coupling with reduced amplitudes and delayed times to peak of
electrically evoked Ca?T transients compared with those from
vehicle-treated controls (Fig. 6d-h).

Subcellular changes in aMHC-MCM-Fktn-cKO cardiomyo-
cytes. We next investigated how Fkitn elimination affects con-
tractility and Ca?* handling during E-C coupling, particularly via
the structure of T-tubules and myofilaments and expression of
Ca?* regulatory proteins. We analyzed the T-tubule structure and
found it was severely disordered in Fktn-deficient cardiomyocytes
(Fig. 7a). The myocardia of tamoxifen-treated aMHC-MCM-
Fktn-cKO mice also showed subdivided subcellular myofilaments
and disorganized Z-line structures (Fig. 7b, black arrowheads).
Thus, Fktn elimination directly leads to structural and functional
cardiomyocyte defects, especially of the T-tubules that form the
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key structure of E-C coupling, independent of a-DG glycosyla-
tion. Despite the severe structural disorganization of T-tubules,
the expression of Ca2t regulatory proteins, including NCX1 and
LTCC, was not altered (Fig. 7c, d and Supplementary Fig. 9).
To investigate the mechanism of T-tubule disorganization in
Fktn-deficient cardiomyocytes, we analyzed the expression levels
of junctophilin-2 (JP2) (Fig. 7c, e), a protein that bridges T-tubules
and SR membranes*4%. It is well known that misregulation of JP2
can be mediated via microtubules (MTs) and contributes to T-
tubule maintenance and Ca?t mishandling in failing myo-
cytes>433; therefore, we also analyzed the expression of a-tubulin,
a component of MTs, in hearts from tamoxifen-treated aMHC-
MCM-Fktn-cKO mice (Fig. 7c, f). JP2 expression was clearly
reduced in the hearts of tamoxifen-treated aMHC-MCM-Fktn-
cKO mice (Fig. 7c, e), whereas a-tubulin expression was
significantly increased (Fig. 7c¢, f). Moreover, the distribution of
JP2 was altered in tamoxifen-treated aMHC-MCM-Fktn-cKO
cardiomyocytes (Fig. 7g). Therefore, we hypothesized that MT
densification-mediated JP2 redistribution may be associated with
the cardiomyocyte contractile defects via T-tubule remodeling in
tamoxifen-treated aMHC-MCM-Fktn-cKO mice.

The effects of MT depolymerization in aMHC-MCM-Fktn-cKO
myocytes. Because MT densification can impede myocyte
shortening3>-38, we examined whether treatment with 10 uM
colchicine, which inhibits MT polymerization, for 1h resolved
contractile dysfunction in tamoxifen-treated aMHC-MCM-Fktn-
cKO cardiomyocytes. In control cardiomyocytes, a-tubulin
immunostaining revealed a regulated meshwork pattern of MTs
(Fig. 8a, top left), with some polymerized MTs perpendicular to
the muscle fiber (Fig. 8a, top left inset). The meshwork pattern of
MTs was lost after treatment with 10 uM colchicine (Fig. 8a,
middle left), whereas cardiomyocyte shortening was not affected
in vehicle-treated control myocytes (Fig. 8b). In tamoxifen-
treated aMHC-MCM-Fktn-cKO cardiomyocytes, we observed an
accumulation of MTs in parallel with the muscle fiber (Fig. 8a,
top right and inset), and shortening was impaired compared with
that in the vehicle control (Fig. 8b). Notably, colchicine treatment
reduced this accumulation of MTs and reversed the impaired
shortening in tamoxifen-treated aMHC-MCM-Fktn-cKO cardi-
omyocytes (Fig. 8a, bottom right; Fig. 8b). Golgi elements in
muscles are major sites for the nucleation of MTs3, and the
irregular accumulation of MTs, due to the disorganization and
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abnormal distribution of the Golgi apparatus, has recently been
implicated in the progression of heart failure343>4041 Interest-
ingly, treatment with 10 uM colchicine disrupted the Golgi
apparatus (Fig. 8a, middle left), consistent with the idea that MTs
are crucial for proper localization of the Golgi in a wide range of
cells?%. Remarkably, this fragmentation of the Golgi did not affect
cardiomyocyte shortening (Fig. 8b). Instead, the activation of
PKD with ilimaquinone resulted in vesiculation in the Golgi
apparatus, an accumulation of MTs (Fig. 8a, bottom left and
inset), and contractile dysfunction (Fig. 8b) in control cardio-
myocytes. In tamoxifen-treated aMHC-MCM-Fktn-cKO cardio-
myocytes, we also observed abnormal fragmentation of the Golgi
apparatus (Fig. 8a, top right, white arrowheads). These results
suggest that contractile dysfunction in FKTN-deficient cardio-
myocytes is caused by MT densification that may be associated
with Golgi abnormalities. In tamoxifen-treated aMHC-MCM-
Fktn-cKO hearts, the level of PKD phosphorylation was sig-
nificantly higher than that in control hearts (Fig. 8c), suggesting
that FKTN impacts the integrity of the Golgi structure by reg-
ulating PKD signaling pathways. We also observed abnormal
distribution of the Golgi apparatus and the accumulation of MT

structures in MCK-Fktn-cKO mice in late adulthood (Supple-
mentary Fig. 10). Control myocytes from 10-month-old mice also
exhibit the accumulation of MT structures. While membrane
abnormalities were observed in cardiomyocytes isolated from 10-
month-old MCK-Fktn-cKO mice (Supplementary Fig. 10), the
severity was less than that observed in tamoxifen-treated aMHC-
MCM-Fktn-cKO hearts (Fig. 7a). Additionally, phosphorylation
of PKD was decreased in cardiomyocytes isolated from MCK-
Fktn-cKO mice 48 weeks after birth (Supplementary Fig. 11). On
the other hand, reduction of FKTN protein immediately led to the
abnormal fragmentation of the Golgi apparatus, MT densifica-
tion, and PKD phosphorylation in tamoxifen-treated aMHC-
MCM-Fktn-cKO hearts (Fig. 8). These data suggest that FKTN
plays a crucial role in the maintenance of the Golgi-derived MT
network and PKD signaling.

To elucidate how colchicine improves myocyte contractility, we
assessed Ca?t handling during E-C coupling in cardiomyocytes
isolated from tamoxifen-treated aMHC-MCM-Fktn-cKO hearts.
We found that colchicine treatment enhanced intracellular Ca2+
handling in tamoxifen-treated aMHC-MCM-Fktn-cKO myocytes
(Fig. 8d). This was associated with improved myocyte contractile
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efficiency as evidenced by the ratio of cell shortening to the
amplitude of Ca2t increase during E-C coupling (Fig. 8e). Thus,
colchicine appears to improve myocyte contractility by improving
Ca?t handling and reducing the stiffness of cardiomyocytes
(Fig. 8e).

Finally, we showed that colchicine ameliorated the heart failure
phenotype in tamoxifen-treated aMHC-MCM-Fktn-cKO mice.
Chamber dilation, fibrosis, cardiac dysfunction, and survival rates
after 10 d of tamoxifen treatment were all improved by colchicine
administration (Fig. 9a-e). These observations suggest acute
elimination of Fktn contributes to myocyte contractile dysfunc-
tion as a result of MT densification.

Mechanistic analysis for Golgi pathology in Fktn-deficient hearts.
To elucidate how FKTN regulates Golgi structure and function
and thus leads to MT accumulation, we performed microarray
analysis of tamoxifen-treated floxed or aMHC-MCM-Fktn-cKO
hearts and investigated the putative pathway and biological
processes induced by deletion of Fktn. A total of 31,762 probe sets
obtained from an Agilent gene expression microarray platform
(SurePrint G3 Mouse Gene Expression 8 x 60 K) were tested for
differential expression. We found that 7408 genes were differ-
entially expressed on the basis of a criterion of at least a twofold

change and adjusted value of P < 0.05 when cKO was compared
with floxed-control; 4536 transcripts were downregulated and
2872 transcripts were upregulated in aMHC-MCM-Fktn-cKO
hearts (Table I in the online-only Data Supplement). Hierarchical
clustering revealed a high level of homogeneity within and a clear
separation between groups (Supplementary Fig. 12). A heatmap
displaying expression levels of 1,611 differentially expressed Golgi
apparatus-related genes annotated from a global cross-database
NCBI search showed excellent consistency of changes within
groups (Fig. 10a). Thus, the elimination of Fktn impacts the
expression profile of Golgi-related genes.

Integrity of the Golgi apparatus requires the MT network*2. We
focused on genes known to be relevant to nucleation and dynamics
of Golgi-derived MTs: Tpx2 (coding for a targeting protein of
Xklp2), Rab3a (coding for RAS oncogene family member 3a),
Pdeddip (coding for myomegalin), Pcnt (coding for pericentrin),
and Clasp1 (coding for CLIP-associating protein 1)*2. The positions
of these genes in the volcano plot are depicted in Fig. 10b. Although
the MT nucleation factor encoded by Tpx2 was increased, the
anchoring proteins of the y-tubulin ring complex (y-TuRC) of the
cis-Golgi encoded by Pde4dip and Pcnt were reduced in cKO hearts.
The MT-stabilizing protein encoded by Claspl was also reduced in
cKO hearts. These observations suggest that Fktn elimination leads
to a decline in the stability and dynamics of the Golgi-derived
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(b, d, e).

MT network. In addition, the downregulation of Rab3a suggests a
decline in post-Golgi secretory trafficking*? in cKO hearts.

Pathway enrichment analysis of the downregulated genes in
cKO hearts (FDR < 0.001, Log,FC < —1.5) revealed enrichment of
pathways involved in cardiac physiology (i.e., muscle contraction
and cardiac conduction; Supplementary Fig. 12). On the other
hand, upregulated genes in cKO hearts (FDR < 0.001, Log,FC <
—1.5) revealed enrichment of pathways involved in the cell cycle,
Rho GTPase signaling, extracellular matrix organization or
degradation, integrin cell surface interaction, and extracellular
matrix proteoglycan as analyzed by ReactomePA (https://
reactome.org/; Fig. 10c). These pathways were influenced by the
stability and dynamics of Golgi-derived MT, protein synthesis at
the Golgi apparatus, and membrane transport via MT in cells.
Thus, these observations emphasize the possibility that disin-
tegration of the Golgi apparatus and Golgi-derived MT network is
one etiology of muscular dystrophy-associated heart failure in
Fktn-deficient mice.

Kyoto Encyclopedia of Gene and Genomes (KEGG) functional
network analysis of the 7408 genes showed large fluctuations with
high significance for Parkinson’s, Huntington’s, and Alzheimer’s
diseases (Fig. 10d). Structural and functional alteration of the
Golgi apparatus is recognized as a constant pathological hallmark
of neurodegenerative disease, including Parkinson’s, Hunting-
ton’s, and Alzheimer’s diseases?>. A pathway related to
hypertrophic cardiomyopathy and dilated cardiomyopathy was
also prominent. These results suggest that the pathological
mechanism of cardiac dysfunction induced by Fktn elimination
partly overlaps with that of neurodegenerative disease.

To investigate the cause of the Golgi pathology observed in
Fktn elimination, we examined localization of the a-DG protein
using antibody against the core region of a-DG (core a-DG) in
cultured neonatal cardiomyocytes isolated from MCK-Fktn-cKO
hearts (Fig. 10e). In control myocytes, core a-DG co-localized
with the post-Golgi marker Rab3a beneath the membrane
(Fig. 10e, upper panels). On the other hand, although core
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a-DG also co-localized with Rab3a in ¢cKO myocytes, its signal
accumulated intracellularly on the vesicle structure (Fig. 10e,
lower panels). Next, we examined whether accumulation of core
a-DG is a critical factor in disorganization of the Golgi apparatus
(Fig. 10f). We observed faint signals of anti-core a-DG antibody
beneath the membrane in HEK cells (Fig. 10f, upper panels). On
the other hand, FKTN-KO HEK cells showed internally
accumulated core a-DG, which mainly co-localized with Rab3a,
and fragmentation of the Golgi apparatus (Fig. 10f, middle
panels). Forced expression of full-length DG induced accumula-
tion of core a-DG in the post-Golgi area, which co-localized with
Rab3a (Fig. 10f, left lower panels). However, we did not observe
fragmentation of the Golgi apparatus by GM130 labeling (Fig. 10f,
right lower panels). These observations suggest that accumulation
of core a-DG does not trigger the Golgi pathology observed in
Fktn-deficient cells and thus that FKTN may be critical for the
maintenance of Golgi structure and function.

Discussion

As DG glycosylation and the DGC play essential roles in the
connection between the basement membrane and sarcolemma in
skeletal muscle?344, the loss of membrane integrity has been
thought to be a cause of muscle damage in cardiac tissues®>. In
support of this hypothesis, it was shown that DG limits cardiac
myocyte membrane damage?®. In addition, our present study

demonstrates, for the first time, the cellular and molecular
pathomechanisms of heart failure associated with a-DGpathy.

Studies of skeletal muscle-specific Fktn-cKO mice indicate that
the loss of functional a-DG protein likely contributes to the
pathogenesis of muscular dystrophy?344, Surprisingly, our study
shows a lack of cardiac dysfunction in young-adult MCK-Fktn-
cKO mice despite the marked reduction in DGC proteins in the
cardiac sarcolemma, suggesting that membrane fragility is not the
sole etiology of cardiac dysfunction. Cardiac dysfunction with
impaired myocyte shortening in old age (Figs. 1 and 2) or vul-
nerability to hemodynamic stress at a young age (Fig. 3) in MCK
promoter-driven cKO hearts suggests that the FKTN protein is
critical for maintaining cardiac structure and function under
conditions of aging and hemodynamic stress. Therefore, MCK
promoter-driven cKO hearts may have an unknown compensa-
tory mechanism that prevents mice from manifesting any obvious
phenotypes of FKTN deficiency during the young-adult age under
normal physiological conditions. Therefore, it is possible that the
acute Fktn deficiency results in severe cardiac dysfunction and
reduced survival in the young mice. Notably, DGC localization
was not affected in these young mice, suggesting that reduced a-
DG glycosylation and DGC expression may not be the sole rea-
sons for cardiac dysfunction.

A main finding is that FKTN is crucial for maintaining con-
tractile function and Ca?t handling during E-C coupling in
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individual cardiomyocytes. By contrast, previous studies of
dystrophin-deficient mdx mice found changes in Ca?* signaling
with only slightly elevated resting intracellular concentrations and
potentially arrhythmogenic E-C coupling in ventricular myo-
cytes?748, Homeostasis in young-adult Fktn-deficient mice may
have been achieved by reduced Ca?* influx through LTCC and

12

increased efflux by NCX1 or SERCA (Supplementary Fig. 13),
proteins that play important roles in Ca>t homeostasis and Ca?*
handling during E-C coupling?”4%>0. These alterations indicate
that reserved capacity in responses to cardiomyocytes stress was
impaired without causing significant cardiac dysfunction.
Chronic isoproterenol treatment in these mice downregulated
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Fig. 10 Fktn elimination impacts Golgi-related genes and structure. a Microarray analysis using floxed and aMHC-MCM-Fktn-cKO (Fktnflox/flox;
aMHC-MCM™/=) hearts treated with tamoxifen for 4 d. Heat map displaying hierarchical clustering and expression levels of differentially expressed
Golgi apparatus-related genes. b Volcano plot of upregulated or downregulated genes in tamoxifen-treated aMHC-MCM-Fktn-cKO (Fktnflox/flox;
aMHC-MCM+/~) hearts. Dots indicating Pde4dip, Pcnt, and Clasp are overlapping. € Gene set enrichment analysis revealing enriched pathways and
processes in tamoxifen-treated aMHC-MCM-Fktn-cKO hearts. d Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) categories
show differentially expressed gene pathways in tamoxifen-treated aMHC-MCM-Fktn-cKO hearts. e Representative immunofluorescence images of
neonatal cardiomyocytes cultured with FCS (Core DG, green; Rab3a, red; DAPI, blue). Scale bar, 50 pm. f Representative immunofluorescence images of
HEK, FKTN-KO HEK, and HEK expressing full-length DG (Core DG, green; Rab3a, red; DAPI, blue (left panels); Core DG, green; GM130, red; DAPI, blue

(right panels)). Scale bar, 50 pm.

Akt and upregulated CamKIJ, suggesting altered Ca2*-dependent
signaling. Thus, the inability to precisely regulate intracellular Ca2
* after Fktn elimination likely impacted cell survival in the long
run. Indeed, we also observed an upregulation of the hypertrophic
mediator calcineurin®! and a downregulation of its endogenous
inhibitor MCIP%2, along with strong induction of the hyper-
trophic marker ANP, in MCK-Fktn-cKO mice at 16 weeks of age
(Supplementary Fig. 13). Thus, at this age, hypertrophic remo-
deling, mediated by Ca?*t-calcineurin signaling, is already
underway before abnormalities in morphology and contractility
emerge. In our study, Fktn-deficient cardiomyocytes showed
hyperphosphorylation and altered localization of HDACY, which
is a direct transcriptional target of MEF2 and acts as signal-
responsive repressor of cardiac hypertrophy3!. HDAC9-knockout
mice are ultrasensitive to hypertrophic stimuli and spontaneously
develop cardiac hypertrophy with advanced age3!. Thus, HDAC9
alterations can be associated with the vulnerability to stress in
Fktn-deficient myocytes. The constitutive phosphorylation of
PKD, which transduces signals for diacylglycerol biogenesis®3,
and hyperphosphorylation of HDAC9 under basal conditions in
the hearts of Fktn-deficient mice suggest there may be excessive
transcriptional activation in response to stress.

Another key finding is that FKTN is essential for maintaining
the Golgi-derived MT network in cardiomyocytes. Constitutively
phosphorylated PKD in myocytes from young MCK-Fktn-cKO
mice or tamoxifen-treated aMHC-MCM-Fktn-cKO myocytes
may remain associated with the cytoplasmic surfaces of Golgi
membranes and regulate the fission of vesicles that carry protein
and lipid cargo to the plasma membrane®*. We also observed the
vesiculation of Golgi and accumulation of MT in the myocytes
from old MCK-Fktn-cKO mice (Supplementary Fig. 10), sup-
porting the notion that FKTN is involved in the maintenance of
the Golgi-MT network. Alternatively, PKD phosphorylation in
myocytes from old MCK-Fktn-cKO mice was lower than that in
control myocytes (Supplementary Fig. 11). This contradiction
may be explained by differences in timing of Fktn deletion, dis-
ease progression course (period), and hemodynamic stress con-
ditions, thus reflecting pathogenesis and/or pathological
consequences. Nonetheless, our data show that FKTN protein
plays a role in the maintenance of Golgi-MT network in cardi-
omyocytes. Considering the results that old MCK-Fktn-cKO mice
showed very mild pathology compared to isoproterenol-treated
young MCK-Fktn-cKO mice or tamoxifen-treated aMHC-MCM-
Fktn-cKO mice, our data also suggest the presence of a com-
pensatory mechanism during long-term progression in the pre-
sence of Fktn deficiency.

The altered distribution of GM130 in FKTN-deficient HAP
and HEK cells indicates that the Golgi morphology was also
altered independently of PKD activity (Fig. 5e, f). Impairment of
glycosylation by Fktn deficiency may accelerate fragmentation of
the Golgi apparatus by enhancing the budding of vesicles from
the Golgi membrane or disrupting protein trafficking. We
observed the accumulation of core a-DG in the post-Golgi area
and fragmentation of the Golgi apparatus in Fktn-deficient

cardiomyocytes and HEK cells (Fig. 10e, f). HEK cells expressing
full-length a-DG also showed accumulation of core a-DG in the
post-Golgi area (Fig. 10f). However, we did not observe abnormal
fragmentation of the Golgi apparatus in cells, suggesting a pivotal
role of FKTN in the maintenance of Golgi integrity (Fig. 10f).
FKTN is targeted to the medial Golgi apparatus through its N-
termini and transmembrane domain®. Therefore, the lack of
FKTN per se might affect the integrity of the Golgi ribbon.
Alternatively, FKTN also forms a complex with other Golgi-
resident glycosyltransferases®®>7, and thus, the lack of FKTN may
change cellular glycosylation, affecting Golgi structure and
function. The results of our microarray analysis also suggest the
impact of FKTN on expression of Golgi-related genes. Elimina-
tion of Fktn led to the downregulation of genes encoding the
anchoring protein of y-TuRC at cis-Golgi and MT-stabilizing
protein (Fig. 10b). Golgi-derived MT networks serve important
roles in post-Golgi trafficking, maintenance of Golgi integrity, cell
polarity, and cellular function*2. The disruption of MT dynamics
in Fktn-deficient myocytes may impact Golgi vesiculation, with
the accumulation and densification of MTs affecting both the
central cellular localization of Golgi and ER-Golgi-plasma
membrane trafficking, which indirectly impacts the size and
morphology of the Golgi®8. Recent studies show that disintegra-
tion of Golgi structure and function is one of the main causes of
Alzheimer’s disease*2. In this disease, precipitation of hyper-
phosphorylated tau protein is also related to Golgi structure and
function*2. Remarkably, KEGG analysis suggested that heart
failure induced by acute Fktn elimination has a common etiology
with neuromuscular disease (Fig. 10d). Our results further suggest
a mechanistic connection between the Golgi apparatus and
myocyte T-tubule organization, which is crucial for Ca’*
homeostasis in cardiomyocytes. Further investigations will clarify
the FKTN-dependent maintenance of Golgi-derived MT
networks.

Cardiomyocytes isolated from acute Fktn deficiency in young
mice had dramatically disrupted T-tubule membranes and MT
densification, as seen in failing hearts of human patients and
animal models®>>%€0. Studies show that MT-mediated defects in
JP2 trafficking contribute to myocyte T-tubule remodeling in
heart failure3+38. Here, we show that Fktn elimination also led to
a reduction and redistribution of JP2. Thus, disorganization of the
T-tubule membrane in Fktn-deficient mice might be caused by
MT-mediated defects in JP2 trafficking. These changes con-
tributed to reduced myocyte contractility and cardiac dysfunc-
tion, which were ameliorated by colchicine treatment. These data
suggest that the accumulation of MTs after Fktn elimination is a
major contributor to myocyte dysfunction and that an effective
therapeutic strategy for heart failure involves MT depolymeriza-
tion. MT densification increases the stiffness of cells, thereby
mechanically impeding sarcomere motion®’, and alters T-tubules,
which are important for E-C coupling®*. We show that treatment
with colchicine not only restored myocyte shortening, Ca?*t
handling during E-C coupling, and contractile efficiency but also
ameliorated severe cardiac dysfunction and improved the survival
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of mice with FKTN deficiency. One question is whether colchi-
cine treatment can be applied to other forms of muscular
dystrophy-associated cardiomyopathies. Answering this question
requires a system that can tightly control the timing of elim-
inating the expression of the responsible gene, as we did in this
study. However, a previous report suggested that colchicine
treatment improves Ca2* handling in mdx mice8, a model for
DMD; although, the exact mechanism remains to be elucidated.
Importantly, as colchicine is already an FDA-approved drug for
the treatment of familial Mediterranean fever and acute gout
flares, our findings suggest that this drug may also be useful for
treating muscular dystrophy-associated heart failure.

Several studies have raised concerns that tamoxifen treatment
may adversely influence cardiac function in adult MCM
mice®162, DNA damage response occurs in these hearts, resulting
in cardiomyocyte apoptosis, cardiac fibrosis, and cardiac dys-
function®!. Therefore, Koitabashi et al.>3 recommended a reduced
tamoxifen dosa§e of <20 mg/kg of body weight per day for use in
aMHC-MCM*/~ mice (an approximate total dose of 80 mg/kg).
In this study, we administered tamoxifen by intraperitoneal (i.p.)
injection consecutively for 4d at a dosage of 8 mg/kg of body
weight in 10-week-old Fktnflox/flox MCM+/-, Fktnflox/+;MCM /-,
and Fktnflox/flo MCM~/= mice. This dose (8 mg/kg per d,
approximate total dose of 32 mg/kg) was sufficient for reducing
FKTN protein expression and Fktn transcription (Supplementary
Fig. 6e and Fig. 10b). In our microarray analysis, we were unable
to detect any alterations in the signaling pathways involved in
DNA damage response in Fktn/lox/flox; qMHC-MCM*/~ hearts
treated with tamoxifen for 4 d (Fig. 10). In addition, tamoxifen
treatment had no effect on the overall cardiac structure and
function of FktnfloX/+;aMHC-MCM/~ (hetero) mice (Supple-
mentary Fig. 7). Together, our results show that the heart-failure
phenotype seen in tamoxifen-treated aMHC-MCM-Fktn-cKO
(Fktnflox/flox; e MIHC-MCM™*/~) mice is not due to adverse effects
of tamoxifen or excessive MCM expression. After 4 d of tamox-
ifen treatments, Fktn mRNA levels were reduced by about 80%
in the hearts of aMHC-MCM-Fktn-cKO (Fktnflox/flox,a MHC-
MCM*/~) mice (Supplementary Fig. 7c). In addition, FKTN
protein expression was reduced by 80-90% in aMHC-MCM-
Fkin-cKO  (Fkinflox/flox,a MHC-MCM*/~) mice after 4d of
tamoxifen treatment or 6 d after the onset of tamoxifen treatment
compared with vehicle control hearts (Supplementary Fig. 6e).
These data also suggest that the half-life of FKTN protein is <4 d.
Thus, FKTN mRNA and/or FKTN protein likely have a fast
turnover rate. Altogether, our data strongly suggest that acute
reduction of FKTN protein expression results in severe cardiac
dysfunction in tamoxifen-treated Fktn/1ox/flox; qMHC-MCM/—
mice. Thus, FKTN protein is crucial for the maintenance of
cardiac structure and function in mice.

Methods

Animals. All the mouse experiments have been done according to the all relevant
ethical regulations. Mice were housed in a facility accredited by the Japan Act on the
Welfare and Management of Animals (No. 105). All animal studies were approved
by the Institutional Animal Care and Use Committee of Okayama University
(Okayama, Japan), and conformed to the Japan Act on the Welfare and Manage-
ment of Animals (No. 105). Littermates were used in this study to randomize
genetic variation. Mice carrying a Fktn/lo¥/lox allele for conditional deletion of FKTN
exon 2 were generated by homologous recombination in mouse C57BL/6 ES cells?3.
To produce Fktnflox/flox; M[CK-Cre /- (MCK-Fkin-cKO) mice, Fkinflox/flox mice
were mated with transgenic mice expressing Cre recombinases under the control of
the MCK promoter (B6.FVB(12954)-Tg(Ckmm-cre)5Khn/J; The Jackson Labora-
tory, Stock No. 006475), and the offspring were back-crossed with Fktn/l0x/flox mice
(C57BL/6 background) over 25 generations. Transgenic mice expressing
tamoxifen-inducible cardiomyocyte-specific Cre recombinase, «MHC-MCM ™/~
(FVB/N background; The Jackson Laboratory, Stock No. 005650), were back-
crossed with C57BL/6 mice over 20 generations. To delete the floxed alleles in a
tamoxifen-inducible cardiomyocyte-specific manner, Fktn/lo¥//lox mice were
mated with aMHC-MCM*/~ mice from an obtained colony, and the offspring

were back-crossed with Fktnflox/flox mice (C57BL/6 background) over 20 genera-
tions. As a result, we obtained C57BL/6-congenic Fktnflox/flox,a MHC-MCM*/-
mice (aAMHC-MCM-Fktn-cKO). We used Fktnflo¥/flox Jittermates mainly as age-
matched controls in this study. Germline transmission of Fktn conditional null
alleles was confirmed by Southern blotting and PCR genotyping using the primer
pair, Fukutin-F, 5'-GTCAAATAGCATAATTACGGGACAG-3' and Fukutin-R,
5'-CAAGTATGGCAGTACACATTTATCG-3', yielding products of 778 bp (wild
type) and 870 bp (null allele). Cre transgene was confirmed by PCR using primer
pair, cre-newF, 5'-CCATCTGCCACCAGCCAG-3' and cre-newR, 5'-TCGCCA
TCTTCCAGCAGG-3'. To induce Cre-mediated recombination, 8 mg/kg tamox-
ifen or its vehicle (peanut oil) as a control was administered by i.p. injection to
Fhktnflox/lox MCM+/-, Fktnflox/*;MCM*/~, and Fktnflox/flox; \{CM~/~ mice once
daily for 4 consecutive days. Colchicine or its vehicle (saline) was administered by i.
p. injection from 2 d after the start of tamoxifen. The injection began with 0.4 mg/
kg and progressed to 1 mg/kg (0.4 mg/kg, 0.6 mg/kg, 0.8 mg/kg, and 1 mg/kg) to
allow the mice to adjust to the drug. Then, 1 mg/kg colchicine administration
continued until 10 d after the start of tamoxifen treatment. For treatments with
phenylephrine and isoproterenol, micro-osmotic pumps (Azlet model 1002) were
inserted subcutaneously, delivering 80 mg/kg/d phenylephrine or 20 mg/kg/d iso-
proterenol for 2 weeks. Control animals were treated with saline.

Thoracic aortic constriction surgery. Left ventricular pressure overload was
induced by thoracic aortic constriction. The 10-week-old mice (weighing 20-22 g)
were anesthetized by i.p. injections of a mixture of ketamine (100 mg/kg) and
xylazine (5 mg/kg). After orotracheal intubation, cannulae were connected to a
volume-cycled ventilator (SN-480-7; Shimano, Japan) with room air at a tidal
volume of 0.2 ml and a respiratory rate of 110 breaths per minute. The chest
cavities were entered through small incisions to the second intercostal space, and
the transverse aortas were constricted with 7-0 nylon strings by ligating with a
blunted 27-gauge needle, which was later removed.

Neonatal cardiomyocyte culture. Primary cardiomyocyte cultures were prepared
from ventricles of 1-d-old mice by very gentle trypsinization at room temperature
using a modified method for rat neonatal hearts*®. Briefly, hearts were rapidly
removed from neonatal MCK-Fktn-cKO or control (floxed) mice anesthetized with
an overdose of pentobarbital (30 mg/kg, i.p.). The ventricles were excised, cut into
several pieces, and washed three times with 10 ml ice-cold PBS for 1 min by gentle
shaking. The tissue pieces were digested three times with 0.06% trypsin in DMEM
(8 ml) for 8 min at 37 °C by gentle agitation. The cells were resuspended in DMEM
with 10% FCS to stop trypsinization and centrifuged at 1400 x g for 3 min. The cell
pellets were resuspended in fresh DMEM containing 10% FCS, plated on collagen-
coated 24-well dishes at a density of 4 x 104 cells per well, and maintained in
DMEM containing 10% FCS. After 24 h, the cells were divided into three groups
and then maintained for up to 72 h in DMEM alone or DMEM with 10% FCS or
with 10 uM phenylephrine. The formation of myocytes clusters and spontaneous
synchronized beating were confirmed by observation under an inverted microscope
(CKX41; Olympus). Cellular viability was investigated at 48 h of culture by using a
The LIVE/DEA Fixable Green Dead Cell Stain Kit (Invitrogen). Cells viability were
validated on three independent experiments for cell type.

Isolation of adult mouse ventricular myocytes. Ventricular myocytes were
obtained from 10-month-old male MCK-Fknt-cKO, aMHC-MCM-Fknt-cKO, or
floxed-control mice. Hearts were rapidly removed from adult mice anesthetized
with an overdose of pentobarbital (300 mg/kg, i.p.) and Langendorff-perfused at a
constant hydrostatic pressure of 70 cm H,O at 37 °C using cell-isolation buffer
(CIB; 130 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl,, 0.33 mM NaH,PO,, 22 mM
glucose, 50 nM/ml bovine insulin, and 25 HEPES-NaOH (pH 7.4)) supplemented
with 0.4 mM EGTA, which chelates calcium within the heart. Insulin was used
from a 1 U/ml stock solution in 0.1 mM HCI (pH 4.0). EGTA was from a 400 mM
stock in 1 M NaOH (pH 7.8). The perfusate was then switched to the enzyme
solution (15 ml) of CIB supplemented with 0.3 mM CaCl,, 1 mg/ml collagenase,
0.06 mg/ml trypsin, and 0.06 mg/ml protease. Once the tissue had undergone
complete digestion, the ventricles were excised, cut into several pieces, and further
digested in fresh enzyme solution (15 ml) for 15-20 min at 37 °C until they were
mostly dissociated. The CaCl, level in this enzyme solution was increased to 0.7
mM and supplemented with 2 mg/ml BSA. The cell suspension was centrifuged at
1400 x g for 3 min. The cell pellet (~0.1 ml) was resuspended in CIB supplemented
with 1.2 mM CaCl, and 2 mg/ml BSA, then incubated at 37 °C for 10 min, cen-
trifuged (1400 x g for 3 min), and resuspended in 10 ml Tyrode’s solution (140 mM
NaCl, 54 mM KCl, 1.8 mM CaCl,, 0.5 mM MgCl,, 0.33 mM NaH,PO,, 11 mM
glucose, and 5 mM HEPES-NaOH (pH 7.4)) supplemented with 2 mg/ml BSA.
Isolated cardiomyocytes were incubated at 37 °C in Tyrode’s solution containing
10 uM colchicine for 1h to depolymerize MTs or 25 uM ilimaquinone for 15 min
to induce vesiculation of Golgi membranes.

Cell shortening and Ca2* transients in isolated myocytes. Isolated cardio-

myocytes were loaded with 10 pM Indo-1 AM and electrically stimulated at 1 Hz
using a two-platinum electrode insert connected to a bipolar stimulator (SEN-3301;
Nihon Kohden) on the stage of an inverted microscope (IX71; Olympus) with a
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20x water immersion objective lens (UApo N340; Olympus). Calcium transients
were measured as the ratio of fluorescence emitted at 405/480 nm, after excitation
at 340 nm, using a high-performance Evolve EMCCD camera (Photometrics).
Cardiomyocytes were maintained under continuous flow in standard Tyrode’s
solution, exchanged using a microperfusion system. The experiments were recor-
ded and analyzed using MetaMorph software (version 7.7.1.0; Molecular Devices).
To estimate the effect of colchicine on cell contraction, we calculated the efficiency
of converting elevated Ca?* levels to cell contraction by dividing the percentage of
cell shortening by the Ca2* amplitude.

SR Ca?" contents in adult cardiac myocytes. SR Ca2™ content was assessed by
rapid applying 10 mM caffeine and measuring the resulting Ca?* transients in
isolated cardiomyocytes. Fura-2 acetoxymethyl ester (Fura-2)-loaded myocytes
were alternately excited at 340 and 380 nm using a Lambda DG-4 ultra-high-speed
wavelength switcher (Sutter Instrument) coupled to an inverted microscope IX71
(Olympus) with a UApo 20x/0.75 objective lens (Olympus). The Fura-2 fluorescent
signal was recorded by ORCA-Flash 2.8 (Hamamatsu Photonics) and analyzed
using a ratiometric fluorescence method with MetaFluor software (version 7.7.5.0;
Molecular Devices).

Generation of knockout cell line with CRISPR/Cas9. The CRISPR/Cas9 tar-
geting sequence for FKTN was GAGTAGAATCAATAAGAACG. The oligonu-
cleotides for this sequence were inserted into the Cas9 Smart nuclease all-in-one
vector (System Biosciences, Mountain View, CA) with an additional 8-base
sequence at the 5’ terminus. The vector was transfected into HEK293 (American
Type Culture Collection, Manassas, VA, USA; CRL-1573) or HAPI cells (Haplo-
gen, Vienna, Austria; C631). IIH6-negative cells were sorted by fluorescence-
activated cell sorting (MoFlo, Beckman Coulter, Brea, CA). HEK293 cells were
cultured in DMEM supplemented with 10% FCS and penicillin/streptomycin.
HAPI cells were cultured in Iscove’s modified Dulbecco’s medium (Wako Pure
Chemical Industries) supplemented with 10% FCS and penicillin/streptomycin.
Each cell clone was verified for IIH6 reactivity by Western blot analysis and DNA
sequencing. The mutations in each clone were as follows: (HEK293 cell is a tri-
ploid) HEK FKTN1o-2 (27-bp deletion, 1-bp deletion, and 1-bp insertion in exon
2, causing frameshifts) and HAP FKTN5 (34-bp deletion in exon 2, causing a
frameshift).

Histology. Hearts were excised and immediately fixed in buffered 4% paraf-
ormaldehyde, embedded in paraffin, and sectioned at a thickness of 4 um.

Electron microscopy. Excised hearts were fixed in 2% paraformaldehyde/2%
glutaraldehyde in PBS. The sections were examined under a JEM-1200 electron
microscope (Nihondensi, Co., Japan).

Antibodies. The following antibodies were used for immunostaining or
immunoblot analysis: anti-IIH6 (1:500 dilution, 05-593, Millipore); anti-B-DG
(1:1000 dilution, B-DG-CE, Novocastra); anti-dystrophin (1,1000 dilution, sc-
15376), anti-JP2 (1:500 dilution, sc-51313), anti-calcineurin (1:1000 dilution, sc-
9070), anti-CamKII (1:1000 dilution, sc-9035), and anti-phosphorylated CamKII
(1:1000 dilution, sc-12886) (Santa Cruz); anti-aSG (1:500 dilution, 20A6), anti-
BSG (1:500 dilution, 5B1), and anti-ySG (1:500 dilution, 2185) (Leica); anti-Akt
(1:1000 dilution, 9272), anti-phosphorylated Akt (1:1000 dilution, 4060), anti-
PKD (1:1000 dilution, 2052), anti-phosphorylated PKD (S916, S744) (1:1000
dilution, 2051 and 2054, respectively), anti-HDAC9 (1:1000 dilution, 7628), and
anti-MEF2 (1:1000 dilution, 5030) (Cell Signaling); anti-GAPDH (1:2000 dilu-
tion, ab9484), anti-MCIP (1:1000 dilution, ab25124), and anti-GM130 (1:500
dilution, ab52649) (Abcam); anti-phosphorylated HDAC9 (1:1000 dilution,
SAB4300269) and anti-a-tubulin (1:100 dilution, T5168) (Sigma); anti-PI4P
(1:500 dilution, Z-P004) (Echelon); anti-Nat/K+ ATPase (1:1000 dilution,
07-674), anti-SERCA (1:1000 dilution, MA3-910), and anti-RyR (1:1000 dilu-
tion, MA3-916) (Thermo); anti-ANP (1;500 dilution, H005-24, Phoenix); anti-
Cav3 (1:1000 dilution, 610420, BD Pharmingen); and anti-LTCC (1:1000 dilu-
tion, AC-003, Alomone). The anti-NCX1 antibody was generated in our
laboratory. Anti-core a-DG is previously reported®?.

Immunocytochemistry. Frozen heart sections (5 pm), embedded in OCT com-
pound (Tissue-Tek), were permeabilized with 0.1% Triton X-100 and incubated
with primary antibodies. Mouse On Mouse (M.O.M.) Blocking Reagent (Vector
Laboratories) was used to block endogenous mouse antibody in the tissue sections.
Cells were examined using a confocal microscope (Fluoview FV1000; Olympus)
mounted on an Olympus IX81 epifluorescence microscope with a UPlanSApo 60x/
1.35 oil immersion objective lens (Olympus).

Immunoblotting. Mice hearts were homogenized using a Hiscotron homogenizer
(NITI-ON) in lysis buffer containing 20 mM HEPES (pH 7.4), 150 mM NaCl, 1%
sodium deoxycholate, 1% SDS, 2 ug/ml leupeptin, 1 pg/ml aprotinin, 200 uM phe-
nylmethylsulfonyl fluoride, and 200 M benzamidine hydrochloride. The lysates were
centrifuged at 100,000 x g for 20 min and the supernatants were used for immunoblot

analysis. DG from solubilized myocardium was enriched with wheat germ agglutinin-
agarose beads (Vector Laboratories). To detect the expression of FKTN protein,
cardiac muscles were solubilized with 1% Triton X-100 in TBS. The solubilized
samples were assayed for total protein concentration and then 4 mg of proteins were
subjected to FKTN antibody-conjugated beads to enrich FKTN proteins as previously
reported®. The bound materials were eluted with 0.1 M glycine-HCl (pH 2.5) and
then analyzed by Western blotting using FKTN antibody (RY213). Immunoreactive
bands were visualized using a chemiluminescence detection system (Perkin Elmer or
Amersham Biosciences Corp.) and an LAS3000 luminescent image analyzer (Fuji
Film). Uncropped and unprocessed full scan images are shown in Supplementary
information (Supplementary Fig. 14).

Microarray analysis. Microarray analysis was performed with an Agilent gene
expression microarray platform (SurePrint G3 Mouse Gene Expression 8 x 60 K).
We visualized genes with the largest variance using a hierarchical clustering
heatmap. For each gene, we compared expression levels between floxed and Fktn-
cKO RNAs. Gene expression differences were evaluated using the eBayes function
in the limma package®, microarray data were fit to a linear model, and differential
expression was estimated by empirical Bayes moderation. The resulting P-values
were corrected via the Benjamini and Hochberg method using the topTable
function. Differentially expressed genes were defined as those with Log, changes of
at least 1.5-fold between a pair of samples at an FDR of 0.001 for genes. Supple-
mentary Table 1 provides the complete dataset. For differentially expressed genes,
we carried out functional annotation analysis using DAVID. Differentially
expressed genes were used as the input gene list, and all mouse genes that were
expressed in the heart were used as the background. We looked for enrichment of
genetic associations within KEGG pathways. Enrichment pathways were analyzed
using ReactomePA.

Data analysis. Data were analyzed by individuals who were blinded to the
genotype, drug treatment, and operation. Data presented here were reproducible
in at least three independent experiments. Results are shown as the means * s.e.
m. Paired data were evaluated using a Student’s ¢-test. For multiple comparisons,
analyses of variance with Tukey-Kramer tests were performed as appropriate
using GraphPad Prism. The Kaplan-Meier method, with a log-rank test, was
used for survival analysis. A P value of <0.05 was considered statistically
significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying Figs. le, 3c, 4c, 4e, and 8b, d
are provided as Source Data file. The gene expression data were deposited at NCBI’s
Gene Expression Omnibus (GEO). It is accessible through GEO series accession number
of GSE138280.
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