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Guanidinocalix[5]arene for sensitive fluorescence
detection and magnetic removal of perfluorinated
pollutants
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Perfluorinated alkyl substances, such as perfluorooctane sulfonate (PFOS) and per-

fluorooctanoic acid (PFOA), are toxic materials that are known to globally contaminate water,

air, and soil resources. Strategies for the simultaneous detection and removal of these

compounds are desired to address this emerging health and environmental issue. Herein, we

develop a type of guanidinocalix[5]arene that can selectively and strongly bind to PFOS and

PFOA, which we use to demonstrate the sensitive and quantitative detection of these com-

pounds in contaminated water through a fluorescent indicator displacement assay. Moreover,

by co-assembling iron oxide nanoparticle with the amphiphilic guanidinocalix[5]arene, we are

able to use simple magnetic absorption and filtration to efficiently remove PFOS and PFOA

from contaminated water. This supramolecular approach that uses both molecular recognition

and self-assembly of macrocyclic amphiphiles is promising for the detection and remediation

of water pollution.
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Water pollution is a serious threat to the health of
organisms worldwide and is widely regarded as a
major environmental issue1. The contamination of

surface and ground water2 by perfluorinated alkyl substances has
particularly emerged as an environmental crisis impacting hun-
dreds of millions of people3,4 due to the increasing use of these
compounds in the production of fluoropolymers5, stain guard
products6, and fire-fighting foams7. The most common per-
fluorinated alkyl pollutants are perfluorooctane sulfonate (PFOS)
and perfluorooctanoic acid (PFOA) (Fig. 1), which have been
found in water worldwide, including the polar zones8. PFOS and
PFOA can bind to proteins9 and then deposit within the body,
resulting in undesirable effects10, including kidney11 and liver12

damage, thyroid disease13, immunotoxicity14, reproductive toxi-
city15, and cancer16. Moreover, these pollutants are highly stable
as a result of the thermodynamic stability of the C–F bonds17 and
demonstrate significant bioaccumulation, making them a persis-
tent chemical threat to the environment18.

According to the U.S. Environmental Protection Agency, the
health advisory level for the combined concentration of PFOA
and PFOS in drinking water is 70 ng L−1 3. Nevertheless, the
levels of them in drinking water typically exceed that threshold in
communities near industrial areas, airports, and military
facilities3,19,20. As a result, there is an increasing need for rapid
and sensitive techniques for the detection of PFOS and PFOA in
contaminated water, as well as efficient remediation methods.

Typical non-labeled detection methods of PFOS and PFOA,
include gas chromatography with electron capture detection21

and chromatography-mass spectrometry3. However, the long
analysis time and requirement of expensive instrumentation
hinders the application of these techniques in high-throughput
screening of environmental samples. There have been limited
studies on the development of simple, inexpensive, and sensitive
optical methods (e.g., via fluorescence or colorimetric changes)
for the detection of PFOS22 and PFOA23,24. Furthermore, the lack
of a specific receptor design can limit the sensitivity and selec-
tivity of these optical detection methods25.

Degrading PFOA and PFOS is difficult and will produce new
toxic byproducts26. Therefore, absorption may be the most sui-
table technique for purifying PFOS and PFOA from con-
taminated water27. Typical absorbents are made of activated
carbon28, carbon nanotubes29, resins28, polymers30, mineral

materials, biomaterials, and molecularly imprinted polymers31.
However, there are few absorbents specifically designed for per-
fluorinated alkyl substances32, and no absorption system has been
integrated with real-time detection through simple optical
techniques.

Supramolecular chemistry represents an elegant approach
to construct multifunctional materials for challenging appli-
cations33,34, with the virtues of molecular recognition and
self-assembly. Macrocyclic hosts, such as crown ether35, cyclo-
dextrin36, calixarene37–40, pillararene41,42, cucurbituril43,44, and
others45,46, are families of well-studied artificial receptors with a
cavity that can be selective for the recognition of particular
guests. Efficient molecular recognition by macrocycles in aqu-
eous media has been demonstrated for various applications,
including the detection44,47 and absorption48,49 of pollutants.
One representative example is β-cyclodextrin50, which displays
a binding affinity of ~104 M−1 for PFOS and PFOA51, enabling
a β-cyclodextrin polymer network to efficiently sequester
PFOA27,52. Exploring artificial receptors with extraordinarily
high affinities to PFOS and PFOA is crucial for both the detec-
tion and absorption of these compounds, as stronger binding will
result in higher sensitivity and absorption efficiency.

In this work, we report the nanomolar binding of two different
guanidinocalix[5]arenes (GC5A-6C and GC5A-12C, which fea-
ture 6 and 12 carbon atoms in each alkyl chains at the lower rim
of the macrocycles, respectively) (Fig. 1) towards PFOS and
PFOA. Based on molecular recognition, we achieve sensitive
fluorescence detection of PFOA and PFOS using an indicator
displacement assay (IDA) with fluorescein (Fl) as the reporter dye
(Fig. 1). Moreover, efficient magnetic absorption of PFOA and
PFOS is achieved by loading magnetic iron oxide nanoparticle
(MNP) into the GC5A-12C assembly.

Results
Complexation studied by theoretical calculations and NMR.
Both PFOS and PFOA possess two potential binding sites: a head
group composed of sulfonate (PFOS) or carboxylic acid (PFOA)
and a C–F chain tail. Based on these structural features, we
explored GC5A-6C as a candidate receptor mainly due to its
complementary size and shape compared to the chain structures
of PFOS and PFOA, as well as its salt-bridge interactions. GC5A-
6C was synthesized and purified according to our previous
method53. Geometry optimizations of the GC5A-6C•PFOA and
GC5A-6C•PFOS complexes were performed using the B3LYP-
D3/6–31G(d)/SMD(water) method (Supplementary Note 1)54–57,
in which we found that both complexes feature a threading
geometry (Fig. 2a and Supplementary Fig. 1).

To gain further understanding of the molecular recognition
behavior, we calculated and mapped the molecular electrostatic
potential (MEP)59 on the molecular van der Waals surfaces of
GC5A-6C and PFOS (Fig. 2a). GC5A-6C is electron-deficient,
especially at its upper rim, and PFOS is electron-rich, particularly
at its sulfonate head group. The optimized binding geometry is
reasonable since molecules tend to approach each other in a
complementary manner of the MEP. Furthermore, independent
gradient model analysis58 (Fig. 2b) reveals the strong N–H···O
hydrogen bonds (blue areas in the isosurfaces) between the
guanidinium groups of GC5A-6C and the head group of PFOS.
The green areas in the isosurfaces indicate the existence of (1)
weak C–H···F–C hydrogen bonds between alkyl chains in the
GC5A-6C and the fluorocarbon chain in PFOS60, and (2) van der
Waals interactions of the aromatic rings and oxygen atoms in
GC5A-6C with the fluorocarbon chain in PFOS. Coloring
the atoms of GC5A-6C according to their contribution to the

GC5A-6C : R = (CH2)3CH(CH3)2

GC5A-12C : R = (CH2)11CH3

PFOS : R = CH2SO3K
PFOA : R = COOH

Fl

5

Fig. 1 Chemical structures of hosts and guests. Chemical structures of the
employed calixarene hosts (GC5A-6C and GC5A-12C), the Fl reporter dye,
and the perfluorinated pollutants (PFOS and PFOA) in this work.
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host-guest complexation clearly shows that the main contribu-
tions derive from the guanidinium groups and aromatic rings,
though the alkyl chains also provide weak interactions (Fig. 2c).
As a result, the synergistic effect of these different interactions
contributes to the strong binding between GC5A-6C and PFOS or
PFOA as desired. We verified the complexation of PFOA with
GC5A-6C by 19F nuclear magnetic resonance (NMR) experi-
ments in CD3OD. The significant upfield shift in the fluorine
nuclei link to Cα was observed (Supplementary Fig. 2), which may
be caused by the intermolecular N–H···F hydrogen bonds between
guanidinium groups of GC5A-6C and fluorine atoms link to
Cα of PFOA when PFOA was encapsulated into the cavity of
GC5A-6C (Supplementary Fig. 1).

Sensitive and selective detection of PFOS and PFOA. We fur-
ther determined the binding affinities of GC5A-6C to PFOS and
PFOA using an IDA (Fig. 3a), in which a fluorescent indicator
first reversibly binds to the receptor (Supplementary Fig. 3).
Then, an analyte is added into the solution, displacing the indi-
cator from the cavity of the receptor, which changes the optical
signal61. By employing GC5A-6C•Fl as the reporter pair (Ka=
5.0 × 106 M−1)53, we obtained binding affinities of (3.5 ± 1.0) ×
107 M−1 for PFOS (Fig. 3b) and (1.7 ± 0.3) × 107 M−1 for PFOA
(Fig. 3c). The binding affinities are about three orders of mag-
nitude higher than those of previously reported supramolecular
hosts toward PFOS, which are around 104 M−1 (Supplementary
Table 3).

The principle of the IDA allows for fluorescence “switch-on”
sensing of PFOS and PFOA using the GC5A-6C•Fl reporter
pair. The fluorescence increase linearly with increasing PFOS
(Fig. 4a) and PFOA (Fig. 4b) concentrations, respectively. Based
on these results, we calculated the limit of detection (LOD)
values as 21.4 ± 0.4 nM (11.3 ± 0.2 μg L−1) for PFOS and 26.4 ±
0.2 nM (10.9 ± 0.1 μg L−1) for PFOA by a 3σ/slope method62.
The sensitivity of this assay to PFOS and PFOA is superior to or
comparable with those of gas chromatography and high-
performance liquid chromatography techniques63, indicating
that this facile and sensitive fluorescence assay has potential for
rapid detection of heavy contamination by PFOS and
PFOA21,63. For example, the PFOA concentration in drinking
water near a fluorochemical facility in Washington, West
Virginia, USA, is as high as 13.3 μg L−1, which is 190-fold
greater than the health advisory level (70 ng L−1) recommended
by the U.S. Environmental Protection Agency3,64. Given the
sensitivity of our technique, it should be possible to quickly
detect PFOS and PFOA in the drinking water of such
contaminated regions.

We also evaluated the detection selectivity of GC5A-6C for
PFOA and PFOS. For comparison, we determined that
octanesulfonic acid and octanoic acid (C–H chain surfactants)
exhibit affinities of (6.0 ± 1.1) × 104 M−1 (Supplementary Fig. 4)
and (7.6 ± 0.8) × 104 M−1 (Supplementary Fig. 5) with GC5A-6C,
respectively. For these C–H chain surfactants, the hydrogen
atoms feature a 23% smaller van der Waals radius compared to
fluorine44, which leads to smaller molecular volumes. As a result,
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Fig. 2 Binding geometry of GC5A-6C and PFOS. a The optimized binding geometry of the GC5A-6C•PFOS complex (right) at the B3LYP-D3/6–31G(d)/
SMD(water) level of theory and the MEP-mapped molecular van der Waals surfaces of GC5A-6C (left) and PFOS (middle). b δginter= 0.01 a.u. isosurfaces
colored by the sign of (λ2)ρ for the GC5A-6C•PFOS complex (the meaning of δginter and sign(λ2)ρ were in ref. 58). Blue indicates strong attraction, while
red indicates strong repulsion. c The atoms of GC5A-6C colored according to their contributions to the binding with PFOS. White indicates no contribution
to the complexation, and blue indicates the largest relative contribution.
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their binding affinities are almost three orders of magnitude lower
than those of PFOS and PFOA. Furthermore, the addition
of common anionic/cationic surfactants, perfluorohexane and
anions caused no significant enhancement in the fluorescence
intensity of the GC5A-6C•Fl complex (Fig. 5). Salt concentrations
are considered to be orders of magnitude higher than PFOS
and PFOA in contaminated water. Even 1000-fold excess salts
(NaCl, KCl, and MgCl2) resulted in much smaller fluorescence
recovery of the GC5A-6C•Fl reporter pair than PFOS and PFOA
(Supplementary Fig. 6). Considering that other unknown
pollutants in real highly contaminated water might interfere with
the detection selectivity of GC5A-6C, we collected the waste water
samples from the manufacturing facility (Cangzhou, Hebei

Province, China), and freeze-dried these highly contaminated
water samples. The addition of the obtained powder with mass
concentration more than ten times higher than PFOS and PFOA
also caused no significant enhancement in the fluorescence
intensity, which validated GC5A-6C could bind preferentially to
PFOS and PFOA over other pollutants in the real world.
Moreover, the selectivity to various interferences in Fig. 5 were
established in the real highly contaminated water (Supplementary
Fig. 7).

To evaluate the applicability and reliability of the proposed
method and considering interfering species commonly found in
environmental water samples from different sources, we applied
the assay to detect PFOS and PFOA in tap water and lake water
samples. The water samples were obtained from tap water and
Mati Lake (Nankai University, Tianjin, China), which were
immediately filtered through 0.45 μm micropore membranes to
remove insoluble particles and stored in brown glass bottles as
blank samples. Then, we performed the IDA of PFOS and
PFOA in the tap and lake water samples containing variable
concentrations of the compounds. Despite the existence of
various interfering species in these water samples, linear
increases in the fluorescence of the GC5A-6C•Fl complex were
observed as we increased the concentrations of PFOS and
PFOA (Fig. 4c–f). These linear relationships allowed us to
establish calibration curves of the intensity of fluorescence to
determine the unknown concentrations of PFOS and PFOA in
the tap and lake water samples. The LOD values for PFOS were
30.9 ± 0.1 nM (16.6 ± 0.1 μg L−1) in the tap water and 120.8 ±
0.5 nM (65.0 ± 0.3 μg L−1) in Mati Lake. Meanwhile, the LOD
values for PFOA were 39.1 ± 2.8 nM (16.2 ± 1.2 μg L−1) in
the tap water and 120.3 ± 2.0 nM (49.8 ± 0.8 μg L−1) in Mati
Lake.

According to the LOD values of the water samples, our method
can be directly applied for the detection of PFOS and PFOA in
heavily contaminated sources, such as communities near indus-
trial areas64, airports3, and military facilities3, in which the total
concentrations of PFOS and PFOA may reach 1174 μg L−165. For
measuring contamination in regular drinking water with lower
PFOS and PFOA concentrations, we can employ our assay after
preconcentrating the water sample with a solid-phase extraction.
Aliquots of blank tap water samples from different regions and
Haihe River water samples and those spiked with 50 ng L−1 of
PFOS or PFOA were extracted with HLB cartridges (Supplemen-
tary Note 2). We then performed the displacement assay using the
GC5A-6C•Fl reporter pair and obtained the concentrations of
PFOS and PFOA from the established calibration curves. As
shown in Supplementary Table 4, the experimental results showed
that no PFOS or PFOA was detected in any of the blank tap water
samples and Haihe River water samples. The standard addition
recoveries of those water samples are in the range of 90.3–102.7%.
These values validated our assay, demonstrating its precision and
accuracy for the detection of PFOS and PFOA in contaminated
drinking water.

Real-time/on-site scanometric monitoring of PFOS and PFOA.
To make the assay more available to daily use, the obvious
fluorescence changes of GC5A-6C•Fl reporter pair with various
concentrations of PFOS and PFOA were further applied as a
real-time/on-site visual detection mode by using a smartphone
with easy-to-access color scanning application (app). The green
color intensities (G values) of the fluorescent images can be
directly scanned from the app (Fig. 6 and Supplementary Note 3).
According to the G values, calibration curves can be set up with
increasing PFOS and PFOA concentrations, respectively.
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Fig. 3 Illustration of the IDA principle and fluorescence titrations.
a Illustration of the IDA principle. Competitive titrations of GC5A-6C•Fl
(0.4/0.5 μM) with b PFOS (up to 2.4 μM) and c PFOA (up to 7.6 μM).
(Inset) The associated titration curves of b PFOS and c PFOA fit according
to a 1:1 competitive binding model. All experiments were performed in
HEPES buffer at 25 °C, λex= 500 nm, and λem= 513 nm. Data represent
mean ± s.d. (n= 3 independent experiments).
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The absorption and magnetic separation of PFOS and PFOA.
To add absorption capability to this sensing system, we con-
structed a hybrid material composed of amphiphilic calixarene
nanoparticle (Fig. 7). The pegylated GC5A-12C nanoparticle66

was generated by co-assembling GC5A-12C and 4-(dodecyloxy)
benzamido-terminated methoxy poly(ethyleneglycol) (PEG-12C)
(Supplementary Fig. 8) at a 2:1 molar ratio (Supplementary
Note 4). PEG-doping was implemented to enhance the water-
solubility and mechanical stability of the material to prevent
coagulation and settling67. We determined the binding constants
for the pegylated GC5A-12C nanoparticle for PFOS and PFOA to
be (1.3 ± 0.3) × 107 M−1 and (4.8 ± 0.4) × 106 M−1, respectively
(Supplementary Figs. 9–11). The binding strength of the pegy-
lated GC5A-12C nanoparticle is comparable with that of GC5A-
6C and should be suitable for absorption applications. Further-
more, we obtained hybrid nanoparticle (MNP@GC5A-12C) by
encapsulating hydrophobic MNP into the hydrophobic domain of
the GC5A-12C nanoparticle during preparation (Supplementary

Note 5). Dynamic light scattering measurements revealed the
MNP@GC5A-12C have a hydrated diameter of 213 ± 3 nm
(Supplementary Fig. 12).

Al (III) phthalocyanine chloride tetrasulfonic acid (AlPcS4,
Supplementary Fig. 8) was chosen as a model dye to explore the
absorption ability of MNP@GC5A-12C. MNP@GC5A-12C was
dispersed into the solution of AlPcS4 and then isolated with an
external magnetic field for 1 h. Subsequently, the supernatant was
filtered through a mixed cellulose esters film (Millipore, 0.025 μm)
and collected for ultraviolet–visual (UV–vis) experiments. Negli-
gible absorbance of AlPcS4 was observed after absorption (Fig. 8a),
indicating the complete removal of AlPcS4 by MNP@GC5A-12C.
As a control experiment, filtration without MNP@GC5A-12C
resulted in barely any effect on the concentration of the AlPcS4 in
solution (Supplementary Fig. 13).

We further applied MNP@GC5A-12C to absorb PFOS and
PFOA. The quantifications of PFOS and PFOA were performed by
means of ultra-performance liquid chromatography–electrospray
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ionization–tandem mass spectrometry (UPLC–ESI–MS/MS). The
calibration curves were set up and quantitative parameters were
evaluated (Supplementary Note 6). The PFOS and PFOA absorption

efficiencies of each samples were characterized at [PFOS]0=
[PFOA]0= 1000 ngmL−1. After the removal procedure, the solu-
tions were pre-concentrated to accurately determine PFOS and
PFOA concentrations by the UPLC–ESI–MS/MS. There were only
(0.43 ± 0.07)% residual PFOS and (1.53 ± 0.04)% residual PFOA,
respectively (Fig. 8b). The regeneration of the present supramolecular
material is considered to be feasible owing to its response to specific
organic solvent68. In DMSO, GC5A-12C neither formed amphiphilic
aggregates indicated by very low scattering intensity (Supplementary
Fig. 14), nor complexed with PFOS revealed by no change in
chemical shifts of 19F NMR spectra of PFOS (Supplementary
Fig. 15). Therefore, we envisage that regeneration of the supramo-
lecular material could be achieved by using routine purification
methods in organic synthesis such as column chromatography.

Discussion
In conclusion, our artificial GC5A-6C receptor successfully
encapsulated PFOA and PFOS with nanomolar affinity in
aqueous media. Taking advantage of the strong recognition and
supramolecular assembly, we achieved not only sensitive and
quantitative detection of PFOA and PFOS in tap and lake water
through the fluorescent IDA strategy, but also the efficient
removal of them by the hybrid MNP@GC5A-12C nanoparticle
via a simple magnetic absorption and filtration procedure.
These results will facilitate the development of detection and
absorption methods for PFOA and PFOS. Although the present
LOD and removal efficiency cannot reach the health advisory
level in drinking water, the proposed supramolecular approach
can be practically operated in heavily polluted areas, such as
industrial regions, airports, and military facilities. For daily
drinking water detection, we can use the solid-phase extraction
for sample preconcentration. Higher removal efficiency may be
achieved by applying the GC5A-12C nanoparticle as solid-
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phase extraction absorbents. This work made full use of the
molecular recognition and self-assembly of artificial receptors,
offering a promising strategy for the detection and remediation
of water pollution.

Methods
Chemicals. All the reagents and solvents were commercially available and used as
received unless otherwise specified purification. Ammonium acetate and 2,2,2-tri-
fluoroethanol were purchased from Sigma-Aldrich. Fl was purchased from Tokyo
Chemical Industry. Al (III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) was
purchased from Frontier Scientific. PFOA, PFOS, hexadecyltrimethylammonium
bromide, octanoic acid, octanesulfonic acid, and perfluorohexane were purchased
from Energy Chemical. Iron oxide nanoparticle stabilized by oleic acid (MNP) was
purchased from Ji Cang Nano Company. The waste water samples were provided
by the manufacturing facility located in Cangzhou, Hebei province, China.
5,11,17,23,29-Pentaguanidinium-31,32,33,34,35-penta(4-methylpentloxy)calix[5]
arene (GC5A-6C), 5,11,17,23,29-pentaguanidinium-31,32,33,34,35-penta dodecy-
loxy-calix[5]arene (GC5A-12C) and 4-(dodecyloxy)benzamido-terminated methoxy
poly(ethylene glycol) (PEG-12C) were synthesized according to the previous
literature53,66.

Samples. The 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES)
buffer solution of pH 7.4 was prepared by dissolving 2.38 g of HEPES in
approximate 900 mL double-distilled water. Titrate to pH 7.4 at the lab tempera-
ture of 25 °C with NaOH and make up volume to 1000 mL with double-distilled
water. The pH value of the buffer solution was then verified on a pH-meter
calibrated with three standard buffer solutions.

Apparatus. 19F NMR data were recorded on a Bruker AV400 spectrometer.
Steady-state fluorescence spectra were recorded in a conventional quartz cell (light
path 10 mm) on a Cary Eclipse equipped with a Cary single-cell peltier accessory.
UV–vis spectra were recorded in a quartz cuvette (light path 10 mm) on a Cary
100 UV–vis spectrophotometer equipped with a Cary dual cuvette peltier acces-
sory. The sample solutions for dynamic light scattering measurements were
examined on a laser light scattering spectrometer (NanoBrook 173plus) equipped
with a digital correlator at 659 nm at a scattering angle of 90°. Quantification of
PFOS and PFOA from the absorption studies were performed by means of
UPLC–ESI–MS/MS (Waters, Milford, MA, USA).

Data availability
The data supporting the findings of this study are available within the paper and its
Supplementary Information, and from the corresponding author upon reasonable
request. The source data underlying Figs. 3b, c, 4a–f, 5, 6, 8a, b, Supplementary Figs. 4, 5–
7, 9–14, and Supplementary Table 4 are provided as a Source Data file.
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