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Abstract

Cell cycle deregulation is a cancer hallmark that has stimulated the development of mitotic 

inhibitors with differing mechanisms of action. Quantitative phase imaging (QPI) is an emerging 

approach for determining cancer cell sensitivities to chemotherapies in vitro. Cancer cell fates in 

response to mitotic inhibitors are agent- and dose-dependent. Fates that lead to chromosomal 

instabilities may result in a survival advantage and drug resistance. Conventional techniques for 

quantifying cell fates are incompatible with growth inhibition assays that produce binary live/dead 

results. Therefore, we used QPI to quantify post-mitotic fates of G0/G1 synchronized HeLa 

cervical adenocarcinoma and M202 melanoma cells during 24 h of escalating-dose exposures to 

mitotic inhibitors, including microtubule inhibitors paclitaxel and colchicine, and an Aurora kinase 

A inhibitor, VX-680. QPI determined cell fates by measuring changes in cell biomass, 

morphology, and mean phase-shift. Cell fates fell into three groups: (1) bipolar division from drug 

failure; (2) cell death or sustained mitotic arrest; and (3) aberrant endocycling or multipolar 

division. In this proof-of-concept study, colchicine was most effective in producing desirable 

outcomes of sustained mitotic arrest or death throughout its dosing range, whereas both paclitaxel 
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and VX-680 yielded dose-dependent multipolar divisions or endocycling, respectively. 

Furthermore, rapid completion of mitosis associated with bipolar divisions whereas prolonged 

mitosis associated with multipolar divisions or cell death. Overall, QPI measurement of drug-

induced cancer cell fates provides a tool to inform the development of candidate agents by 

quantifying the dosing ranges over which suboptimal inhibitor choices lead to undesirable, 

aberrant cancer cell fates.

Graphical Abstract

A novel analysis method for cell fate responses to mitotic inhibitors using biophysical attributes 

obtained through quantitative phase imaging.

INTRODUCTION

Developing effective anti-cancer treatment regimens remains a significant therapeutic 

challenge. Treatment selection based on available diagnostic data including assessment of 

histologic tumor subtype, clinical grade and stage, molecular biomarkers, and genome-

profiling studies can still lead to variable patient outcomes. This indicates a pressing need to 

continue developing new agents and regimens.1 The prediction of treatment outcomes and 

selection of therapeutic agents typically relies upon drug performance studies from 

preclinical research and clinical trials. In these settings, drug performance assessments are 

most commonly by multi-day growth inhibition assays in vitro and tumor shrinkage in vivo. 

However, data from these binary analyses may fail to uncover processes within cancer cells 

that further increase drug resistance and tumor aggressiveness. Cancer cells that persist after 

therapy may acquire additional genetic or epigenetic changes that make future treatments 

progressively more difficult.2 Therefore, a method that captures the full range of cell fates 

after a specific treatment, for example with a mitotic inhibitor, could reveal unsuspected 

suboptimal drug regimens with an elevated risk of promoting more aggressive tumors.
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Specific mitotic inhibitors have frequent use to treat specific cancers, such as paclitaxel for 

breast and ovarian cancers. As a group they target the microtubule system or associated cell 

division kinases with the goal of activating growth checkpoints to induce mitotic arrest and 

apoptosis of cancer cells.3 Despite widespread use, most mitotic inhibitors show 

neurotoxicity, poor in vivo efficacy, and are difficult to dose adequately, thereby limiting 

applications.4 Preclinical studies also reveal that post-treatment surviving cancer cells may 

aberrantly exit from mitosis with multipolar cell divisions or endocycling from a weakened 

mitotic checkpoint caused by suboptimal mitotic inhibitor dosing.5, 6 These mitotic 

aberrations may cause aneuploidy, chromosome instability, and increased tumor aggression.
7-9 A rapid method to detect and classify aberrant mitotic outcomes for mitotic inhibitor 

treated cancers could improve drug development and selection.

Flow cytometry that uses DNA intercalating dyes, confocal microscopy, fluorescence time-

lapse microscopy, and multi-day growth inhibition assays are current methods for assessing 

cellular responses to mitotic inhibitors.5, 6, 10 Unfortunately these approaches are often 

laborious, can be cell destructive, are limited to discrete measurement time points that can 

miss emerging therapy resistance, or require labeling that may interfere with cell behavior. 

For example, the most commonly practiced multi-day growth inhibition assays only provide 

total numbers of viable or dead cancer cells in tissue culture at specific treatment time 

points. EC50 values generated from this type of counting assay only shows population trends 

and overlooks phenotypic outcomes of individual cancer cells that survive treatment. This 

approach therefore yields limited insight into drug response kinetics and potential aberrant 

outcomes.

To overcome limitations in current screening methods and to increase throughput, we 

deployed a version of quantitative phase imaging (QPI) we refer to as live cell 

interferometry (LCI) to measure single cell responses to three mitotic inhibitors with 

different mechanisms of action using dose-escalating drug concentrations. Current state-of-

the-art QPI techniques, including digital holographic microcopy and spatial light 

interference microscopy, accurately quantify optical path length delays caused by cellular 

contents at submicron resolution, free of labeling agents and phototoxicity effects.11, 12 

Measurements of phase shifts are then processed to produce biophysical cell parameters, 

such as dry mass and mass transport.11, 12 These relevant biophysical properties can be 

analyzed in a wide range of QPI applications, such as measurements of cytotoxicity.13, 14 

Our approach uses quadriwave lateral shearing interferometry (QWLSI) to precisely 

quantify the phase-shift of incident light interacting with the non-aqueous mass, or biomass, 

of individual cells.15 The QWLSI approach has been shown to be accurate over a range of 

different specimen thickness and insensitive to imaging location, magnification, or degree of 

spatial light coherence.16 Conversion of measured phase-shifts in light into biomass uses an 

experimentally determined cell average specific refractive index, which enables quantifying 

changes in cell biomass over time.17, 18 Prior LCI studies revealed breast cancer cell line 

sensitivities to trastuzumab (Herceptin) within 6 h, a speed compatible for studies of patient 

biopsy materials, with results replicating multi-day growth inhibition assays.19, 20 More 

recently, LCI successfully dissected tumor heterogeneity and drug resistance for melanoma 

cells in a mixture 21 and could replicate known tumor sensitivities to cisplatin in mouse 

patient-derived xenograft (PDX) models of breast cancer.22 These prior LCI studies 
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validated QPI utility in cancer, but did not evaluate cancer cell outcomes beyond binary 

growth inhibition results. The use of multi-parametric QPI response profiling data that could 

further inform preclinical drug development and clinical drug selection is an exciting 

possibility explored here.

In this proof-of-concept study, we provide a new multi-parametric analytical method to 

identify different cell fate outcomes to mitotic inhibitors using QPI measurements of cell 

biomass, morphology, and mean phase-shift of light. Our study provides dynamic data on 

mitotic inhibitor activities and the frequencies of abnormal and undesirable outcomes during 

early exposure time points that may make tumors more difficult to treat.7 Our cell fate 

identification strategy may also be useful for developing and testing other anticancer agents 

and regimens.

MATERIALS AND METHODS

Cells and cell culture

HeLa human cervical adenocarcinoma cells were from the American Type Culture 

Collection (ATCC) and M202 human melanoma cells were a gift from Dr. Owen Witte 

(UCLA). HeLa cells were maintained in 1:1 DME/F-12 media (Thermo Fisher Scientific) 

and M202 cells were maintained in RPMI 1640 media (Thermo Fisher Scientific), with each 

media supplemented by 10% FBS (Omega Scientific), 100 U/mL penicillin (Corning), 100 

μg/mL streptomycin (Corning) and 2 mmol/l-glutamine (Thermo Fisher Scientific).

Growth inhibition assay

Twelve-well flat bottom plates (Thermo Fisher Scientific) received 5 × 104 cells/well. 

Paclitaxel (Sigma-Aldrich), colchicine (Sigma-Aldrich), or VX-680 (Selleckchem) small 

molecule mitotic inhibitors, or DMSO (Sigma-Aldrich) carrier-control, were added to cell 

culture media at the indicated doses and durations (Fig. S1, S2). Cells from three replicate 

wells per treatment condition were harvested each day, stained with trypan blue, and counted 

using an automated cell counter (Countess; Invitrogen).

Cell preparation for QPI

ibidi 4-well Ph+ μ-slides received 1.5×104 cells/mL that were then grown for 7–10 h to 

homeostasis. Media containing 2mM thymidine (Sigma-Aldrich) was added to arrest HeLa 

cells in G0/G1 phase for 18 h and M202 cells for 20 h. Synchronized cells were released 

from cell cycle block by media washing three times. Fresh media with the indicated doses of 

paclitaxel, colchicine, VX-680, or DMSO were then added to the 4-well μ-slide and then 

sealed with anti-evaporation oil (ibidi) before QPI on the microscope stage.

Live cell interferometry

QPI of HeLa and M202 cells was performed on an Axio Observer A1 inverted microscope 

(Zeiss) with a SID4Bio quadriwave lateral shearing interferometry (QWLSI) camera 

(Phasics). A temperature and CO2 regulated stage-top cell incubation chamber (ibidi) was fit 

to a motorized xy stage (Thorlabs) to maintain environmental homeostasis and enable QPI at 

multiple locations. A Zeiss LD Plan Neofluar 20x NA 0.4 objective was heated and 
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maintained at 37°C with a custom built copper objective heater driven by a heat controller 

(Thorlabs). Trans-illumination was by a 660 nm center wavelength collimated LED 

(Thorlabs). Image collection occurred every 10 min for 24 h at 15 randomly selected 

imaging locations per well containing cells plated with sufficient spacing to enable 

automated image processing and biomass segmentation. Imaging locations were selected 

within the central part of each well, where the highest quality quantitative phase information 

can be obtained without aberrations caused by the cell culture apparatus or optical hardware. 

The selected imaging fields cover a range of locations within each imaged well, to obtain a 

sample that is representative of the cell population (Fig. S3).

QPI data analysis

Interferograms captured by the SID4Bio QWLSI camera were converted to phase-shift and 

intensity images using the Phasics MATLAB software development kit. These images were 

analyzed using custom MATLAB (MathWorks) scripts that eliminated background 

aberrations by fitting a 4th order Zernike surface to cell-free regions and subtracting the 

fitted surface from the image. Cell biomass data was extracted from background corrected 

images by integrating light phase-shift in segmented cell projected areas and multiplying by 

the experimentally determined specific refractive increment of 0.001817, 23, 24 Data analysis 

of cell fates and time spent in mitosis are performed using morphology as discussed in the 

following section. The entire procedure requires 3 – 4 hours for image processing and data 

analyses, depending on the number of locations imaged in each experiment.

Morphology metrics

Mean phase shift: The mean phase-shift of a cell is obtained by dividing the total 

integrated phase- shift for that particular cell by its projected area. Interphase flat and 

spread-out versus round and mitotic phase HeLa cells were sampled to establish average 

mean phase-shift values for both morphologies. Since HeLa and M202 cells share 

comparable sizes, morphologies, optical densities and the same tracking criteria for the 

MATLAB tracking algorithm, the same average mean phase- shift values are representative 

for both cell types (Fig. S4).

Shape factor: The shape factor of a cell, also called circularity or isoperimetric quotient, 

is calculated by dividing the projected area, A, of a cell by its circumference or the length of 

its perimeter, P, (4πA/P2). Random flat HeLa and M202 cells and mitotic HeLa cells were 

sampled to establish average shape factor values for both morphologies (Fig. S4). A perfect 

circle has a shape factor of 1.0 and an irregular shape, such as an interphase adherent cell, 

has a shape factor of approximately 0.5 (Fig. S4).

Flow cytometry

Cells were collected from T25 flasks after 24 and 48 h of drug exposure, washed once with 

1x PBS, pH 7.4, and then re-suspended in 500μL of FxCycle™ PI/RNase Staining Solution 

(Thermo Fisher Scientific). Flow cytometry was performed on FACS BD LSRII and FACS 

BD Fortessa flow cytometers (BD Biosciences). DNA content analysis was by FlowJo 

software.
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Statistical analysis

Chi-square tests of independence were performed on contingency tables assessing the 

observed cell fate counts per inhibitor dosage for significant association relative to expected 

counts in each drug treatment panel with a 95% confidence interval (Prism 6, GraphPad, 

Inc.). Dose response curve-fitting was performed using the curve fitting toolbox in 

MATLAB (MathWorks). Two-sample Kolmogorov-Smirnov (KS) tests were performed 

between bipolar cell division versus prolonged mitotic arrest and cell death fate distributions 

for each drug treatment panel in MATLAB with a 95% confidence interval. One-way 

ANOVA with unbalanced sample groups was performed on duration of mitosis datasets 

between cell fate groups in MATLAB with a 95% confidence interval. Statistical 

significance required p < 0.05.

RESULTS

Identifying post-mitotic cell fate outcomes using QPI

We deployed QPI to measure synchronized HeLa and M202 single cancer cell biomass and 

morphology responses after mitotic entry, in the presence of escalating doses of several 

mitotic inhibitors (Fig. 1, Table 1). We chose paclitaxel, a microtubule stabilizing agent, 

colchicine, a microtubule destabilizing drug, and VX-680, an Aurora kinase A inhibitor that 

represent a range of mitotic inhibitor modes of action. Cells were treated with each drug for 

5 h before QPI of randomly selected locations at 10 min imaging intervals over the next 24 h 

(Fig. 1A). Changes in biophysical and morphological parameters over the imaging period 

provided data to determine cell fate outcomes of single cancer cells in each condition (Fig. 

1B-C). Two EC50 values, one for successful bipolar divisions representing drug failure and 

one for cell death/arrest, were calculated based on the distributions of cell fate outcomes in 

the sampled cell populations (Fig. 1D). ΔEC50, the difference between these two EC50 

values, therefore describes the concentration range over which cancer cells display aberrant 

mitotic exits at suboptimal dosages for each type of drug treatment (Fig. 1D).

We classified the mitotic fate of each tracked cancer cell into one of five categories: (1) 

successful bipolar division, (2) multipolar division, (3) endocycling, (4) cell death, and (5) 

prolonged mitotic arrest. (Fig. 2A). We then subjectively divided these five outcomes into 

three groups. Group 1 is successful bipolar divisions, representing the failure of a drug to 

block mitosis at the surveyed doses. Group 2 includes prolonged mitotic arrest and cell 

death, which are desirable anticancer cell fates. Group 3 fates are hidden in growth 

inhibition assays and include multipolar divisions and endocycling. Group 3 fates can yield 

chromosomal aberrations and make tumor cells increasingly aggressive and difficult to 

eradicate.7-9 Importantly, conventional multi-day growth inhibition counting assays combine 

Group 1, Group 2 mitotic arrest, and Group 3 outcomes to report on the cumulative number 

of live cancer cells at specific time points during and post-drug treatment without 

discriminating Group 3 unfavorable and potentially dangerous outcomes.

Criteria for classifying cell fates relies upon specific biophysical and morphological QPI 

measurements. A sharp surge in mean phase-shift above 140 nm and shape factor, a 

measurement of roundness, above 0.7 defines the time point of mitotic entry as cells ‘round 
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up’ (Fig. S4).25 During a successful bipolar division, a single cell separates into two cells 

and then flattens to resume growth during interphase. The mitotic interval with cytokinesis is 

complete when two cells emerge at or near the former parent cell location with mean phase-

shift and shape factor below 140 nm and 0.7 thresholds (Fig. 2A-B).25 A cell death fate 

occurs when cell biomass shows either a sudden or a slow decline following mitotic entry 

(Fig. 2A, 2C).26 During cell death the mean phase-shift through the cell decreases but stays 

above the 140nm threshold due to pyknosis, karyorrhexis, and cytoplasm content 

condensation.27 The shape factor value also decreases when severe membrane blebbing or 

cell disintegration occurs (Fig. 2C). A prolonged mitotic arrest is identified by stagnation of 

changes in cell biomass, with mean phase-shift and shape factor remaining above 140nm 

and 0.7 thresholds, and no cell division or other morphological changes occurring (Fig. 2A, 

2D). A multipolar cell division fate shows the same time-dependent tracing pattern in mean 

phase-shift, shape factor, and biomass accumulation as bipolar divisions with three or more 

cells arising at or near the previous parent cell location (Fig. 2A, 2E). Following multipolar 

divisions, not all daughter cells grow or thrive, likely due to aberrant chromosome 

partitioning.28 Finally, QPI identifies endocycling when a cancer cell shows a sudden surge 

in mean phase-shift and shape factor, indicative of mitotic ‘rounding’, but returns to a G0/G1 

flat morphology, mean phase-shift under 140nm, and shape factor less than 0.7 without cell 

division (Fig 2A, 2F).29 In cases when single cells are hard to dissect from neighbors or are 

difficult to track over time, we apply manual screening corrections to the results of the cell 

fate algorithm.

Calculating EC50,growth and EC50, death using QPI quantified cell fate outcomes

In growth inhibition assays, cell fate outcomes are binary, meaning that a drug does or does 

not alter live cell numbers compared to control conditions over time from the sum of cell 

divisions, arrests, and deaths. Thus, conventional preclinical drug development assays 

generate one EC50 curve to fit a binary outcome. By contrast, QPI yields three cell fate 

groups (Groups 1 – 3) with qualitatively distinct outcomes available for quantification. 

Therefore, instead of analyzing total live cell numbers, we generated two dose-response 

curves from QPI data. One dose-response curve corresponds to successful bipolar divisions 

from drug insensitivity (Fig. 3, solid line). The second dose-response curve describes 

desirable outcomes with prolonged mitotic arrest or cell death (Fig. 3, dotted line). We 

characterized these curves based on a standard log-scale normalized response equation:

f (x) = 1
(1 + 10

(x − EC50)
)

(1)

We next compared calculated EC50 values between drug treatment panels (Table S1). In 

particular, the ability of QPI to identify multiple cancer cell fates enables the 

characterization of mitotic inhibitors for both sensitivity, represented by a low average EC50 

value, as well as avoidance of undesirable fates. The concentration window in which 

undesirable fates occur is described by ΔEC50 = EC50,death – EC50,growth. Therefore, QPI 

also enables the identification of mitotic inhibitors with a low ΔEC50, indicating a small 

concentration window that results in undesirable cell fates. When comparing ΔEC50 between 

Huang et al. Page 7

Analyst. Author manuscript; available in PMC 2020 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibitors and cell lines, we used normalized value of ΔEC50/EC50,growth because relative 

ΔEC50 shows the impact of concentration variance relative to the target dose of a specific 

inhibitor (Table S1). Colchicine had the smallest relative ΔEC50, for both HeLa cells (0.35) 

and M202 cells (0.72) (Fig. 3B, 3E). This result is consistent with previous results showing 

that colchicine induces negligible or low amounts of aneuploidy.6 Paclitaxel showed a 

slightly larger relative ΔEC50 for both HeLa cells (1.1) and M202 cells (2.0), due to the 

increase in multipolar divisions and endocycling events compared to colchicine (Fig. 3A, 

3D). VX-680 presented by far the largest relative ΔEC50 for HeLa cells (110) and M202 

cells (17), due to a large proportion of endocycling events (Fig. 3C, 3F). Lastly, 

Kolmogorov-Smirnov test results show that bipolar divisions and prolonged mitotic arrest or 

cell death dose response distributions statistically differ (Table S1), with the exception of 

M202 cells under increasing paclitaxel doses (p = 0.052).

To confirm that a wide range of VX-680 dosing generates QPI detected endocycling, as 

predicted by a large ΔEC50, we analyzed the DNA content of HeLa and M202 cells exposed 

to VX-680 using flow cytometry (Fig. S5). As an example, there was a large increase in the 

number of cells with 4n DNA compared to those with 2n DNA in cells exposed to 300nM 

and 600nM VX-680. A small population of HeLa cells with 8n DNA content emerged at 

300nM VX-680 that dramatically increased with 600nM VX-680 (Fig. S5C-F), in agreement 

with the features of endocycling.29

Comparing EC50,growth and EC50, death to conventional EC50 from live cell counting assays

In parallel, we performed live cell counting assays for HeLa and M202 cancer cells exposed 

to paclitaxel, colchicine, and VX-680 at 24 hours and multi-day timepoints (Fig. S1, S2). As 

anticipated, these agents markedly reduced the accumulation of cancer cells at 24 hours and 

over 6 days (Fig. S1, S2). Growth inhibition studies are the standard for drug development, 

although drug effects beyond changes in total live cell numbers were indiscernible. It is 

important to note that EC50 values from live cell counting assays are defined by 

concentrations at which the total number of live cells present in the treatment well is 50% of 

the total number of live cells present in the control well. Whereas, EC50 values from QPI 

analysis are defined by concentrations at which 50% of the sampled cells in a specific 

treatment undergo a certain cell fate within the first division after treatment. When compared 

to QPI measured EC50 values, live cell counting EC50 values are therefore on the same or 

nearest log scale, but greater than both EC50,Growth and EC50,Death for paclitaxel and 

colchicine treatments. However, in the case of VX-680, many endocycling events occur that 

do not lead to immediate cell deaths. This leads to large differences between EC50,Growth and 

EC50,Death values measured by QPI. The EC50 measured by live cell counting assay falls in 

the middle of the two on the log scale. This result therefore indicates that the QPI 

EC50,Growth and EC50,Death correspond differently to the standard live cell counting EC50 for 

different mitotic inhibition mechanisms.

We also assessed whether inhibitor dosage statistically associates with outcome by applying 

chi-square tests of independence for each cancer cell type and drug combination (Fig. 3). 

Our analyses show that within each of the six cancer cell-drug treatment pairings, cell fate 

outcomes were dose-dependent. Increasing dose shifts cell fate distributions from mostly 
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successful bipolar divisions to mostly mitotic arrests and deaths (p < 0.0001 for each 

condition) (Table S2). For example, HeLa cells showed a range of outcomes at lower doses 

of paclitaxel and VX-680 (Fig. 3A, 3C). At 10 nM of paclitaxel, a dose between the two 

observed QPI EC50 values, all outcomes except endocycling occurred, with only a small 

amount of endocycling appearing at slightly higher drug concentrations (Fig. 3A). By 

contrast, the majority of HeLa cells endocycle at all VX-680 concentrations within the first 

24 hours of treatment, whereas prolonged mitotic arrest or cell death increased in outcome 

frequency only at 600nM VX-680. This concentration is 4–12 times higher than the 

recommended effective dose (50 – 150nM) in vitro against thyroid and blood-cancer cell 

lines (Fig. 3C),30, 31 yet well within the range of mean plasma concentration of the 

maximum-tolerated dose (64 mg/m2-h) in patients, determined in phase I clinical trial.32

Analyzing correlation between mitosis durations and cell fate outcomes

Finally, there has been debate over whether the duration of mitosis during anticancer drug 

exposure affects cancer cell outcomes.10, 33 This data is quantifiable from QPI data showing 

the period from onset of mitosis to scored cell outcomes.3, 10 Single HeLa cell tracking data 

show that time spent in mitosis statistically differ between cell fate outcomes (p = 1.8e-54). 

Multipolar divisions, cell death, or arrest are frequent outcomes of extended mitosis time, 

whereas endocycling usually results from shorter periods of mitosis (Fig. 4). For M202 cells, 

even though the mean values of time spent in mitosis for cell fate outcomes are statistically 

different (p = 2.3e-4), there is no significant trend for mitosis durations between outcomes 

categories (Fig. S6). Mitosis durations less than 100 minutes more frequently (45% for HeLa 

and 34% for M202) resolve as drug insensitivity with successful bipolar cell divisions 

compared to other fates in both cell lines (Fig. 4D, S6D). These data clearly reveal 

variability in responses to the same mitotic inhibitor treatments from different cancer cell 

lines. Thus, QPI-derived outcomes classifications reinforce the importance of studying 

responses in multiple cancer cell lines and types during preclinical drug development that 

may correspond to differences in personalized responses to different treatment agents and 

regimens for individuals with cancer.

DISCUSSION

Changes in cell biomass as a response indicator for screening cancer drugs has gained 

traction in recent years because of multiple technological breakthroughs.19, 21, 22, 34-36 A 

common thread in this emerging area is the increasing linkage between biomass 

accumulation rates with traditional measures of drug efficacy and preclinical outcomes of 

growth inhibitors in many types of modeled malignancies. QPI methods in particular are 

providing additional biophysical insights based on changes in cell morphology during 

studies of cell division and cancer-immune cell interactions.25, 37 Here, we expanded the 

application spectrum for quantitative phase methods by combining biomass and 

morphological analyses in studies of the pharmacodynamic characteristics of small molecule 

mitotic inhibitors against two types of cancer.

We showed that during exposure to mitotic inhibitors QPI classification into three outcome 

Groups yields useful concentration windows in which undesirable fates that include 
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multipolar cell divisions and endocycling occur, as described by ΔEC50. Cancer cells 

exposed to inadequate mitotic inhibitor concentrations resolve transient cell cycle arrest by 

apoptosis or ‘mitotic slippage’ to resume growth and cycling 38, which can result in 

chromosome abnormalities such as aneuploidy and tetraploidy.39 Numerical and structural 

chromosome aberrations, which often occur with multipolar cell divisions and endocycling, 

may contribute to increased therapy resistance 40 through a range of molecular mechanisms.
7, 8 Aneuploidy paradoxically can promote or suppress tumor growth and may cause an 

elevated rate of tumor recurrence by generating drug-resistant heterogeneity with evolving 

growth and survival advantages.40, 41 Tetraploid cells and cells with certain chromosomal 

rearrangements act as intermediates to further chromosome instability and the development 

of aneuploidy.7 Unfortunately, tetraploidy and chromosomal aberrations that can contribute 

to therapy resistance have also been linked to mitotic inhibitor exposure at sub-lethal 

concentrations.6 It has been shown that mitotic slippage occurs far more frequently in vivo 
than in vitro, suggesting possible underestimation of Group 3 outcomes with QPI compared 

to inefficacious agents and malignancy augmentation that may occur in patients.42 

Interestingly, proteotoxic and metabolic stress are reported for aneuploid cells,43 which may 

result from multipolar divisions and endocycling events identified using our QPI methods.

Inhibitor mechanisms, concentrations, and mitotic arrest duration are major determinants of 

cancer cell outcomes following escape from mitotic arrest.33, 44, 45 Our QPI approach 

analyzed these key characteristics for different mitotic inhibitors. Because of off-target 

cytotoxicity, mitotic inhibitors typically have low therapeutic indices that can limit clinical 

dosages 43 and cause abnormal exits with viable cells containing chromosomal 

abnormalities.6, 44 In vivo, this undesirable outcome can occur in under-dosed or poorly 

perfused tumors and potentially jeopardizes clinical outcomes by adding to therapy 

resistance and tumor aggressiveness.

In vitro multi-day growth inhibition binary assays yield a single EC50 curve that overlooks a 

range of potential mitotic slippage events that add to chromosomal aberrations. Advances in 

non-QPI techniques such as in vivo microscopy and real time FUCCI imaging enable 

quantifying mitotic exits for a small number of cells.46, 47 Additional methods, such as 

microchannel resonators, have limitations in measurement longevity and are low throughput. 

Recently, QPI methods were used to quantify cytotoxicity using area and morphological 

information.13, 14 Although previous QPI applications showed results comparable to 

automatic cell profilers, the analysis did not fully leverage the wealth of biophysical 

information captured by QPI techniques. In contrast, the QPI analysis method presented here 

exposed differences in outcomes between a microtubule-destabilizing agent, paclitaxel, a 

microtubule-stabilizing agent, colchicine, and a cell division inhibitor, VX-680. Our decision 

tree algorithm provided five cancer cell outcome categories and three subjective Groups to 

enable determination of dual EC50 curves for each drug and tumor cell type examined. For a 

particular drug and tumor type, the extent of EC50 value separation, ΔEC50, predicts the 

likelihood of undesirable multipolar divisions or endocycling that can result in aneuploidy 

and increased therapy resistance, providing useful concentration ranges to avoid in which 

aberrant mitotic exits prevail.
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We note that there is a difference between the dual EC50s determined via QPI and the single 

EC50 determined via live cell counting, especially for paclitaxel and colchicine. Paclitaxel 

and colchicine induced large numbers of mitotic arrests in the treated cell populations. While 

live cell counting classifies arrested cells as live cells, the QPI data analysis method 

described here does not account for arrested cells in EC50 growth. Criteria used for a cell to be 

included in EC50 growth requires that cell to successfully divide during the imaging period. 

Therefore, live cell counting identified a higher proportion of cells as live cells than QPI 

analysis did as growing cells, producing a larger EC50 value than EC50 growth for paclitaxel 

and colchicine treatments.

QPI analyses revealed that HeLa and M202 bipolar divisions from drug failure show the 

shortest mitosis periods, consistent with previous studies in which prolonged mitotic arrest 

resulted in hypersensitivity to additional death cues.33 Additional studies showed several 

existing chemotherapeutics that induce apoptosis at normal dosages can trigger mitotic 

catastrophe that directly lead to apoptosis at very low dosages in aneuploid and polyploid 

cells.48 This can dramatically increase chemotherapeutic tolerance in patients and hint at 

effective combinatorial therapies in cancer treatments using mitotic inhibitors. Therefore, 

future QPI studies include screens for cell fate outcomes under combined exposure of energy 

stressors or low dose chemotherapeutics and mitotic inhibitors that induce aneuploidy.

CONCLUSIONS

In this study, we demonstrate a novel application of QPI in screening and identifying 

aberrant cell fate outcomes as a result of suboptimal mitotic inhibitor doses. Conventional 

growth inhibition assays rely on live cell counting to generate EC50 values that infer 

pharmacokinetics of mitotic inhibitors, and fail to reveal vital information on negative 

effects of the inhibitors. QPI analyzes cell fate outcome profiles, EC50,Growth, and EC50,Death 

values that provide in-depth insights into mechanism of action and risky dosing windows of 

mitotic inhibitors. Importantly, this QPI technique is compatible with patient derived 

organoids that resemble heterogeneous patient tumors better than in vitro single cell type 

cultures. Screening mitotic inhibitor cocktails on tumor organoids with QPI can facilitate the 

development of next generation cancer therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental design and analysis schematics. (A) Timeline of the experiment, showing cell 

synchronization and period of QPI. (B) Example QPI images of single HeLa cells under 

50nM of colchicine treatment. The same cells outlined in green and purple were tracked 

continuously over time to determine their post-mitotic entry fates, in this case are death and 

prolonged mitotic arrest. Color bar indicates phase shift in nm. Time stamps indicate time 

since start of drug exposure. (C) Representative schematic of biomass, mean phase-shift and 

shape factor data over time for two cell fates shown in (B): death and mitotic arrest. (D) 

Representative schematic of two EC50 curves generated based on normalized cell-fate 

outcomes distributions from randomly sampled single cells over a range of drug 
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concentrations. The difference between the two EC50 values, ΔEC50, provides a dosing 

range in which the drug can potentially cause aberrant mitotic exits.
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Fig. 2. 
Cell fate algorithm with examples. (A) A decision tree diagram showing the MATLAB 

algorithm for determining cell fates based on dynamic changes in cell biomass, mean phase-

shift, and shape factor measured by QPI. (B) Example of a HeLa cell undergoing a bipolar 

division. (C) Example of a HeLa cell dying. (D) Example of a HeLa cell in prolonged 

mitotic arrest. (E) Example of a HeLa cell undergoing a multipolar division. (F) Example of 

a HeLa cell undergoing endocycling.
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Fig. 3. 
Cell fate distribution analysis. (A) Cell fate distribution of HeLa cells with paclitaxel 

exposure (n = 187). (B) Cell fate distribution of HeLa cells with colchicine exposure (n = 

380). (C) Cell fate distribution of HeLa cells with VX-680 exposure (n = 223). (D) Cell fate 

distribution of M202 cells with paclitaxel exposure (n = 128). (E) Cell fate distribution of 

M202 cells with colchicine exposure (n = 42). (F) Cell fate distribution of M202 cells with 

VX-680 exposure (n = 63). A solid line in each panel represents a dose response curve fit to 

the bipolar division distribution. A dotted line in each panel represents a dose response curve 

fit to the prolonged mitotic arrest or cell death distribution. Numbers represent EC50 values 

of for each curve. Legend shows color code for cell fate outcomes.
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Fig. 4. 
Cell fate responses and mitosis durations. (A) Time spent in mitosis for HeLa single cells 

with colchicine exposure. The length of each color bar indicates the amount of time spent in 

mitosis for that individual cell. The color of the bar corresponds to its cell fate outcome. (B) 

Time spent in mitosis for HeLa single cells with palitaxel exposure. (C) Time spent in 

mitosis for HeLa single cells with VX-680 exposure. (D) Box plot of time spent in mitosis 

for five cell fate outcomes. One-way ANOVA with unbalanced sample groups was 

performed comparing all samples. There are statistically significant differences between the 

mean values of mitosis durations for different cell fate outcomes (p = 1.8E-54).
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Table 1

Mitotic Inhibitors Drug Concentrations Administered to M202 and HeLa Cell Lines in Live Cell 

Interferometer Study.

Cell Lines Paclitaxel (nM) Colchicine (nM) VX-680 (nM)

HeLa 10, 50, 100, 500 50, 150, 500, 1500, 2500 100, 300, 600

M202 1, 3, 9, 50, 100, 500 1, 5, 10, 20, 50 30, 90, 150, 300, 600
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