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Abstract

Longitudinal methods aggregate individual health histories to produce inferences about aging 

populations, but to what extent do these summaries reflect the experiences of older adults? We 

describe the assumption of gradual change built into several influential statistical models and draw 

on widely used, nationally representative survey data to empirically compare the conclusions 

drawn from mixed-regression methods (growth curve models and latent class growth analysis) 

designed to capture trajectories with key descriptive statistics and methods (multistate life tables 

and sequence analysis) that depict discrete states and transitions. We show that individual-level 

data record stasis irregularly punctuated by relatively sudden change in health status or mortality. 

Although change is prevalent in the sample, for individuals it occurs rarely, at irregular times and 

intervals, and in a nonlinear and multidirectional fashion. We conclude by discussing the 

implications of this punctuated equilibrium pattern for understanding health changes in individuals 

and the dynamics of inequality in aging populations.
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Introduction

Two distinct and sometimes contradictory intuitions shape our thinking about health in later 

life. On the one hand, popular and academic discourses reinforce an image of later life as a 

time of progressive health decline culminating in mortality, with aging described as a set of 

ongoing losses in capacity and functioning. On the other hand, we recognize that varied 

nonmonotonic and nonlinear health histories are possible and likely: health may remain 

stable over long periods, and decline, if and when it occurs, may be either gradual or 

relatively sudden. Recoveries following spells of illness and debilitation are common, and 

unexpected deaths are not unheard of.
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One tempting way to reconcile these two intuitions is to consider unpredictable variation in 

later-life health as an individual-level phenomenon, gradual health decline as a population-

level process, and the two perspectives as complementary. After all, in most quantitative 

studies, analyses frequently draw on individual-level data, but inferences about the 

association between particular exposures and outcomes are made at the aggregate level. In 

health and aging research, empirical data on individuals’ health are routinely used to inform 

population models. Such models do not simply highlight personal variation: they also aim to 

characterize and predict systematic differences in health between groups. But what if 

individual-level and aggregate analyses support different intuitions about health and aging?

Research on health and aging, having long recognized that populations are not 

homogeneous, responded by embracing models that aim to differentiate between various 

forms of heterogeneity, including within individuals (over time), between individuals (in a 

population), and across distinct populations. Such models have increased the sophistication 

of research on inequality, expanding on an intuitive recognition of differences between 

individuals by offering a quantification of differences within and between socially stratified 

groups over time. These models strive to reflect the heterogeneity observed in the real world 

while producing tractable and parsimonious results that can inform potential policy and 

program interventions aimed at ameliorating health inequities.

However, longitudinal health trajectory models rarely aim to explicitly adjudicate between 

the two key intuitions about health and aging. Although statistical models can quantify 

between-person heterogeneity around population and subpopulation means, researchers who 

apply them to health data have primarily highlighted parameters that represent those means. 

These parameters are calculated by averaging over individual (within-person) trajectories in 

a manner reflecting an assumption of gradualism—the notion that changes accumulate 

slowly and by steady degrees. However, because populations comprise individuals, and 

individual experiences are shaped by population memberships and trends, there are 

questions to be asked as to whether such smooth means accurately represent a population’s 

heterogeneous constituents. Stated another way, longitudinal health trajectories serve as a 

useful case study for exploring the tension between demographic methodological 

individualism and a more holistic approach to understanding populations and their 

dynamics.

We begin by considering the extent to which influential longitudinal methods rely on an 

assumption of gradual change to produce inferences about population health. We then turn to 

widely used, nationally representative survey data on functional limitations in later life to 

empirically compare and contrast the documented health paths of individuals with the 

summaries offered by aggregate trajectory models. We show that the assumption of 

gradualism fits population data well. However, for most individuals in the population, the 

pattern of health in later life is more aptly characterized as what Eldredge and Gould (1972) 

termed punctuated equilibrium: long-term stability irregularly interrupted by substantial 

changes. We conclude by arguing that the discrepancy between the gradualist intuition and 

the punctuated equilibrium of individual health trajectories has important implications for 

our understanding of the dynamics of inequality in aging populations and for the potential 

impact of policies and programs that ultimately play out at an individual level.
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Modeling Health Across the Life Course

Studies of aging have long emphasized the heterogeneity of health and other personal 

characteristics in later life (Maddox 1987; Nelson and Dannefer 1992). The influential life 

course perspective encourages researchers to consider health in relation to accumulated 

exposures to advantage and disadvantage that differentiate individuals or groups over time 

(Dannefer 2003; Elder 1985; Ferraro and Shippee 2009). More specifically, dynamic 

interactions between social structures and processes of stratification, personal traits, and 

contingent events are theorized to generate social and economic inequalities that are 

ultimately reflected in differential health and longevity. Life course research also seeks to 

distinguish between intraindividual and interindividual changes: that is, to differentiate 

between the timing, direction, and magnitude of within-person changes and the ways in 

which patterns of change vary across individuals and groups in a population (George 2009; 

Nesselroade 1991; O’Rand 1996; Wolf 2016).

Empirical studies (e.g., Ferraro et al. 2016; Haas 2008; Hayward and Gorman 2004) have 

tested life course hypotheses by examining the association between exposures to 

disadvantage in early and midlife and subsequent health outcomes. In the absence of a single 

comprehensive measure of health, surveys collect information about chronic illnesses, 

functional limitations, disability, and other indicators at multiple time points, and they record 

instances of mortality. Researchers depict health declines by documenting the accumulation 

of negative outcomes and by describing the pattern of accumulation via longitudinal models 

that aim to determine what changes occur, how change unfolds, and why change takes place.

A variety of statistical models are available for summarizing events over time or identifying 

patterns of stability and change in repeated measures. These methods vary in the extent to 

which they consider long-term trajectories as comprising multiple discrete snapshots or as 

single continuous units (Abbott 1995). Consequently, the conclusions reached by 

longitudinal studies of health and health disparities in older populations may be shaped by 

the method and unit of analysis as well as the data. In the next three sections, we review 

some of the most common analytic methods in the field and evaluate the extent to which 

they rely on the assumption that change proceeds gradually.

Growth Curve and Latent Class Models

The earliest statistical approaches to longitudinal data involved reducing repeated measures 

into summary indicators and calculating change as a difference between discrete endpoints 

(Fitzmaurice and Molenberghs 2009). Over the past three decades, however, a recognition of 

the need for more sophisticated models that can differentiate between various levels of 

heterogeneity (e.g., within- and between-person heterogeneity) has led to the rise of mixed-

effects regression as a favored statistical approach to longitudinal data. Mixed-effects 

regressions allow researchers to use multiple data waves and model trajectories via 

continuous distribution functions that characterize patterns of change across ages while also 

recognizing differences between defined subpopulations (for a review, see Lynch and Taylor 

2016). When estimated via a full-information maximum likelihood approach, these models 
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also have the advantage of employing all available information, including on those 

respondents who provide incomplete information.

One major framework that guides contemporary longitudinal analyses is based on 

the assumption that individuals come from a single population whose change over 

time can be adequately described by a single parametric trajectory. Known as 

growth curves within the multilevel or hierarchical linear models literature 

(Raudenbush and Bryk 2002) or latent growth curves in the structural equation 

models literature (Bollen and Curran 2006), these models were first applied in 

education and criminology studies and have more recently been used to 

characterize patterns of health in later life (e.g., Bishop et al. 2016; Brown et al. 

2012; Haas 2008; Quiñones et al. 2011; Shuey and Willson 2008; Warner and 

Brown 2011).

Although growth curve models can and do quantify between-person heterogeneity around 

the population mean, the researchers who employ them frequently highlight the parameters 

representing a mean trajectory in their interpretations. Notably, these parameters are 

calculated by averaging over individual (within-person) trajectories in a manner reflecting an 

assumption of gradualism: the notion that change occurs at a constant or constantly changing 

rate. Furthermore, although heterogeneity parameters capture between-person differences in 

the pace of change, they do not characterize discontinuities (e.g., sharp reversals or 

fluctuations) in the pattern of within-person change. Instead, the models depict only those 

changes that unfold in a gradual, continuous fashion.

Another prominent framework challenges the assumption that populations can be well 

characterized using a single average trajectory with random effects and instead suggests that 

populations comprise meaningful classes of individuals who follow distinct trajectories over 

time (Jung and Wickrama 2008). Latent class growth analysis (LCGA) assumes multiple 

internally homogeneous classes (Nagin 2005). The more computationally intensive growth 

mixture modeling (GMM) relaxes this assumption and models heterogeneity within distinct 

latent classes of trajectories (Muthén and Asparouhov 2008). Both of these group-based 

latent-class approaches use mixtures of probability distributions and a multinomial modeling 

strategy to identify unique clusters of trajectories and aim to explicitly capture 

interindividual differences in intraindividual trajectories. Latent class growth analysis or 

growth mixture models have been applied to patterns of self-rated and functional health as 

well as to the accumulation of limitations in activities of daily living (ADLs) and markers of 

frailty. They have been used to showcase differences across subpopulations and to test 

hypotheses about the extent to which exposure to disadvantage—such as economic hardship 

and discrimination based on gender, race/ethnicity, or nativity—sorts individuals into 

different patterns of health decline (Gill et al. 2010; Han et al. 2013; Liang et al. 2010b; 

Quiñones et al. 2011; Taylor and Lynch 2011; Wickrama et al. 2012).

The developers of these models have suggested that with sufficiently large statistical and 

computational power, such models can go beyond estimating population averages to identify 

more nuance in trajectories (Bollen and Curran 2006; Curran et al. 2010; Nagin 2005). This 

would increase the number of recommended classes, reflecting the “distinctive groupings of 

individual-level trajectories within the population” (Nagin and Tremblay 2001:20). In this 

Engelman and Jackson Page 4

Demography. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



line of thinking, latent class trajectory models could, under ideal conditions, provide a 

tractable and parsimonious quantitative summary of heterogeneity within a population while 

faithfully representing individual-level patterns. Promoters of latent methods have heralded 

them as “person-centered approaches” (e.g., Liang et al. 2010b, 2011) and declared that 

latent class methods are a means for “putting the individual back into individual growth 

curves” (Mehta and West 2000:23). Results from such models could, in turn, inform 

potential policy and program interventions that address between-group disparities by 

focusing on individuals with particular characteristics.

To date, however, the person-centered ideal embedded in this model has yet to be fully 

achieved, and latent class trajectories, like their growth curve counterparts, smooth over 

heterogeneous within-person patterns in generating classes with gradualist trajectories 

representing subpopulation means (Bollen and Curran 2006; Curran et al. 2010; Nagin 

2005). This raises questions about the extent to which aggregate trajectory classes provide a 

meaningful basis for health equity interventions targeting individuals. Still, despite concerns 

about the accuracy of classification results (Warren et al. 2015), compositional bias related 

to nonrandom selection (Jackson et al. 2019), uncertainty about model fit (Nagin and 

Tremblay 2001, 2005), and ubiquitous warnings against the reification of trajectory 

groupings as real categories rather than heuristic devices, latent class models and their 

growth curve counterpart remain appealing to life course researchers because of their 

potential to portray a coherent pattern of longitudinal change while accounting for 

heterogeneity within populations.

Less examined, however, is the question of whether health survey data (and the process 

generating them) fit the gradualist assumptions embedded in trajectory models. In many 

applications of growth curves, changes in particular attributes (e.g., domains of knowledge 

or capacity) are indeed often monotonic, without sharp breaks or reversals. However, that is 

not necessarily the case for individual health trajectories. Although cumulative 

(dis)advantage and inequality theories recognize that risks may increase gradually as well as 

sporadically or nonlinearly for individuals, our models do not necessarily capture such 

scenarios. Thus, although trajectories estimated via mixed-regression models may vary in 

baseline levels and in whether the pattern of change is depicted as linear, quadratic, or 

exponential (DiPrete and Eirich 2006), they consistently reflect the assumption—built into 

both growth curve and latent class model parameters—that health change is smooth and 

steady.

Multistate Models

The multistate life table (Namboodiri and Suchindran 1987) is an older alternative to mixed-

regression models. It models change across ages as a Markov process, allowing the 

calculation of transition probabilities across a finite number of predefined discrete states. 

The method can depict exit from and reentry into the same state, which captures both 

stability and change. It also accounts for competing risks, including mortality and other 

forms of attrition. However, the multistate life table emphasizes the occurrence of transitions 

rather than their timing. Although it avoids the imposition of a gradualist assumption, the 

model nonetheless results in a loss of information in cases when outcomes are continuous or 
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truly accumulate slowly and gradually over time. Event-history methods (also known as 

time-to-event, hazard, or survival analysis) expand on the life table approach to incorporate 

the timing of transitions, often by building in gradualist assumptions about the smooth shape 

of the underlying hazard function.

Multistate life tables have been used to address a variety of social science and public health 

questions, including the estimation of expected duration in states of health, illness, and 

disability. This research has shown that increased longevity comprises years lived in both 

good health and disability and that the distribution of years in different health states varies 

by social and economic characteristics (Crimmins et al. 1994, 2009; Hayward et al. 2014). 

Although multistate models may provide an incomplete approximation of continuous 

process thought to underlie health changes, they too can be used to test hypotheses about 

cumulative (dis)advantage and divergent health outcomes. They thus offer a potentially 

instructive counterpoint to the gradualist mixed regression models.

Sequence Analysis

Sequence analysis is a method that originated in studies of protein and DNA strings and was 

imported into the social sciences (Abbott and Tsay 2000; Billari 2001). This method treats 

ordered series of discrete events or states as whole analytic units and can characterize linear 

progression as well as more complex patterns that allow for contingency, chance 

occurrences, and interdependence among states (Abbott 1995). Contemporary sequence 

analyses generate typologies—clusters of cases with similar trajectories—as well as 

measures summarizing the diversity and complexity of observed patterns (Barban and Billari 

2012; Gabadinho et al. 2011).

Although sequence analysis is frequently used in life course research exploring patterns of 

marriage and fertility, education and employment, and criminal or deviant behavior (Billari 

2001), it remains uncommon in social studies of health. An early paper identified typologies 

of health that differ in the timing, order, and direction of change (Clipp et al. 1992), but 

more recent applications in the health sciences have focused on genetic markers rather than 

the health measures self-reported in surveys. Sequence analysis is rich in detail and flexible 

enough to accommodate both gradual trajectories and less-uniform patterns of change. As 

such, it presents a promising tool for the study of health inequality. Although it provides less 

guidance for broad inferences in heterogeneous samples, it nonetheless offers a promising 

way to disentangle patterns of intraindividual changes from model assumptions and 

compositional changes that shape aggregate trajectories.

Gradualism Examined: Units of Analysis and Interpretations

The preceding review highlights gradualism as a key assumption in studies of later-life 

population health patterns. Although multistate analyses present an exception and sequence 

analysis holds potential for integrating individual- and population-level perspectives, the 

most prominent methods in longitudinal health research both assume and produce gradual 

trajectories. Gradualism is an intuitively appealing framework for health analysts because 

many physiological changes probably do occur in a continuous incremental fashion, albeit 
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subclinically (Ben-Shlomo and Kuh 2002). Gradualism also has appealing statistical 

properties because it is easily modeled using standard functional forms that trace smooth 

patterns of change. Scientific hypotheses consistent with gradualist assumptions generate 

clear expectations about the nature of changing health in aging populations, and these 

hypotheses can be empirically tested and used in predictive models. But is gradualism 

consistent with the health data we have and the health and survey processes that generate 

those data?

The major studies following aging cohorts collect data from individuals in discrete 

increments rather than continuously. The widely used Health and Retirement Study, for 

example, interviews respondents over two-year intervals. More frequent assessments would 

likely capture more detailed individual health changes, but rather than filling in the gaps in a 

pattern of smooth incremental change, such finer-grained data (both in terms of time 

intervals and specificity of health measurements) tend to uncover brief personal spells of 

debilitation and recovery (Wolf and Gill 2009) that are inconsistent with the gradualism 

assumed by population-level trajectory models.

In studies that rely on standard survey data, the assumption of gradualism is indeed rarely 

tested directly largely because population health research emphasizes probabilistic 

interpretations of data that deliberately aggregate individual heterogeneity and chance 

events. The goal is not fidelity to individual cases but rather inferences to groups; prediction 

focuses on population averages and rates, not specific events. The logic of population 

analysis is based on the recognition that whereas aggregates are composed of individual 

members, what is highly contingent on an individual level may nonetheless be predictable at 

a higher level of aggregation—an emergent property of large systems, codified in the 

statistical law of large numbers, and observed in many studies in the physical, biological, 

and social sciences (Armstrong 2017; Johnson-Hanks 2015; Smith 2011). Although 

population and individual-level analyses are widely described as complementary approaches 

that reveal different dimensions of a given phenomenon, shifting between the individual and 

population perspectives was once a central challenge in the early development of 

demography as a discipline (Schweber 2006). Medical research has changed its emphasis 

from understanding the natural history of disease to population-based prediction (Armstrong 

2017), and current epidemiologic research has indeed fully embraced its role as a group-

level endeavor (Smith 2011). Still, warnings against conflating individual- and group-level 

explanations abound in research texts, and their presence reveals the ease with which group-

level analyses get (mis)interpreted as pertaining to individual risks, and population averages 

are uncritically presumed to apply to the multitudes who are not average (see, e.g., Gould 

1985; Rose 2016).

Our empirical analysis draws on health survey data to contrast the assumption of gradual 

change embedded in population trajectory models with the patterns observed in descriptive 

and discrete analyses of individual trajectories. We demonstrate how individual histories of 

functional limitations become aggregated into varied population-based summaries 

depending on the analytic method used, and we examine the extent to which different 

methods account for interindividual heterogeneity in intraindividual change. We show that 
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individual-level data record general stability irregularly punctuated by relatively sudden 

change, while documented population change proceeds gradually.

Our goal here is not to criticize any particular model but rather to consider the match 

between models, the available data, and the processes that generate those data. By 

examining the individual- and population-level perspectives in the context of health 

trajectories, we hope to gain more insight into both their complementarity and the tension 

inherent in defining a populations as both the sum of individuals and a broader construct that 

comes to define those individuals.

Data and Methods

Data

We illustrate the contrast between the population and individual perspectives using data from 

the Health and Retirement Study (HRS), a nationally representative, longitudinal survey of 

community-dwelling middle-aged and older Americans (Juster and Suzman 1995). It is 

particularly well suited for our purpose because of its longitudinal design and because 

researchers across the social and public health sciences have relied on it extensively to learn 

about health in later life. We use 11 waves of data covering the period 1994–2014, when 

questions about functional limitations were asked in a consistent format. Our descriptive 

analysis also considers the first round of data, collected in 1992. The analytic sample 

includes members of the main HRS cohort born between 1931 and 1941, whose follow-up 

period encompasses the ages when health problems typically manifest and escalate.

Our analysis is based on 10,198 members of the HRS cohort. Of respondents in the initial 

sample, 3,505 (34 %) died during the follow-up period, and 1,781 (17 %) left the survey 

prior to the final wave. The full 10,198 cohort members contribute at least some information 

to the descriptive analysis and sequence analysis, allowing us to quantify the impact of 

attrition, mortality, and temporary missingness. The sample size for each analysis described 

later varies somewhat depending on how each method handles temporary missingness and 

attrition. The 9,706 individuals who have at least one measure of functional limitations are 

included in the latent growth curve, latent class growth analysis, and multistate models. In 

models that analyze change, we restrict the analytic sample to 9,141 individuals who had 

health outcomes observed during at least two survey rounds.

Key Variables

Our outcome is the sum (0–12) of functional limitations at survey Rounds 2–12. Functional 

limitations are measured via three subscales: (1) mobility (walking several blocks, walking 

one block, walking across the room, climbing several flights of stairs, and climbing one 

flight of stairs), (2) large muscle functioning (sitting for two hours, getting up from a chair, 

stooping or kneeling or crouching, and pushing or pulling a large object), and (3) fine motor 

skills (picking up a dime, eating, and dressing). For all items, 0 = no difficulty, 1 = difficulty, 

and higher sums indicate more limitation.

Of the health measures available in the HRS, the sum of functional limitations is arguably 

the best suited to capture gradual change in health over time because it contains a large 
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number of items measuring a mix of mild and severe limitations that individuals can develop 

or recover from over time. Functional limitations are conceptually situated between chronic 

conditions and ADL limitations (Verbrugge and Jette 1994), and prior studies using the HRS 

have found that functional limitations gradually accumulate across survey rounds, both for 

the study cohort as a whole and for specific subpopulations (Brown et al. 2012; Haas 2008; 

Liang et al. 2010a,b). Functional limitations are more likely to fit the gradualist paradigm 

than other commonly used measures of health, including the number of chronic conditions 

or the number of limitations in ADLs. Chronic conditions, while common, accumulate more 

slowly than functional limitations, feature little prospect for recovery, and often require 

formal diagnosis by a physician. Limitations in ADLs, on the other hand, are relatively rare, 

and encompass only a few (five) indicators of severe disability, leaving little opportunity to 

capture substantial progression or recovery.

Our analyses focus on functional health trajectories and do not adjust for covariates in order 

to compare inferences across longitudinal techniques.

Methods

We begin by fitting a model consistent with gradualist assumptions of health change, an 

unconditional growth curve for repeated measures of functional limitations. The model 

includes a fixed effect representing a mean trajectory across all individuals in the sample and 

a random effect representing the variance of individual trajectories around the group mean. 

We test linear and quadratic specifications and choose the best-fitting model using a 

combination of the comparative fit index, the Tucker-Lewis index, and the root mean 

squared error of approximation fit statistics (Raudenbush and Bryk 2002).

Next, to allow for additional heterogeneity in health trajectories, we model the onset and 

accumulation of functional limitations using a latent class growth analysis (LCGA), which 

identifies qualitatively distinct trajectories within a population and classifies individuals into 

the best-fitting category (Nagin 2005). We determine the best-fitting model based on the 

smallest sample-adjusted BIC value combined with a significant Lo, Mendell, and Rubin 

likelihood ratio test (Jung and Wickrama 2008).

To evaluate the gradualist assumptions built into the aforementioned models, we conduct a 

descriptive analysis to estimate (1) the percentage of the sample that experiences increasing 

limitations, (2) the percentage of the sample with a constant (or consistently missing) 

number of functional limitations, and (3) the percentage of the sample that experiences 

decreasing limitations. Our estimates compare the first and last observed rounds and 

consider change and stability over the total study duration. In doing so, we can evaluate how 

well the gradualist models match observed respondent health experiences across survey 

waves.

Next, we conduct analyses that relax the assumptions of gradualist models. First, we 

estimate a multistate model (Namboodiri and Suchindran 1987) that calculates the 

probability of transitions across five states: (1) 0–1 limitations, (2) 2–5 limitations, (3) 6–12 

limitations, (4) temporarily missing (i.e., missing data but not attrition), and (5) lost to 

follow-up (including respondents who died and who dropped out of the study). The Markov-
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process model allows recovery, and the only absorbing state is loss to follow-up (see Fig. 1). 

Model fit is evaluated using the likelihood ratio test, AIC, and difference between observed 

and model-predicted values. The best-fitting model assumes that the probability of 

transitioning across states is constant between survey rounds 2–6, 6–9, and 9–12. Sensitivity 

analyses vary the functional limitation cut points used to classify individuals into particular 

health states, and our results appear robust to varying the specification of the states (see 

Table A7, online appendix).

Finally, we conduct a sequence analysis (Gabadinho et al. 2011) to identify, describe, and 

visualize the most commonly observed histories of functional limitation. Because the first 

analyses highlighted the high prevalence of static trajectories (i.e., ones where no change is 

experienced prior to dropout), we conduct a second sequence analysis restricted to those 

who experienced any increase in functional limitations.

Across analyses, no imputation is performed. Missing data are handled in the latent growth 

curve and LCGA using full-information maximum likelihood (FIML). FIML keeps cases in 

the sample until the time of attrition, allowing them to contribute all available information to 

estimated trajectories. However, FIML is designed for situations in which data are missing at 

random. For this sample, we strongly suspect that attrition and dropout are related to health 

selection and decidedly missing not at random (Jackson et al. 2019). In the multistate 

models, temporary missingness was treated as a discrete state, and individuals may transition 

between having any number of functional limitations to the missing state and later return to 

the sample. This estimation treats missingness as informative and allows us to empirically 

quantify the likelihood that individuals in various health states will leave and return to the 

sample. Subject dropout and mortality are treated as an absorbing state. Finally, in the 

sequence analysis, all members of the sample are included in an initial analysis that 

quantifies the frequency of all health patterns. This analysis distinguishes between three 

types of missingness—temporary missingness, attrition, and mortality—explicitly showing 

the contribution of different types of missing data to the cohort’s health experiences.

Analyses are conducted using Stata, R, and Mplus 7.11 (Muthén and Muthén 2013). For a 

more detailed description of each method, along with considerations of missing data and 

measurement errors, see the online appendix.

Results

Consistent with prior analyses using the HRS, our unconditional growth curve model (Fig. 

2) generates a curvilinear trajectory in which functional limitations accumulate gradually 

over the course of the study (see Table A2, online appendix, for model fit criteria). Although 

the full model results in Table 1 suggest substantial heterogeneity around the average 

population trajectory parameters, the main conclusion affirms common assumptions about 

the gradual pattern of health decline in later life. However, as subsequent analyses suggest, 

this gradual accumulation of functional limitations is partially driven by the model’s 

parameters and the relatively small proportion of individuals who experience a change in 

functional limitations at any particular time in the study.
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Results from our LCGA model divides the HRS cohort into four classes with qualitatively 

distinct health trajectories (Fig. 3). Class A (approximately 65 % of the sample) is 

characterized by few functional limitations at the beginning of the study and a slow, gradual 

accumulation of functional limitations across survey rounds. Class B displays a relatively 

fast pace of accumulation. Individuals in Class C begin the study with a higher number of 

functional limitations (four) and slowly accumulate functional limitations thereafter. Those 

in Class D begin with a high number of functional limitations (eight) and remain relatively 

constant at that level with some slight evidence of a reduction in the number of functional 

limitations at later rounds. Prior research casts some doubts about the accuracy of class 

identification (Jackson et al. 2019; Warren et al. 2015), partially because heterogeneity 

within classes and compositional change due to selective mortality and attrition may bias the 

parameters shaping each group’s trajectory. Still, the relative flatness of most class 

trajectories (with the striking exception of Class B) in Fig. 3 compared with the mean 

trajectory estimated in Fig. 2 suggests that many respondents experience stability over time 

and that the steeper accumulation in Fig. 2 may be partly an artifact of population 

composition. That said, with the exception of Class D, which depicts a slight recovery, the 

trajectories depicted in Fig. 3 are also characterized by a pattern of steady accumulation over 

time (see Table A3, online appendix, for model fit criteria).

Subsequent analyses further indicate that a trajectory of gradually increasing functional 

limitations is far from universal. Table 2 summarizes results from a simple descriptive 

analysis. The top panel confirms the overall health change in this sample: the average 

number of chronic conditions, functional limitations, and ADL limitations is higher at the 

last observed survey round than at the first observed one. Panel 2 describes the proportion of 

the sample whose health changes between their first and last observed survey rounds. 

Whereas 59 % of the sample reported more functional limitations at the last survey round 

than they did at the first round, nearly 25 % experienced no change in functional limitations, 

and 16 % experienced a decrease. A similar analysis of change in chronic conditions and 

ADL limitations reinforces the idea that the pattern of later-life health is more heterogeneous 

than a single trajectory of decline: 20 % of the sample reported no change in the number of 

chronic conditions between the first and last rounds observed, and a striking 73 % reported 

no change in ADL limitations between the first and last round observed.

However, changes in health are somewhat more common than the prior analysis suggests. As 

panel 3 in Table 2 shows, although only 59 % of the sample saw increased functional 

limitations between their first and last observations, 79 % experienced an increase at some 

point. Similarly, whereas 24 % of the sample had more ADL limitations at the last round of 

the survey than at the first, 37 % had an increase in ADL limitations over the observation 

period. These findings suggest that a nontrivial proportion of the sample recovers after 

experiencing a health decline.

The pattern of intraindividual changes suggests that a gradual increase in functional 

limitations throughout the study is not common. As summarized in panel 4 of Table 2, on 

average across survey rounds, experiencing no change in chronic conditions, functional 

limitations, or ADL limitations is more common than experiencing an increase or a 

decrease. An individual is expected to experience 2.47 increases in functional limitations, 
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2.75 occasions of no change, and 1.94 decreases in functional limitations. Together, these 

findings suggest that although the mean number of functional limitations (as well as ADL 

limitations and chronic conditions) increases between the first and last rounds of 

observation, this population-level change reflects the experiences of only a small subset of 

the sample. Indeed, no individual experienced an increase in functional limitations at each 

follow-up survey round, and less than 1 % of the sample experienced more than three 

successive increases in functional limitations (see Table A4, online appendix). Declining 

health is not universal and does not occur in the consistent fashion assumed by gradualist 

models. Perhaps most importantly, on average, people spend more time not changing than 

they do changing.

Results from the best-fitting multistate model (Table 3) confirm that with the exception of 

transitions to and from a missing state, the most common pattern across survey rounds is 

stasis, remaining in the same functional limitation status (see Table A5, online appendix, for 

fit criteria). For example, individuals who had 0–1 functional limitations at Round 2 are 

estimated to have a 74 % chance of remaining in that state at the next round. The model also 

suggests a nontrivial risk of recovery: at Round 9, people with 6–12 functional limitations 

had a 17 % chance of transitioning to 2–5 functional limitations at Round 10. Consistent 

with our descriptive analysis, the multistate results suggest that a linear accumulation of 

functional limitations is in fact quite rare. Even at the final survey rounds, the probability of 

progressively moving from State 1 (0 to 1 functional limitations) to State 2 (2 to 5 functional 

limitations) to State 3 (6 to 12 functional limitations) is only 3.74 %.

Finally, our sequence analysis identifies the most common functional limitation patterns for 

individual members of the HRS cohort. The line width in each panel of Figs. 4 and 5 is 

weighted by the number of cases who follow the particular trajectory. Sequences are shown 

on separate panels because they are hard to distinguish, given that most involve shifts 

between the state of no functional limitations and missing values (due to mortality, attrition, 

or temporary missingness). Notably, no single pattern characterizes more than 2 % of the 

sample, and none of the 12 most common trajectories in Figs. 4 and 5 involve a gradual 

accumulation of functional limitation. Instead, they highlight stability over time along with 

the influence of missing data. Although increases in functional limitations do occur, they are 

relatively rare and occur at varying times.

When the analysis is restricted to individuals who experience any increase in functional 

limitations over time (n = 7,235), the results in Fig. 5 further reinforce the conclusion that 

functional health over time rarely reflects the gradual accumulation of limitations. The 12 

most common sequences show that an increase in functional limitations happens relatively 

rarely, occurs at highly variable times, and most often consists of the addition of one 

functional limitation between a given set of rounds rather than a gradual accumulation.

Overall, our analyses show that although examples of continuous accumulation exist, they 

are considerably less common than gradualist models lead us to expect. Instead, the 

trajectories produced by mixed regression methods are driven by parametric assumptions 

and compositional changes in the sample. That is, gradual trajectories are shaped by the 

combination of between-person differences in aging cohorts and within-person changes over 
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time. The resulting averages are an emergent property of the population (or aggregated 

subgroups) but do not accurately represent the experience of most individuals.

Discussion

In longitudinal studies of health, researchers choose how to aggregate individual records into 

population-level summaries. The chosen models and units of analysis reflect an intuition 

about health and aging as well as a perspective on the relationship between the population at 

large and the heterogeneous individuals that constitute it. These choices also influence the 

inferences that can be drawn from the data. As we’ve shown here, models of gradual 

changes in health—albeit both intuitively and analytically appealing—depict longitudinal 

health change in populations that differ considerably from the vast majority of individual 

health histories.

Later-Life Health: Population and Individual Trajectories

By design, mixed regression models depict the pattern of health among older populations via 

continuous parametric trajectories. Results from our latent growth curve and LCGA models 

are consistent with this literature, showing a slow, gradual accumulation of functional 

limitations for members of the HRS cohort overall and within subgroups distinguished by 

their initial level of functional limitations and the pace of subsequent accumulation. Prior 

research has noted the importance of acknowledging within-group heterogeneity and the 

competing risks of attrition and has cautioned against equating the predicted smooth 

trajectories with the complex dynamics that trajectories imperfectly measure or reifying 

latent trajectory classes (Lynch and Taylor 2016; Warren et al. 2015; Wolf 2016; Zimmer et 

al. 2012). Still, these models have remained popular because their assumptions are 

biologically plausible and intuitively appealing, and their statistical properties facilitate the 

testing of hypotheses as well as the prediction of population health patterns. However, 

descriptive, multistate, and sequence analyses all underscore the distinction between 

gradualist population trajectories and individual health histories. Our descriptive analysis 

shows the discrepancy most explicitly: it demonstrates that in this sample of older adults, a 

pattern of gradually increasing limitations is rare rather than universal, and stasis is more 

common than change. The multistate and sequence analyses reinforce these conclusions: 

both show that even though change is common in the sample overall, for individuals it 

occurs only rarely, at irregular times and intervals, and in a nonlinear and sometimes 

multidirectional fashion.

Although the latter analyses do not impose the same parametric gradualist assumptions, they 

do have other drawbacks. Computational and data constraints require that individuals with 

different numbers of functional limitations be pooled into relatively few groups for the 

multistate analysis. Consequently, some health changes may not be captured by the model, 

although our results are robust to alternative state specifications (see the online appendix). 

The multistate model also flattens the temporal dimension of change, leading to the loss of 

some detail. The sequence analysis, in turn, preserves the full richness of the data but at the 

expense of parsimony. With more than 8,000 distinct sequences, it is difficult to distill 

findings into generalizable conclusions about population health. Still, this difficulty in 
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reducing the data is itself informative and hints at the complexities in the relationship 

between individuals and the population.

The impact of missing data on inferences should also be noted. A majority of the sample is 

lost to attrition or mortality, raising questions about the potentially biasing impact of 

nonrandom compositional changes on the estimated population trajectories. Overall, 

individuals who drop out may experience a greater accumulation of functional limitations 

than those who do not, suggesting that standard analyses (including those that employ full-

information maximum likelihood estimation) may underestimate the prevalence and severity 

of functional limitations (Jackson et al. 2019). The high prevalence of missing data also 

complicates the interpretation of our descriptive, multistate, and sequence analyses. Across 

analyses, we do not impute but instead allow the missingness to be potentially informative. 

Some temporary missingness, however may be random or due to illness followed by 

complete recovery. In the likely case that attrition and dropout are not random, however, 

missing data introduce an added layer of uncertainty about the ability of longitudinal models 

to accurately capture individual health changes.

Our results highlight stasis as a major characteristic of later-life health, with most people 

reporting no changes at most survey rounds, even though change occurs frequently in the 

sample as a whole. The analysis also highlights the diverse nature of change, with increases 

and declines happening at different times and intervals, yielding no single typical trajectory 

or clear set of naturally clustering sequence patterns. These findings are nonetheless 

consistent with population theory that reconciles unpredictability on the individual level with 

the emergence of more systematic patterns in the aggregate. The contrast we highlight 

means that although gradualist models may offer important insight into population-level 

changes, they should not be treated as straightforward aggregations of within-person 

changes. Both individual stochasticity and structurally influenced heterogeneity within and 

across subpopulations call for more caution—and perhaps alternative metaphors—in 

analyses of aging and health.

Gradualism, Homeostasis, and Punctuated Equilibrium

We find that individual health histories are characterized by long-term stability that is 

irregularly interrupted by singular, often small changes in health status or—frequently—by 

mortality or attrition. Inspired by a classic study in evolutionary biology, we call this pattern 

a punctuated equilibrium and consider it as an alternative to gradualism in analyses of health 

trajectories.

Paleontologists Niles Eldredge and Stephen Jay Gould introduced the concept of punctuated 

equilibrium in a seminal 1972 paper considering the development of new species. The 

prevailing gradualist view in paleontology had held that speciation unfolded as a “slow and 

steady transformation of entire populations” (p. 84), but Eldredge and Gould (1972) argued 

that a model of long-term stasis occasionally disrupted by “rapid and episodic events” more 

accurately describes evolutionary change as documented in the fossil record. Instead of 

emphasizing progressive change, the punctuated equilibrium model underscores the 

predominance of long spans of time without variation in key features. Eldredge and Gould 

acknowledged that change does take place “rather often in the fullness of time,” but it tends 
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to be a deviation from a previously or subsequently stable trend rather than a continuous 

incremental process. This rereading of the fossil record as reflecting a messy, 

nondeterministic historical process that interweaves stability and disruption presents a 

compelling guide for considering how data on individual health histories is constructed into 

population trajectories.

Notably, Eldredge and Gould (1972) argued that the punctuated equilibrium framework is 

not necessarily in conflict with the gradualist one: it simply reads the available evidence on a 

different scale. Thus, the fundamental mechanism of change may indeed be gradual, but 

only changes that cross the threshold of observation are recorded in the data, yielding an 

observed pattern of punctuated stability. Similarly, although some changes in health may 

occur gradually on a subclinical level, individuals may not consciously track their health 

status for incremental changes until they experience a sudden change—due to either an acute 

event or a particular underlying health condition passing an observable threshold. Discrete 

survey measures, like clinical records, provide static snapshots that capture overall stability 

and the particular shifts in health that are significant enough to establish a new homeostasis. 

This perspective has long been recognized in the biological study of aging, which considers 

homeostasic physiological function to be the foundation of individual organismic life 

(Holliday 1995), and models events such as heart attacks, neoplasms, and external shocks as 

stochastic disturbances that challenge an individual organism’s ability to maintain or 

reestablish that homeostasis (Yaffee and McGee 2000). Thus, whereas gradualism may 

characterize both the incremental, continuous micro-level process that changes individual 

health in largely unobserved, subclinical ways as well as the more macro-level pattern of 

steady health change in populations that emerge in aggregate analyses, punctuated 

equilibrium appears to better capture the discrete and less predictable changes in a key 

intermediate level—those that are consciously experienced by individuals and documented 

in survey data.

Eldredge and Gould’s punctuated equilibrium model translated the idea of individual 

homeostasis to the population level, but our application of the concept differs from its 

paleontological predecessor in an important way. In evolutionary biology, punctuated 

equilibrium describes the emergence of new populations. Our argument here, however, is 

about the differences between summary statistics that apply to populations and measures of 

individual change. Specifically, we argue that in the case of health trajectories, the gradual 

change observed in population analyses is not a simple summary of individual histories but 

rather an emergent result of aggregating and averaging across individuals. Health gradualism 

is a population-level property, but it does not necessarily hold at lower levels of aggregation 

because it appears to be shaped by the heterogeneity and changing composition of aging 

cohorts as much or more than it is shaped by within-person changes (see, e.g., Vaupel et al. 

1979). Thus, although the notion that functional limitations increase slowly as we age is a 

population-level truth, the story for most individuals is less uniform, particularly in the 

presence of heterogeneous structural conditions and mortality risks. If our population 

models of health and aging simply reflected individual trajectories in the aggregate, we 

might expect to see punctuated equilibrium at the population level, as Eldredge and Gould 

did. Empirically, however, we do not. Instead, the gradualist assumptions of mixed 
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regression models produce gradualist results, further reinforcing that intuition as we think 

about how to address inequalities in health and mortality.

Implications for Health and Aging Research

Life course theories call on us to recognize heterogeneity in aging. Analyses that employ 

gradualist methods to link early and midlife exposures with later-life health trajectories are 

responsive to that call, but only partially. In particular, the built-in assumptions of mixed 

regression models facilitate the testing of cumulative disadvantage hypotheses, but the 

results reinforce common preconceptions about aging and its associated health declines, 

although these do not necessarily fit with the majority of individual health histories captured 

in survey data. Exposures to advantage and disadvantage indeed accumulate over the life 

course. Our findings, however, suggest that for individuals, functional limitations—and 

potentially other health outcomes—do not necessarily follow a gradual pattern and are 

instead characterized by general stability interrupted by sporadic change. Our findings are 

consistent with recent research that has highlighted the relatively high prevalence of 

recovery and health variability among nursing home residents, who may be expected to 

experience more serious health declines than the general population (Bolano et al. 2018). 

Consequently, the use of gradualist longitudinal models to link exposure to disadvantage 

with health disparities potentially raises both methodological and substantive complications.

In particular, several trajectory studies using the HRS (e.g., Brown et al. 2012; Gueorguieva 

et al. 2009; Quiñones et al. 2011) showed that certain subpopulations defined by gender, 

race/ethnicity, and socioeconomic status (SES) vary in baseline measures of health but found 

no significant differences in the slope of health change over time—a puzzling finding given 

the large differences in mortality between similarly defined groups (National Center for 

Health Statistics 2016). Rather than refuting the presence of links between early exposures 

and health change in later life, however, such results may reflect the poor fit of gradualist 

assumptions to the survey data and underscore the importance of considering the pattern of 

punctuated equilibrium in later-life health. The earlier death of socially and economically 

disadvantaged persons (who might be expected to display a cumulative health penalty) and 

the nonrandom nature of attrition in longitudinal surveys of health further suggest that 

gradual health trajectories may underestimate the accumulation of poor health outcomes in 

disadvantaged subpopulations (Jackson et al. 2019), contributing to an inaccurate impression 

of comparable health declines across heterogeneous groups. Explicitly recognizing the 

limitations of gradualist models and the extent of differential survey attrition and mortality 

selection among vulnerable individuals and subpopulations is a first step toward recognizing 

that current estimates of disparities in health by race/ethnicity or various indicators of SES 

may be too conservative.

The punctuated equilibrium perspective reorients us more explicitly to the interplay between 

population aggregates and the individual-level experiences that produce them. Armstrong 

(2017:298) recently commented on the shifting nature of the concept of population in health 

research:

On the one hand, the population is a sum of individual identities, but as those 

identities change the population provides a fluid denominator, comparator, context 
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and analytic space. On the other hand, over the past two decades, the population has 

come to define those very individuals.

Over time, individuals transition in and out of various statuses and population categories, 

and such moves may incrementally reshape these categories themselves (Johnson-Hanks 

2015). Nevertheless, some populations are defined by particular characteristics—for 

example, race and ethnicity, as well as gender, age, and disability, among others—that 

become reified, giving a sense of identity to the individuals they comprise and serving as a 

referent to others (Baynton 2013; Saperstein and Penner 2012). Consideration of differences 

across categories often illuminates inequalities, but the reification of those categories may at 

other times present barriers to understanding the dynamics that shape and reproduce 

inequalities over time. In the context of functional limitations, the application and 

interpretation of gradualist models have tended to blur the distinction between individual 

and population patterns as well as within- and between-person variation. Recognizing the 

punctuated equilibrium dynamic allows us to consider individual paths across particular 

levels of physical function while simultaneously recognizing that health categories are not 

necessarily fixed but are instead variable and reflective of both individual trajectories and 

ongoing compositional change in aging cohorts.

Notably, we do not argue that gradualist models are themselves problematic, but rather that 

when applied to longitudinal health survey data, these models emphasize heterogeneity and 

clustering across people but are less successful at describing within-person changes over 

time or characterizing their determinants. Thus, even while championing their potential for 

informing person-centered analyses and interventions, gradualist models are in fact telling us 

more about aggregated, heterogeneous, and changing populations—a level that is harder for 

classic health interventions to influence. Coarse measures of health, long intervals between 

survey observations, and irregular interruptions in the form of missing and censored survey 

data may all influence our results and the analytic challenges they highlight. To resolve 

them, our analysis suggests two ways forward: (1) continuing to apply gradualist models to 

different health data that better reflects the cumulative process of health change, or (2) 

analyzing health survey data with methods that do not require gradualism assumptions.

To continue with a gradualist paradigm, the ideal health data would not simply provide 

snapshots of broad health outcomes but rather would offer more refined measures that could 

be used to model truly latent (i.e., subclinical) biological processes that may be hard to 

detect but are known to incrementally accumulate to change health, perhaps via ongoing 

homeostatic adjustment. This type of individual-level data would be better suited for 

gradualist models because the underlying data-generating process would fit these models’ 

assumptions while also allowing us to more accurately translate individual trajectories to the 

broader population scale. Alternatively, using our existing (and ever improving) survey data 

infrastructures, we may consider a broader application of methods that can accommodate 

nonlinearities and multidirectional change and more explicitly incorporate mortality into 

analyses of within-person health changes. Future research should also further explore the 

ways in which methods that recognize the possibility of punctuated equilibrium—those 

discussed in this article as well as novel approaches that combine traditional mixture models 

with discrete transition functions (e.g., Bolano and Berchtold 2016)—may further illuminate 
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the connection between structural inequality and the life histories that shape individual 

health outcomes.

In challenging the gradualist paradigm, the punctuated equilibrium perspective opens new 

directions for research on health inequality across the life course, although not without cost. 

Punctuated equilibrium approaches that emphasize the stochasticity of within-person 

changes in observed measures of health make it harder to characterize or predict changes in 

a parsimonious fashion, reintroducing the problems that population health research typically 

overcomes by focusing on large samples and aggregate statistics. Questions also remain 

about whether and how a punctuated equilibrium perspective can contribute to our ability to 

interpret the role of the broader, structural social conditions that shape health inequities 

within populations and between subpopulations. We expect that gradualist models will 

remain popular in studies of health changes in later life because of their alignment with our 

understanding of age-related physiological and cognitive changes, their statistical 

tractability, and their ability to give form to specific hypotheses about the determinants of 

population health. Nonetheless, the development of methods that can depict nonlinearity in 

the progression of individual health while accounting for changes in population composition 

over time is a particularly important avenue for future research. The need to understand both 

individual and population health patterns remains as strong as ever. In making inferences 

about later-life health, we should exercise caution in applying higher-order regularities to 

individuals and subgroups and consider the implications of punctuated equilibrium for our 

ability to accurately characterize changes in health and interventions designed to ameliorate 

health inequities.
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Fig. 1. 
Multistate model
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Fig. 2. 
Latent growth curve with quadratic slope (n = 9,706)
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Fig. 3. 
LCGA: Four-class model with quadratic slope (n = 9,706)
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Fig. 4. 
Sequence analysis: Most common trajectories (n = 10,198)
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Fig. 5. 
Sequence analysis: Most common trajectories with any increase (n = 7,235)
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