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Abstract

Of all the novel glucoregulatory molecules discovered in the past 20 years, bile acids (BAs) are 

notable for the fact that they were hiding in plain sight. BAs were well known for their 

requirement in dietary lipid absorption and biliary cholesterol secretion, due to their micelle-

forming properties. However, it was not until 1999 that BAs were discovered to be endogenous 

ligands for the nuclear receptor FXR. Since that time, BAs have been shown to act through 

multiple receptors (PXR, VDR, TGR5 and S1PR2), as well as to have receptor-independent 

mechanisms (membrane dynamics, allosteric modulation of N-acyl phosphatidylethanolamine 

phospholipase D). We now also have an appreciation of the range of physiological, 

pathophysiological and therapeutic conditions in which endogenous BAs are altered, raising the 

possibility that BAs contribute to the effects of these conditions on glycaemia. In this Review, we 

highlight the mechanisms by which BAs regulate glucose homeostasis and the settings in which 

endogenous BAs are altered, and provide suggestions for future research.

Over the last 15 years, bile acids (BAs) have emerged as unexpected players in glucose 

homeostasis. In addition to their well-established role in promoting lipid absorption, BAs are 

also implicated in glucose metabolism and the secretion of glucoregulatory hormones1. In 

this Review, we highlight the mechanisms by which BAs influence glucose metabolism and 

suggest directions for future research.

BAs are cholesterol catabolites that are generated in hepatocytes (FIG. 1a). Following 

synthesis, BAs are conjugated to an amino acid and secreted into the bile. BAs are actively 

reabsorbed by enterocytes in the terminal ileum and travel via the portal vein to hepatocytes, 

where they are taken up and recycled. A proportion of BAs, however, escape ileal uptake, 

become modified by intestinal microorganisms, and are subsequently absorbed via passive 

diffusion in the colon2. Thus, BAs are found at high levels in the liver, bile and intestine 
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(TABLE 1). Due to incomplete reuptake by hepatocytes, BAs are detected at low levels in 

plasma. The presence of BAs in the systemic circulation raises the possibility that BAs 

directly affect tissues throughout the body. High-affinity BA uptake transporters, however, 

are thought to be expressed predominantly in the liver and ileum2–5. Thus, it is unclear what 

concentrations of BAs could penetrate parenchymal cells or interstitial fluid in most tissues. 

The enterohepatic circulation of BAs has been reviewed extensively in REF.3.

Numerous BA species are detectable in humans (FIG. 1b). They differ primarily in their 

hydroxylation sites and the presence or absence of a conjugated amino acid, predominantly 

glycine in humans. Of note, in rodents BAs are predominantly conjugated with taurine. In 

both humans and mice, a minor proportion of BAs also undergo sulfation6,7. BA 

modifications alter their physicochemical properties, including the so-called 

‘hydrophobicity’ of a BA molecule8,9. It is worth noting that this descriptor is derived from 

the chromatographic separation method, whereby BAs are designated more hydrophobic if 

they are retained longer on a nonpolar chromatography column during elution with a polar 

solvent9,10. BAs are more accurately described as amphipathic, meaning they have a 

hydrophobic surface and a hydrophilic surface, and the number and position of hydroxyl 

groups on a BA molecule determine its amphipathic nature10 (FIG. 1c). In addition to these 

physical descriptors, BAs can also be categorized as primary (synthesized in the liver) or 

secondary (generated by microbial modification of primary BAs in the gut11; FIG. 1). The 

composition of the BA pool is remodelled under numerous pathophysiological and 

experimental conditions12–16 and this change in composition could influence BA function.

A unique feature of BAs is that they can act via multiple completely distinct molecular 

mechanisms, for example, by emulsifying lipids, by affecting cellular membranes, through 

allosteric effects and via receptor-mediated pathways1. Some of the mechanisms by which 

BAs act are known to have effects on glycaemia, and a number of other mechanisms have 

the potential to effect glycaemia17,18. In the first part of this Review, we describe these 

mechanisms, many of which were revealed by studies in preclinical models. In the second 

section, we discuss conditions that affect BAs and which might, in turn, affect glycaemia. 

Such conditions include insulin sensitivity, the microbiome and liver diseases. We also 

examine interventions and therapeutic agents that alter BA-dependent pathways, deliberately 

or unexpectedly. Finally, we highlight gaps in our knowledge and questions for future 

consideration.

Non-receptor-mediated mechanisms

The canonical physicochemical effect of BAs is to support the emulsification of water-

insoluble lipids. It is possible that this process and other non-receptor-mediated BA effects 

could affect glycaemia, directly or indirectly.

Lipid emulsification.

Because of their amphipathic nature, BAs, in combination with polar phospholipids, are able 

to incorporate dietary lipids into mixed micellar solutions in the intestinal lumen. This 

micellization process increases the surface area of luminal lipids and improves the 

accessibility of intestinal lipases and the efficiency of fat hydrolysis19. This property of BAs 
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is essential to lipid absorption and total-body energy balance. Different BA species are 

differentially able to promote lipid absorption20,21. This ability to promote lipid absorption 

could be influenced by a BA’s micelle-forming properties8 and its permeability in the 

unstirred water layer lining the intestinal epithelium22. Evidence also suggests that 

enterocyte intracellular cholesterol esterification is regulated by BAs, although the 

mechanism of this is unknown23.

Effects on cell membranes.

BAs can insert into cell membranes, including the plasma membrane, and impact membrane 

dynamics24,25. A 2014 study showed that this is the mechanism by which BAs activate the 

BA-sensitive ion channel whose physiological function remains elusive26. At 

supraphysiological doses, BAs can disrupt cell membranes and cause cell lysis27–29. For 

example, deoxycholic acid (DCA), a secondary BA produced by dehydroxylation of cholic 

acid (CA), is particularly potent, and an injectable synthetic form of DCA has been 

developed that takes advantage of this attribute, and was approved by the FDA in 2016 for 

reduction of fat under the chin30.

BAs might affect intracellular membranes as well. DCA reportedly colocalizes with the 

mitochondrial outer membrane and perturbs its structure31. Tauroursodeoxycholic acid 

(TUDCA) has been reported to protect against endoplasmic reticulum (ER) stress, and 

treatment with TUDCA improves glycaemia in leptin-deficient ob/ob mice32,33. The 

molecular mechanisms by which TUDCA functions are not clear but could involve effects 

on the ER membrane itself.

Allosteric functions.

BAs can directly bind and modulate the activities of certain proteins. One notable example is 

N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), which is an enzyme found 

in the brain and intestine that converts membrane lipids into specialized bioactive lipids34. 

Products of NAPE-PLD include arachidonoylethanolamide (anandamide) and 

oleoylethanolamide, the latter of which promotes GLP1 secretion and both of which are 

involved in food intake regulation35. While solving the crystal structure of NAPE-PLD, 

researchers unexpectedly found DCA within the hydrophobic substrate binding pocket36. 

Moreover, DCA was found to bind and stabilize the enzyme and enhance its enzymatic 

activity. Further studies have shown that lithocholic acid (LCA), chenodeoxycholic acid 

(CDCA) and DCA bind NAPE-PLD (KD ~20, 25 and 43 μM, respectively)37. At sufficiently 

high concentrations, LCA inhibits NAPE-PLD, whereas CDCA and DCA activate it, but the 

physiological relevance of these effects, and any downstream effects on metabolism have not 

yet been investigated.

Receptor-mediated mechanisms

BAs activate several nuclear receptors and G protein-coupled receptors, with differing 

potencies (TABLE 2). Much of our understanding of the roles of BA receptors in glycaemia 

comes from experiments using genetically manipulated mouse models, as well as small-

molecule agonists and antagonists. An important consideration for interpreting such studies 
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is that BAs regulate their own synthesis through a series of negative feedback loops that 

converge on the key enzymes CYP7A1 and CYP8B1 (REFS3,38,39). Therefore, 

experimentally manipulating BA receptors frequently alters BA levels and composition 

(FIG. 2), which in turn influences other BA-sensitive pathways. In this section we review the 

reported involvement of BA receptors in glucose homeostasis; published mechanisms are 

summarized in FIG. 3. Of note, the reliance on preclinical models for these studies is a 

limitation. Mechanistic data in humans might be facilitated by identifying and studying 

individuals carrying genetic variants and by additional studies using receptor agonists.

FXR.

The first BA-responsive receptor discovered40–42, FXR, is highly expressed in the liver, 

intestine and kidneys. Its role in glucose homeostasis has been investigated in multiple 

studies15,17,43–45. Some studies in mice have shown beneficial effects of FXR 

activation43,44, while others have shown beneficial effects of deleting or inhibiting FXR17,18. 

Contradictions in the results between studies could be due to differential effects in the liver 

versus the intestine, pharmacokinetics of agonists and/or antagonists, sex, age, diet and 

genetic background. It is also worth noting that nuclear receptor deletion, antagonism or 

absence of ligand are not necessarily equivalent, as endogenous nuclear receptors can have 

effects in the basal, unliganded state46.

The evidence that FXR activity is beneficial for glycaemia arose from studies in mice with 

FXR deficiency, as well as mice that were given FXR agonists. On normal chow diet, Fxr−/− 

mice showed worse intraperitoneal glucose tolerance and lower glucose disposal during 

hyperinsulinaemic-euglycaemic clamp than wild-type mice44,47,48. Furthermore, treating 

ob/ob and db/db mice with the FXR agonist GW4064 consistently lowered glucose 

excursions during intraperitoneal glucose and insulin tolerance tests44,47. The gut-restricted 

FXR agonist fexaramine improved glycaemia and reduced diet-induced weight gain in 

mice15,43. The proposed mechanisms of FXR beneficial effects on glucose metabolism 

include: suppression of gluconeogenic genes, due to FXR activation of the transcriptional 

repressor SHP48; protection from skeletal muscle lipotoxicity, via FXR-dependent liver lipid 

metabolism48; reduced weight gain due to adipose tissue browning, downstream of FXR-

dependent alterations in BA composition43; increased GLP1 and insulin secretion, due to 

shifts in gut bacteria composition, which increase the TGR5 agonist taurolithocholic acid 

(TLCA)15; and increased secretion of fibroblast growth factor 15 (FGF15) and/or FGF19, 

described in detail below.

Conversely, other studies have shown that FXR inhibition improves glycaemia. Whole-body 

Fxr−/− mice and mice that lack FXR only in the intestinal epithelium had improved oral 

glucose tolerance, and this phenotype was frequently associated with reduced body 

weight17,18,49–51. Compared with vehicle-treated animals, when challenged with a high-fat 

diet, GW4064-treated mice displayed exacerbated weight gain, increased fasting glucose and 

insulin levels, and worsened glucose and insulin tolerance45. Furthermore, mice treated with 

glycine-β-muricholic acid (MCA) to antagonize FXR activity showed improved insulin 

tolerance and oral glucose tolerance and reduced fasting insulin levels compared with 

vehicle-treated control mice1.
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The proposed mechanisms for the beneficial effects of FXR inhibition include: decreased 

hepatic gluconeogenesis due to decreased pyruvate carboxylase activity (this has been 

suggested to be downstream of lower FXR-dependent intestinal production of hepatotoxic 

serum ceramides)50; reduced weight gain due to increased thermogenesis (also downstream 

of FXR-dependent production of serum ceramides)17; release of FXR-dependent 

suppression of proglucagon, the GLP1 precursor, that leads to increases in glucose-

stimulated GLP1 release51; delayed intestinal glucose absorption due to increased glucose 

phosphorylation in enterocytes49; and release of FXR-dependent suppression of hepatic 

glycolytic genes52.

FGF15 and/or FGF19.

By activating FXR, BAs induce robust transcription of the peptide hormone FGF15 and its 

human orthologue FGF19. FGF15 and/or FGF19, which are highly expressed in ileal 

enterocytes, have a key endocrine role in suppressing hepatic BA synthesis, which occurs 

through the FGFR4–β-Klotho receptor complex53. FGF15 and/or FGF19 are also important 

for maintaining normoglycaemia, as evidenced by the impaired glucose tolerance in 

Fgf15−/− mice and glycaemic improvements after transgenic expression or injection of 

FGF1954–57. The beneficial effects of FGF15 and/or FGF19 are potentially due to: reduced 

hepatic gluconeogenesis, downstream of FGF15- and/or FGF19-dependent 

dephosphorylation of the gluconeogenic transcription factor CREB56; increased hepatic 

glycogen synthesis, due to FGF15-/FGF19-dependent activation of an ERK-GSK3α/β 
phosphorylation cascade57; reduced body weight and adiposity54,58, due to increased 

metabolic rate by increasing β-Klotho-dependent sympathetic nerve activity in brown 

adipose tissue58; and increased insulin-independent peripheral glucose disposal59, 

downstream of FGF15 and/or FGF19 induction of ERK signalling in hypothalamic 

neurons58,60,61. Plasma FGF19 levels are reportedly reduced in patients with obesity and/or 

type 2 diabetes mellitus62–64 and are negatively correlated with BMI65. However, the 

endogenous functions of FGF19 have been called into question66,67.

The therapeutic prospects for FGF19 are potentially limited by the association of high levels 

of FGF15 and/or FGF19 with increased hepatocellular carcinoma in mice and humans68,69. 

However, non-tumorigenic variants of FGF19 have been generated and are now in 

development for the treatment of liver diseases. Variants M70 and M52 have been shown to 

protect against fibrosis, steatohepatitis and cholestasis in mice, effects that are expected to be 

secondary to suppression of BA synthesis70–72. M70 is also capable of suppressing BA 

synthesis in humans70 and in a phase II clinical trial, it markedly improved markers of liver 

damage, cholestasis and inflammation in patients with primary biliary cholangitis73. A phase 

II trial of M70 in patients with nonalcoholic steatohepatitis (NASH) is underway74.

Vitamin D receptor.

Some BAs, namely LCA and 3-keto-LCA, can activate the nuclear vitamin D receptor 

(VDR); however, these BAs are poorly taken up into cells. Although micromolar levels of 

LCA can activate VDR (comparable to FXR activation by CDCA)75, the active form of 

vitamin D, 1α,25-dihydroxyvitamin D3, activates VDR at nanomolar concentrations, 

making LCA about 1,000 times less potent than vitamin D76,77. Therefore, high doses of 
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LCA are required to activate VDR in vivo, and activation occurs more strongly under 

conditions of vitamin D deficiency78. VDR has been reported to have a role in maintaining 

glycaemia, and this function could be carried out via effects in islets79, macrophages80 or 

endothelial cells81. However, few studies have specifically investigated the effects of LCA–

VDR signalling on glucose homeostasis. In vitro studies suggest that the LCA derivative, 

LCA propionate, protects β cells against dedifferentiation82. Another LCA derivative, 

TLCA-3 sulfate, induces insulin resistance in cultured hepatocytes, although this was not 

specifically linked to VDR83. Whether physiological or pharmacological levels of LCA and 

its derivatives regulate glucose metabolism in vivo remains to be determined.

TGR5.

The most extensively studied G protein-coupled receptor for BAs, TGR5 (also known as 

GPBAR1), is expressed in a wide range of tissues84,85. Preclinical studies suggest that 

TGR5 has a protective role in glucose homeostasis. The most widely reported mechanism by 

which this occurs is by TGR5-mediated increases in GLP1 secretion, accompanied by 

increased insulin secretion86–90. Alternative mechanisms by which TGR5 may influence 

metabolism include C/EBPβ-dependent suppression of macrophage infiltration into white 

adipose tissue91 and increased energy expenditure92,93.

Conditions and treatments that affect BAs

Endogenous BAs are altered in multiple physiological, pathophysiological and therapeutic 

conditions, and it is possible that these alterations contribute to BA-driven glycaemic 

regulation12,13,15,94,95 (FIG. 4). Investigating the effects of human conditions on BA pool 

size and composition is inherently challenging. Stable isotope kinetic studies are a gold-

standard method for assessing the synthesis and turnover of BAs in vivo, but require 

specialized expertise and are typically limited to small sample sizes. For studying larger 

populations, accessible specimens include plasma and faeces, but neither is a perfect 

representation of the concentrations and compositions of BA pools present in the liver, 

gallbladder or small intestine, the primary residences of BAs in the body. Nonetheless, in 

this section we Review the published literature, keeping these caveats in mind.

Impaired insulin signalling.

The first data indicating that insulin signalling regulates BA production and composition 

were from rodent models. Compared with healthy control animals, rodent models of 

insulinopenia and hyperglycaemia have a larger total BA pool size and a larger percentage of 

the BA pool consists of 12α-hydroxylated BAs96–98. The same is true in mice lacking 

hepatic insulin receptors99. The effects of hepatic insulin signalling on BA synthesis and 

composition are thought to be transcriptionally determined100. Evidence suggests that the 

transcription factor FOXO1, which is inactivated by insulin signalling, mediates the effect of 

insulin on BA composition101 (BOX 1).

Several studies have analysed plasma BAs and markers of BA synthesis and how they relate 

to insulin sensitivity in humans. Insulin resistance has been reported to be positively 

correlated with the levels of plasma BAs, especially primary BAs and/or 12α-hydroxylated 
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BAs16,94,102. Obesity is associated with increased BA synthesis103–105, 12α-

hydroxylation103 and alterations in BA transport12,103. Patients with type 2 diabetes mellitus 

have been reported to have increased concentrations of taurine-conjugated BA species106. In 

addition, kinetic studies have shown increased synthesis of BAs, particularly CA, in patients 

with type 2 diabetes mellitus107. Thus, preclinical and human studies support the consensus 

that hepatic insulin resistance increases BA synthesis, and might also cause other alterations 

in BA composition, such as increased 12α-hydroxylation. The dual concepts that first, 

insulin resistance, obesity or diabetes mellitus influence BA concentration and composition 

and, second, that BA concentration and composition can influence energy metabolism, 

suggest the possibility of adaptive or maladaptive feedforward signals contributing to 

metabolic disease.

Bariatric surgery.

Since 2009, numerous studies have shown that BA concentrations in the systemic circulation 

are increased after Roux-en-Y gastric bypass, biliopancreatic diversion and possibly vertical 

sleeve gastrectomy, but not after adjustable gastric banding108. These findings have been 

recapitulated in animal models, including mice, rats and minipigs108–111. The mechanisms 

by which bariatric surgery cause increased circulating BA concentrations are not yet known, 

and could be different depending on the surgical procedure. Increased synthesis alone is not 

the explanation. BA synthesis is increased in patients after biliointestinal bypass and 

biliopancreatic diversion112,113, potentially because these procedures limit BA signalling in 

the ileum, which would decrease FGF19-dependent suppression of BA synthesis. In patients 

who have undergone Roux-en-Y gastric bypass or sleeve gastrectomy, BA synthesis is 

decreased in the short term and later returns to the normal range113–115. In sum, following 

metabolic surgery, there are probably alterations in BA transport that cause increased 

circulating BA concentrations. Preclinical models have suggested that concentrations of BA 

uptake transporters are increased in the ileum109 or decreased in the liver after 

surgery110,111. The effects of bariatric surgery on BA composition have not come to 

consensus, potentially because of differences in surgical procedures, differences between 

animals and humans, and environmental factors.

Whether or not alterations in BA levels are the cause of improved glycaemia after bariatric 

surgery is also still a matter of debate. Proposed mechanisms include BA-driven increases in 

the secretion of GLP1, insulin or FGF19 (REF.108). Some studies in humans have supported 

correlations between secretion of these hormones and the BA subtypes present in the 

plasma116, although BAs present in the plasma are not necessarily representative of BAs 

present in the relevant tissues. Evidence supporting a role for BAs in metabolic 

improvements following bariatric surgery has come from mice deficient in BA receptors. 

Mice lacking FXR117,118, the FXR target SHP119 or TGR5 (REFS120,121) have all been 

found to show resistance to the metabolic benefits of bariatric surgery. However, potential 

caveats arise due to differences between these knockout mice and their wild-type controls 

before surgery. Moreover, some have argued that the timing of elevated BA levels does not 

coincide with improved glycaemia after surgery115. Mechanistic studies are required.
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Liver diseases.

It has been known for over 60 years that liver diseases differentially affect BA 

concentrations, distribution and composition122. One area that has been extensively 

examined is intrahepatic cholestasis of pregnancy (ICP). ICP is characterized by impaired 

bile flow as a consequence of genetic variation in hepatic BA transporters and high 

concentrations of pregnancy hormone metabolites, which competitively bind and reduce the 

activity of BA transporters and FXR123. Reduced activities of FXR and hepatic BA 

transporters cause elevations in maternal circulating plasma BA concentrations and altered 

BA composition, with a large increase in the proportion of CA in the pool124,125. Fetal 

plasma BAs, which are generated by the fetal liver, are also altered in ICP — concentrations 

are higher and CA predominates125. ICP is associated with an increased risk of adverse fetal 

outcomes123.

ICP is also associated with metabolic dysfunction. Compared with healthy pregnant women, 

women with ICP are more likely to have impaired glucose tolerance and gestational 

diabetes95,126. Babies born to women with the condition are more likely to be large for 

gestational age compared with babies born to healthy pregnant women95,127. Among 

children of women who were affected by ICP, adolescent boys show higher BMI and fasting 

insulin levels and girls show larger hip and waist girth than children of non-affected 

mothers128. Whether or not BAs are responsible for these effects is unclear. In mice, feeding 

pregnant dams a CA-rich diet results in offspring that are more susceptible to weight gain 

and glucose intolerance on a Western diet128. These findings suggest the possibility of in 

utero metabolic programming in response to BAs.

The development of nonalcoholic fatty liver disease (NAFLD) and NASH is strongly linked 

to insulin resistance and dysbiosis129. It has also been reported that in patients with NASH, 

liver tissue concentrations of BA are higher and composition is altered compared with 

disease-free control livers130,131. Plasma BA concentrations are also higher, with altered 

composition in patients with NASH compared with those in healthy control 

individuals132–137. BA concentrations have been found to be significantly higher in patients 

with NASH with and without type 2 diabetes mellitus than in controls136. Because patients 

with NAFLD and NASH are typically more obese and more insulin-resistant than control 

participants, Legry and colleagues compared patients with NASH and control participants 

matched for BMI and insulin resistance16. This analysis revealed that alterations in BA 

metabolism are associated with insulin resistance, rather than liver necroinflammation itself. 

These findings highlight the complex interactions among insulin resistance, BAs and 

NAFLD and NASH. Nonetheless, BA-dependent pathways are being vigorously investigated 

as targets for the treatment of NASH, and these have been reviewed extensively 

elsewhere129,138.

Gut microbiome.

The metabolism of BAs by gut microorganisms is an important determinant of BA 

composition. A common modification is the removal of the amino acid moiety of conjugated 

primary BAs, such as glycocholic acid and glycochenodeoxycholic acid, to create 

unconjugated or free BAs, such as CA and CDCA (FIG. 1). This deconjugation reaction 
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depends on the action of bile salt hydrolases, which are expressed in a wide range of bacteria 

and archaea139. Unconjugated BAs can undergo dehydroxylation at the 7 position to form 

secondary BAs; for example, CA is converted to DCA and CDCA is converted to LCA. 

Other possible modifications include epimerization and oxidation140. Although these 

conversions occur primarily in the microorganism-abundant colon where there are no active 

BA uptake transporters, unconjugated and secondary BAs can be passively absorbed3. Once 

returned to hepatocytes, unconjugated primary and secondary BAs can be re-

conjugated3,141. However, the human liver is not efficient at re-hydroxylating secondary BA 

species; this is evidenced by the substantial proportion (~30%) of the human BA pool made 

up of DCA and its conjugated forms142–144 (FIG. 2).

Agents that alter the microbiome can modify the composition of the BA pool. Individuals 

treated for 7 days with the gram-positive bacteria-directed antibiotic vancomycin showed 

significant reductions in the concentrations of secondary BAs in the plasma and faeces145. 

This effect occurred in response to vancomycin, which markedly altered the faecal 

microbiota composition, but not in response to amoxicillin. Indeed, different antibiotics have 

distinct effects on the composition of the BA pool146. Although it is outside the scope of this 

Review, it is worth noting that BAs can also influence the microbiome. A particularly 

intriguing example of this is presented by Clostridioides difficile: certain BAs (12α-

hydroxylated species) promote the germination of C. difficile spores, while some BAs 

(secondary species) suppress vegetative growth147.

The consequences of bacteria-modified BAs on host metabolism are currently under 

investigation148 and new methodological advances hold the promise of new ways to 

investigate this. In 2018, Yao and colleagues colonized gnotobiotic mice with isogenic 

bacterial strains with or without bile salt hydrolase and found that eliminating BA 

deconjugation capacity was sufficient to attenuate high-fat diet-induced weight gain149. 

Such approaches are likely to further refine the effect of the microbiome–BA–energy 

metabolism axis.

Therapeutic agents.

Interventions that target BAs or BA signalling pathways are currently in use or being 

developed for metabolic indications150,151. BA sequestrants block intestinal BA 

reabsorption, consequently increasing BA faecal excretion and causing compensatory 

increases in BA synthesis, which lowers plasma cholesterol152,153. BA sequestrants are now 

also known to improve glycaemia in patients with type 2 diabetes mellitus. A meta-analysis 

of 17 randomized controlled trials showed that BA sequestrants reduced HbA1c by 

0.55%154. The mechanisms by which BA sequestrants improve glycaemia remain under 

debate. One possibility is that these resins increase BA concentrations in the colon, thus 

activating BA-dependent secretion of GLP1 (REF.155), but this has not been confirmed in 

other studies156–158. One study has provided evidence that BA sequestrant actually reduces 
BA-induced GLP1 secretion159. Mechanistic studies suggest that TGR5 is localized on the 

basolateral membrane of enteroendocrine cells and thus BAs must be absorbed in order to 

activate it160,161, and this would preclude TGR5 activation by sequestrant-bound BAs. 
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Another possibility is that sequestrants increase splanchnic glucose uptake and 

utilization156, potentially due to lower FXR signalling in the intestine49.

Another mechanism by which BA reabsorption from the intestine can be blocked is to 

inhibit the apical sodium-dependent bile acid transporter (ASBT), and ASBT inhibitors have 

been developed to lower LDL cholesterol150,162,163. Studies in rodent models of type 2 

diabetes mellitus have suggested that, like BA sequestrants, ASBT inhibitors may also be 

able to improve glycaemia164–166. Consistent with this, inhibiting ASBT in patients with 

type 2 diabetes mellitus improves glycaemia167,168. In non-diabetic participants, ASBT 

inhibitors might increase GLP1, but do not affect plasma levels of glucose169,170.

Obeticholic acid (OCA, INT-747) is an FXR agonist that is a leading candidate in clinical 

trials for the treatment of NASH. In a small study that included patients with type 2 diabetes 

mellitus, OCA improved insulin sensitivity in hyperinsulinaemic–euglycaemic clamps171. 

However, in a larger study, OCA increased fasting insulin and thus worsened insulin 

resistance, as calculated by the homeostasis model of assessment (HOMA)172. Further 

studies are required to determine the effects of OCA on glycaemia in humans. We note that 

in addition to its direct effects on FXR-dependent energy metabolism pathways, OCA (and 

any other agonist or antagonist of FXR) will also have major consequences on BA 

concentrations and composition, because of the potent, FXR-mediated negative feedback 

loops on CYP7A1 and CYP8B1, thus potentially influencing other BA-dependent pathways.

The BA TUDCA has long been used in the treatment of liver diseases, due to its ability to 

increase bile flow. Studies in rodents have suggested that TUDCA might also improve 

glycaemia, potentially through its effects on ER stress in metabolic tissues and/or β 
cells33,173. Indeed, in obese individuals treatment with TUDCA (1,750 mg/day) for 4 weeks 

resulted improved hepatic and muscle insulin sensitivity174. However, this treatment did not 

affect ER stress markers, and another study with the related unconjugated molecule 

ursodeoxycholic acid (UDCA; 20 mg per kg per day) actually induced some ER stress 

markers in the liver175. Thus the mechanisms involved in the activity of TUDCA and UDCA 

continue to be elusive.

Metformin is the most widely used anti-diabetes drug and numerous mechanisms of action 

have been proposed, including several implicating BAs. One possibility is that metformin 

impairs intestinal BA uptake176,177, potentially increasing GLP1 secretion. Another study in 

humans has shown that metformin enhances BA-induced GLP1 secretion178. Metformin is 

known to activate AMPK, and it has been suggested that AMPK directly phosphorylates and 

inhibits FXR activity179. Other evidence indicates that metformin’s effect in altering the gut 

microbiome changes BA levels and/or composition, resulting in lower intestinal FXR 

activity180,181.

Future research needs

To fill the gaps in our understanding of the mechanisms linking BAs with glycaemia, 

especially those of clinical relevance, several laboratory approaches are available. First, 

many rodent models of BA receptor activation and/or inhibition are associated with 
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alterations in BA composition (FIG. 2). Therefore, it is not possible to separate the direct 

effects of the receptor on glucose metabolism pathways per se from its indirect effects (via 

altered BA composition) on TGR5, or other receptor-mediated or non-receptor-mediated BA 

effects. One way to approach this concern is to use mice with controlled BA pools, such as 

those lacking the CYP2C family of enzymes, which generate the 6-hydroxylated MCAs182; 

those lacking CYP8B1, which generates 12α-hydroxylated BAs, and which is known to 

effect glycaemia via its effects on BA composition13,183,184; and those with designer 

microbiota reconstitution149. Second, lack of BA receptors or BA synthesis enzymes might 

engender long-term and compensatory phenotypes that make data interpretation challenging. 

Exemplifying this are the studies of bariatric surgery in BA receptor knockout mice, which 

have phenotypic differences from wild-type mice at baseline. Temporal control of genetic 

knockouts, using inducible systems, could temper these caveats.

Third, there are differences in BA composition between humans and mice (FIG. 2). Humans 

have predominantly glycine-conjugated BAs (compared with taurine in mice), abundance of 

DCA and conjugated forms (compared with rodents, which efficiently re-hydroxylate DCA 

into CA), and very low levels of MCAs (compared with high levels in mice and rats). One 

potential approach could be to use human liver chimeric mice, although these are known to 

retain a substantial proportion of murine hepatocytes. At a minimum, researchers should 

keep these differences in mind and consider comparing humanized versus murine BA pools 

where possible, such as in in vitro experiments. Fourth, there are differences in the primary 

structure of FXR between species that influence sensitivity to certain BA subtypes185. These 

differences call for using human cells when possible, and stem cell-derived organoid 

methods might provide novel experimental platforms. Finally, systems biology approaches 

might help resolve the complexity of the BA functionality network (FIG. 4). Ultimately, 

clinical and translational studies in human subjects will have the most impact in determining 

the mechanisms linking BAs with glucose metabolism.

Conclusions

BAs are unique in their ability to act as structural molecules, allosteric modulators and 

signalling molecules. It is through a combination of these mechanisms that BAs affect key 

aspects of metabolic homeostasis. Whether or not these are druggable targets in patients with 

type 2 diabetes mellitus is not yet clear. New opportunities and experimental tools will allow 

basic, translational and clinical researchers to answer this question.
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Key points

• Pathways in multiple tissues have been reported to link bile acids (BAs) with 

glycaemia.

• Physiological and disease settings, and several medications, influence BA 

levels and composition.

• When interpreting studies with genetic and pharmacological modulations of 

BA receptors, one should take into consideration that these modulations affect 

BA concentration, distribution and composition.

• Rodent models with humanized BA composition will increase the relevance 

of basic research findings to human health.

• Human cells and organoid models should be used to address the interspecies 

differences in BA receptor structure.
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Box 1 |

Hepatic insulin signalling regulates bile acid pool composition in mice and 
humans

Evidence from mice

• The insulin-repressible forkhead box protein o (FOXO) transcription factors 

increase mRNA expression of the sterol 12α-hydroxylase, Cyp8b1, in mouse 

liver. Hepatic FoxO1 ablation in mice reduces the levels of 12α-hydroxylated 

bile acids (BAs) in enterohepatic tissues101. Triple hepatic ablation of FoxO1, 

FoxO3 and FoxO4 exacerbates this phenotype [R.A.H., unpublished], 

demonstrating redundant functions of FOXO transcription factors on Cyp8b1.

• Mouse and rat models of hyperglycaemia and insulinopenia are surmised to 

have higher FOXO activity, and they show increased levels of 12α-

hydroxylated BAs. These models include rodents treated with the β-cell 

toxins streptozotocin and alloxan and NOD mice96–98,186. mice lacking 

hepatic insulin receptors also show increased levels of 12α-hydroxylated 

BAs101.

Evidence from humans

• Stable isotope kinetic studies have shown increased synthesis of cholic acid, 

the primary 12α-hydroxylated BA, in patients with type 2 diabetes mellitus 

compared with controls matched for BMI107.

• In non-obese human volunteers, insulin resistance (as assessed by gold-

standard hyperinsulinaemic–euglycaemic clamp studies) is associated with 

increased plasma levels of 12α-hydroxylated BAs94.

• Individuals with insulin resistance and obesity have higher CYP8B1 activity 

compared with non-obese control individuals, as determined by plasma levels 

of the CYP8B1 product, 7α,12α-dihydroxy-4-cholesten-3-one103.

Summary

These studies demonstrate the identification of a molecular pathway directly linking 

insulin signalling with BA pool composition in mice, which translates to human 

pathophysiology. The functional consequences of this pathway are being investigated by 

multiple research groups.
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Fig. 1 |. Bile acid synthesis, modification and physicochemical properties.
a | Bile acid (BA) synthesis occurs only in the liver. In the classic pathway of BA synthesis, 

cholesterol is hydroxylated in the 7α position by the enzyme CYP7A1. Alternatively, 

cholesterol is first converted to an oxysterol prior to being 7α-hydroxylated by the enzymes 

CYP7B1 or CYP39A1. These oxysterols can arise in the liver, through the enzyme 

CYP27A1, or they can arise in other cells — such as macrophages via CYP27A1 or brain 

via CYP46A1 — then travel to the liver. After the initial step, which is considered rate-

limiting, over a dozen enzymatic reactions proceed to generate the primary BA molecule 

chenodeoxycholic acid (CDCA). An intermediate in BA synthesis, 7α-hydroxy-4-

cholesten-3-one, can undergo 12α-hydroxylation by the enzyme CYP8B1 and subsequently 

proceed through the additional steps. This process results in the generation of the second 

primary BA found in humans, cholic acid (CA). BAs are conjugated to an amino acid such 

as glycine (G) and secreted into the bile. BAs enter the duodenum directly or are stored in 

the gallbladder until postprandial gallbladder contraction. Most BAs are reabsorbed from the 

terminal ileum by the active transporter apical sodium-dependent bile acid transporter 

(ASBT). A minor fraction travel into the colon where they can be deconjugated and 

dehydroxylated by gut microorganisms, producing BAs that can be passively absorbed. 

From the portal vein, BAs are efficiently taken up into hepatocytes and recycled. A small 

fraction enter the systemic circulation. b | The major BA species found in humans and mice. 

c | Schematic demonstrating the amphipathic nature of BAs. *αMCA, βMCA and ωMCA 

are abundant in mice and rats but not humans.
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Fig. 2 |. Bile acid composition.
a | Average bile acid (BA) composition in human biliary bile (left) and in enterohepatic 

tissues (including bile) of wild-type mice (right). Human biliary bile data are averages from 

REFs142–144. Mouse BA pool data are averages from 58 wild-type mice across multiple 

studies including own published and unpublished studies. TMCA represents the sum of 

taurine-conjugated α-, β- and ω-muricholic acids (MCA). b | Effects of genetic 

knockouts38,182,187–190 and pharmacological treatments43,45,191,192 on mouse BA 

composition. Data for each BA species are the sum of conjugated and unconjugated BAs, 

and were calculated as (the percentage in the experimental pool/the percentage in the control 

pool). PX20606 and GW4064 are farnesoid X receptor (FXR) agonists. Fexaramine is a gut-

restricted FXR agonist. In germ-free mice, no unconjugated BAs are detected. CA, cholic 

acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; 

GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, 

glycolithocholic acid; GUDCA, glycoursodeoxycholic acid; i.e.-FXR, intestine epithelium-

specific FXR knockout; L-FXR, liver-specific FXR knockout; LCA, lithocholic acid; TCA, 
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taurocholic acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; 

TLCA, taurolithocholic acid; TUDCA, tauroursodeoxycholic acid; UDCA, ursodeoxycholic 

acid.
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Fig. 3 |. Effects of bile acids on metabolic processes throughout the body.
The primary sites of bile acid (BA) function are the liver and intestine, which are enriched in 

BAs and BA receptors. Through their ability to facilitate secretion of hormones such as 

glucagon-like peptide 1 (GLP1), fibroblast growth factor 19 (FGF19) and others, BAs can 

indirectly affect other tissues, including the brain. Furthermore, low levels of BAs are found 

in the systemic circulation, potentially enabling direct effects of BAs in tissues throughout 

the body. (R) indicates that supporting data were mostly from rodents; (H) indicates that 

supporting data were from humans, human cells or purified human proteins. Data were 

originally presented in the following effects in the central nervous system (CNS): peripheral 

glucose disposal59 (R), energy expenditure58 (R), and food intake193 (R); effects in islets: 

endoplasmic reticulum (ER) stress33,173 (R), and insulin secretion194 (R); effects in the liver: 

gluconeogenic gene expression48,56 (R), glycolytic gene expression52,216 (R, H), glycogen 

synthesis57 (R), hepatic triglyceride metabolism195 (R), hepatic lipotoxicity48 (R), and 

lipoprotein turnover152,196 (R, H); effects in adipose tissue: immune cell infiltration91 (R), 

and thermogenesis58; effects in the gut: lipid absorption13,183,184 (R), vitamin absorption197 

(R, H), glucose absorption49 (R), ceramide production50,198 (R), N-acyl 
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phosphatidylethanolamine phospholipase D (NAPE-PLD) activity36,37 (purified human 

protein), GLP1 secretion86–90,199 (R, H), peptide YY (PYY) secretion90,199 (R, H), and 

FGF19 secretion199 (R, H); and effects in skeletal muscle: lipotoxicity48 (R).
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Fig. 4 |. Physiological and pathological conditions and therapies that influence bile acids.
An individual’s total levels of bile acids (BAs), levels in selected tissues such as the gut or 

plasma, and the composition of those bile acid species can each influence bile acid 

functions. These include functions mediated by receptors such as FXR and TGR5, as well as 

receptor-independent effects, such as nutrient absorption. Green boxes represent conditions, 

medications and interventions that can affect BAs. Solid lines represent known pathways 

that affect and/or are affected by BAs. Dotted lines represent potential pathways. ASBT, 

apical sodium-dependent bile acid transporter; TUDCA, tauroursodeoxycholic acid.
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Table 1 |

Concentrations of bile acids found in human tissues and compartments

Tissue Concentration Refs
a

Systemic plasma and/or serum 0.2–22.0 μM 104,200,201

Portal venous plasma and/or serum 9–43 μM 200,202,203

Gallbladder bile 31–234 mM 143,144

Common bile duct 42–204 mM 142,204

Duodenum contents — fasting 0.3–9.6 mM 205,206

Duodenum contents — postprandial 8.3–11.9 mM 206

Jejunum contents — fasting 0.8–5.5 mM 205

Jejunum contents — postprandial 5–8 mM 207

Upper ileum contents — postprandial 10 mM 207

Lower ileum contents — postprandial 2 mM 207

Caecum contents 0.2–1 mM 208

Faeces ~4.5 μmol/g 209

Liver (liver biopsies contain bile canaliculi and ducts in addition to hepatocytes) ~60 nmol/g 130,210

Subcutaneous white adipose tissue ~0.2 nmol/g 201

a
Different studies quantified BA levels using different extraction methods, different blood specimen processing methods (plasma versus serum), 

and different chromatography and mass spectrometry techniques. The individual references should be consulted for details.

Nat Rev Endocrinol. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ahmad and Haeusler Page 31

Ta
b

le
 2

 |

In
di

vi
du

al
 e

ff
ec

ts
 o

f 
bi

le
 a

ci
ds

 o
n 

bi
le

 a
ci

d 
re

ce
pt

or
s

B
ile

 a
ci

d
F

X
R

 E
C

50
F

X
R

 I
C

50
T

G
R

5 
E

C
50

V
D

R
 E

C
50

P
X

R
 E

C
50

C
ho

lic
 a

ci
d

10
0–

20
0 

μM
19

7
N

A
7.

72
 μ

M
85

, >
10

 μ
M

84
, 1

3.
6 

μM
21

3
N

o 
ef

fe
ct

21
1

N
o 

ef
fe

ct
21

1

D
eo

xy
ch

ol
ic

 a
ci

d
50

 μ
M

42
, 5

0–
75

 μ
M

21
2

N
A

1.
01

–1
.2

5 
μM

85
,2

13
N

o 
ef

fe
ct

21
1

50
.2

 μ
M

21
1

C
he

no
de

ox
yc

ho
lic

 a
ci

d
1–

2 
μM

21
2 ,

 4
.5

 μ
M

40
, 5

.2
 μ

M
18

5 ,
 7

 μ
M

75
, 1

0 
μM

41
,2

12
, 

(T
, G

) 
10

 μ
M

40
, 1

0–
30

 μ
M

21
4 ,

 2
0 

μM
41

,2
12

, 2
5–

50
 

μM
21

2 ,
 5

0 
μM

42

N
A

4–
4.

43
 μ

M
84

,8
5 ,

 (
T

) 
1.

92
 μ

M
21

3 ,
 (

G
) 

3.
88

 μ
M

19
9

N
o 

ef
fe

ct
21

1
(T

) 
10

4 
μM

21
1

L
ith

oc
ho

lic
 a

ci
d

50
 μ

M
42

N
A

35
 n

M
84

, (
T

) 
0.

33
 μ

M
85

, 0
.5

3 
μM

85
, 3

 μ
M

84
8 

μM
41

, 1
2.

1 
μM

21
5 ,

 2
1.

6 
μM

21
1

10
.2

 μ
M

21
1

3-
K

et
o-

lit
ho

ch
ol

ic
 a

ci
d

N
A

N
A

N
A

3 
μM

75
, 6

.8
 μ

M
21

5
8.

3 
μM

21
1

U
rs

od
eo

xy
ch

ol
ic

 a
ci

d
N

o 
ef

fe
ct

40
N

A
36

.4
 μ

M
21

3 ,
 N

o 
ef

fe
ct

85
N

o 
ef

fe
ct

75
N

A

α
-M

ur
ic

ho
lic

 a
ci

d
N

A
(T

) 
28

 μ
M

19
1

N
A

10
1.

7 
μM

21
1

56
 μ

M
21

1

β-
M

ur
ic

ho
iic

 a
ci

d
N

A
(T

) 
40

 μ
M

20
2

N
A

N
o 

ef
fe

ct
21

1
N

o 
ef

fe
ct

21
1

H
yo

de
ox

yc
ho

lic
 a

ci
d

N
A

N
A

31
.6

 μ
M

21
3

N
A

N
A

N
ot

e 
th

at
 d

if
fe

re
nt

 s
tu

di
es

 u
se

d 
di

ff
er

en
t s

ys
te

m
s 

(c
el

l l
ys

at
es

 a
nd

 d
if

fe
re

nt
 c

el
l l

in
es

) 
an

d 
m

et
ho

ds
 (

su
ch

 a
s,

 c
om

pe
tit

iv
e 

bi
nd

in
g 

as
sa

ys
, c

A
M

P 
le

ve
ls

, c
A

M
P-

re
sp

on
si

ve
 lu

ci
fe

ra
se

 r
ep

or
te

r)
 to

 d
et

er
m

in
e 

E
C

50
 a

nd
 I

C
50

 v
al

ue
s.

 T
he

 in
di

vi
du

al
 r

ef
er

en
ce

s 
sh

ou
ld

 b
e 

co
ns

ul
te

d 
fo

r 
de

ta
ils

. E
C

50
, t

he
 e

ff
ec

tiv
e 

co
nc

en
tr

at
io

n 
fo

r 
a 

ha
lf

 m
ax

im
al

 r
es

po
ns

e;
 F

X
R

, f
ar

ne
so

id
 X

 r
ec

ep
to

r;
 G

, v
al

ue
s 

sp
ec

if
ic

al
ly

 f
or

 

gl
yc

in
e 

co
nj

ug
at

es
; I

C
50

, t
he

 c
on

ce
nt

ra
tio

n 
th

at
 r

ed
uc

es
 th

e 
re

sp
on

se
 b

y 
ha

lf
; N

A
, n

ot
 a

pp
lic

ab
le

; P
X

R
, p

re
gn

an
e 

X
 r

ec
ep

to
r;

 T
, v

al
ue

s 
sp

ec
if

ic
al

ly
 f

or
 ta

ur
in

e 
co

nj
ug

at
es

; T
G

R
5,

 T
ak

ed
a 

G
 p

ro
te

in
-c

ou
pl

ed
 

re
ce

pt
or

 5
; V

D
R

, v
ita

m
in

 D
 r

ec
ep

to
r.

Nat Rev Endocrinol. Author manuscript; available in PMC 2020 December 01.


	Abstract
	Non-receptor-mediated mechanisms
	Lipid emulsification.
	Effects on cell membranes.
	Allosteric functions.

	Receptor-mediated mechanisms
	FXR.
	FGF15 and/or FGF19.
	Vitamin D receptor.
	TGR5.

	Conditions and treatments that affect BAs
	Impaired insulin signalling.
	Bariatric surgery.
	Liver diseases.
	Gut microbiome.
	Therapeutic agents.

	Future research needs
	Conclusions
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Table 1 |
	Table 2 |

