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Abstract

Most spinal cord injury (SCI) research programs focus only on the injured spinal cord with the 

goal of restoring locomotor function by overcoming mechanisms of cell death or axon 

regeneration failure. Given the importance of the spinal cord as a locomotor control center and the 

public perception that paralysis is the defining feature of SCI, this “spinal-centric” focus is logical. 

Unfortunately, such a focus likely will not yield new discoveries that reverse other devastating 

consequences of SCI including cardiovascular and metabolic disease, bladder/bowel dysfunction 

and infection. The current review considers how SCI changes the physiological interplay between 

the spinal cord, the gut and the immune system. A suspected culprit in causing many of the 

pathological manifestations of impaired spinal cord- gut-immune axis homeostasis is the gut 

microbiota. After SCI, the composition of the gut microbiota changes, creating a chronic state of 

gut “dysbiosis”. To date, much of what we know about gut dysbiosis was learned from 16S-based 

taxonomic profiling studies that reveal changes in the composition and abundance of various 

bacteria. However, this approach has limitations and creates taxonomic “blindspots”. Notably, only 

bacteria can be analyzed. Thus, in this review we also discuss how the application of emerging 

sequencing technologies can improve our understanding of how the broader ecosystem in the gut 

is affected by SCI. Specifically, metagenomics will provide researchers with a more 

comprehensive look at post-injury changes in the gut virome (and mycome). Metagenomics also 

allows changes in microbe population dynamics to be linked to specific microbial functions that 

can affect the development and progression of metabolic disease, immune dysfunction and 

affective disorders after SCI. As these new tools become more readily available and used across 

the research community, the development of an “ecogenomic” toolbox will facilitate an Eco-

Systems Biology approach to study the complex interplay along the spinal cord-gut-immune axis 

after SCI.
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1. Introduction

Traumatic spinal cord injury (SCI) affects approximately 1.4 million people living in the 

United States. Loss of motor and sensory function are visible consequences of SCI. Less 

appreciated, although no less important or debilitating, are the “hidden” pathologies that 

manifest after SCI due to permanent dysfunction of the autonomic nervous system (ANS).

Many autonomic neurons, including all that comprise the sympathetic branch, are found in 

the spinal cord. When the spinal cord is injured, especially at higher spinal levels (above 

mid-thoracic spinal cord), axons that normally descend from brain/brainstem regions to 

control spinal sympathetic neurons are lost or damaged. The subsequent loss of normal 

sympathetic tone throughout the body leads to the development of some of the most 

devastating consequences of SCI including cardiovascular disease, bladder/bowel 

dysfunction and immune dysfunction. In this review, we highlight key changes in the spinal 

cord-gut-immune axis that converge to cause various co-morbidities and neurological 

complications after SCI (Fig. 1).

1.1 The spinal cord-gut axis and gut dysbiosis after spinal cord injury

The enteric nervous system of the gastrointestinal (GI) tract is innervated by the 

parasympathetic vagus nerve and sympathetic spinal nerves originating in the brainstem and 

spinal cord, respectively. After a SCI, an imbalance in autonomic tone develops because 

sympathetic control of the small bowel and colon is lost, causing acute and protracted GI 

dysfunction marked by impairments in gut motility, mucosal secretions, vascular tone and 

immune function. These physiological complications of a neurogenic bowel contribute to the 

constipation, bloating, nausea, impaired transit, incontinence and abdominal pain 

experienced by SCI individuals (Tate et al., 2016).

Spinal sympathetic nerves also innervate the gastrointestinal-associated lymphoid tissue 

(GALT), the immune system distributed throughout the GI tract. The GALT protects the 

body from microbes that attempt to invade the body through the mucosal surface of the GI 

tract (Hooper et al., 2012; Nicholson et al., 2012; Round and Mazmanian, (2009). This 

protective function of the GALT is remarkably specific and effective, especially if one 

considers that the mucosal surface of the gut is also home to trillions of microorganisms, i.e., 

the gut microbiota (Donaldson et al., 2016; Gu et al., 2013). The gut microbiota and their 

collective genomes (i.e., the microbiome), are critical for maintaining homeostasis both in 

the gut and throughout the body. In addition to exerting direct control over the GALT, the 

sympathetic nervous system also exerts indirect effects on the enteric microbiota through 

regulation of gut motility, mucosal secretions (e.g., mucin, acids) and epithelial permeability. 

In a neurogenic bowel, i.e., a functionally impaired bowel due to nerve injury, impaired 

intestinal transit limits the delivery of important nutrients to microbiota in the distal colon. 

Altered mucin production impairs production of the mucus layer, an important niche that is 

colonized by enteric microbiota creating a “biofilm”. Because of the distinct location of the 

biofilm relative to microorganisms in the gut lumen, these discrete ecological domains may 

be differentially affected by SCI (Fig. 1).
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Gut microbiota contribute to host metabolism by breaking down complex molecules in food. 

During this process, commensal bacteria release metabolites that influence cellular function 

within and beyond the gut. In humans, correlations exist between metabolites in the blood 

and specific types of gut microbiota (Zhang et al., 2018). The range of cells that are known 

to be affected by gut-derived metabolites is extensive and includes intestinal epithelia, 

primary afferent neurons in the gut and immune cells in the GALT. These metabolites also 

diffuse into the circulation to influence cells in the liver, peripheral immune organs (e.g., 

bone marrow, spleen, lymph nodes) and the central nervous system (Clarke et al., 2014; 

Forsythe et al., 2014; Perez-Burgos et al., 2015; Tillisch, 2014; Wikoff et al., 2009; Yano et 

al., 2015). Changes in gut permeability brought on by chronic stress or trauma, can liberate 

commensal bacteria from the gut lumen, allowing the microbes themselves, not just the 

metabolites they produce, to enter the circulation. This increases the likelihood that gut-

derived microbes will colonize and elicit inflammation in previously “sterile” tissues 

throughout the body.

In pre-clinical SCI models, intestinal epithelial cell permeability is increased and is 

associated with enhanced bacterial translocation and colonization of various organs 

including the lung (Kigerl et al., 2016). Whether bacteria or other gut-derived microbes can 

access the injured spinal cord is not known; however, it is possible since the permeability of 

the blood-spinal cord barrier and intestinal barrier increase at the same time after SCI (Noble 

and Wrathall, 1989; Popovich et al., 1996; Whetstone et al., 2003). Gut microbes and their 

metabolites may also influence the barrier functions of spinal cord endothelia, just as they do 

in the brain (Braniste et al., 2014).

Given the robust effects that the microbiota can have on host physiology, the changes that 

SCI causes in the ecological balance of microorganisms in the gut, i.e., gut dysbiosis, could 

broadly influence neurological function, overall health and quality of life. After SCI, gut 

dysbiosis has been documented in multiple clinical and preclinical studies (Gungor et al., 

2016; Kigerl et al., 2016; Myers et al., 2019; O’Connor et al., 2018; Zhang et al., 2018). In 

most cases, 16s rRNA sequencing has been used to reveal the composition and relative 

abundance of bacteria in fecal samples or gut tissue samples after SCI. In mice, SCI causes 

robust and lasting gut dysbiosis and is characterized by inverse changes in the relative 

abundance of Bacteroidales and Clostridiales, the two most prevalent bacterial taxa in mouse 

gut: Bacteroidales decreases while Clostridiales increases after SCI (Eckburg et al., 2005; 

Kigerl et al., 2016; Krych et al., 2013). Minor taxa (Anaeroplasmatales, Turicibacterales and 

Lactobacillales) also are affected (Kigerl et al., 2016). The relative abundance of bacteria 

from the phylum Proteobacteria also increases in SCI mice (Myers et al., 2019). Chronic gut 

dysbiosis has also been described in rats after SCI, lasting at least 8 weeks post-injury 

(O’Connor et al., 2018). In humans, the abundance of butyrate-producing gut bacteria is 

reduced for at least 1 year after SCI (Gungor et al., 2016).

Much less appreciated than gut dysbiosis is the post-injury onset of urinary dysbiosis. In 

addition to developing a neurogenic bowel, SCI patients (and animals) also develop 

neurogenic bladders and the duration of neurogenic bladder (along with method and 

frequency of catheterization) can adversely affect the urinary microbiome. The 

pathophysiological effects of urinary dysbiosis are not known but there is diagnostic value in 
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performing 16s-profiling of the urinary microbiome. Clinical data indicate that at baseline 

the bacterial composition of urine from healthy men and women is different and that after 

SCI, compositional changes in bacteria can differentiate between asymptomatic bacteriuria 

and urinary tract infection (UTI). (Kreydin et al., 2018; Evans et al., 2011; Morton et al., 

2002; Skelton et al., 2019).

In addition to sex, other covariates will likely affect the magnitude, duration and 

pathophysiological impact of SCI-induced gut dysbiosis. For example, age affects 

experimental and clinical outcomes after SCI. Since gut microbial composition is affected 

by age and the average age at time of injury has steadily increased since the 1970s (Level, 

2018), age should, when possible, be included as a covariate in all pre-clinical and clinical 

SCI studies (Arumugam et al., 2013; Guo et al., 2014; Jašarević et al., 2016; Markle et al., 

2013; Sheng et al., 2017; Stilling et al., 2015; Thevaranjan et al., 2017). The spinal level at 

which an injury occurs also is an important covariate with implications for gut dysbiosis. 

Injuries at higher spinal levels will cause greater imbalance in autonomic control over the GI 

tract than injuries affecting lower spinal levels (Holmes and Blanke, 2019). SPNs controlling 

the small and large intestines are located primarily in the intermediolateral cell column in 

thoracic segments T5–10 and T10-S4, respectively (Browning and Travagli, 2014; Levatte et 

al., 1998; Mabon et al., 1997). Therefore, although autonomic control of the gut will be 

adversely affected by SCI occurring at any spinal level, higher level injuries (above T5) will 

remove most or all bulbospinal control over spinal autonomic networks that innervate the 

gut. To date, there have been no controlled studies designed to evaluate level-dependent 

effects on gut microbiota; however, data in a recent clinical report indicated that cervical SCI 

caused changes in gut microbiota composition that were distinct from those found in 

individuals with a thoracic or lumbar SCI (Zhang et al., 2018).

Currently, the functional consequences of SCI-induced dysbiosis are unknown but 

significant effects can be inferred from experimental studies. For example, changes in the 

relative abundance of certain gut bacteria correlate with worse or better locomotor function 

and also with immune function (Kigerl et al., 2016). Also, changes in GALT immune cell 

composition occur coincident with increased or decreased production of cytokines (TNFα, 

IL-1β, TGF-β, IL-10) for up to one month post-SCI (Kigerl et al., 2016) A similar 

relationship exists in SCI rats; at 8 weeks post-SCI, increased production of inflammatory 

cytokines in the intestines correlates with the relative abundance of particular types of gut 

bacteria (O’Connor et al., 2018). Precisely how gut dysbiosis develops after SCI, whether it 

persists indefinitely, and how it affects structure/function in the CNS and other organ 

systems is unknown. But, if causal relationships could be proved, many comorbidities that 

affect individuals with SCI might be treatable by targeting the gut microbiota or the 

metabolites that they produce. In this context it is encouraging that readily available 

therapeutics that influence the gut microbiota, including Lactobacillus-rich VSL#3 

probiotics and melatonin, can restore gut microbiota homeostasis and improve locomotor 

recovery (Jing et al., 2019; Kigerl et al., 2016). In the paragraphs that follow, several 

systemic comorbidities that may contribute to or exacerbate SCI-induced gut dysbiosis are 

discussed.
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1.2. Immune dysfunction

SCI disrupts normal sympathetic nervous system control of all major immune organs 

(Brommer et al., 2016; Lucin et al., 2007; Zhang et al., 2013). This causes SCI-induced 

immune depression syndrome (SCI- IDS), a profound and lasting deficiency in the immune 

system’s ability to fight infection. Indeed, SCI patients are at increased risk to develop 

infections and are 37x more likely to die of pneumonia than able-bodied individuals 

(DeVivo et al., 1993); the development of pneumonia and wound infections after SCI are 

associated with worse neurological recovery (Failli et al., 2012; Kopp et al., 2017). The 

higher incidence of infection after SCI may explain why survival rates have not improved for 

SCI patients over the past 30 years (Shavelle et al., 2015). What is needed to improve 

clinical care for SCI individuals is a better understanding of why infection develops more 

readily in this at-risk population. A likely culprit is a dysfunctional immune system that in 

turn alters the microbial ecology of gut commensals (Fig. 1).

SCI-IDS develops and persists indefinitely, in part, because maladaptive plasticity develops 

in the intraspinal circuitry located below the level of injury. This “new” circuitry, when 

activated by common recurring stimuli (e.g. bladder filling and other visceral/somatic input), 

triggers hyperactive neural-immune reflexes. As a result of excessive and uncontrolled reflex 

activity, leukocytes in peripheral immune organs are exposed to supra-physiological 

concentrations of hormones (e.g., glucocorticoids) and neurotransmitters (e.g., 

catecholamines) that elicit distinct intracellular signaling cascades that converge to kill 

immune cells (Lucin et al., 2007; Prüss et al., 2017; Ueno et al., 2016; Zhang et al., 2013). 

SCI-induced changes in autonomic tone to the GI tract may also cause or exacerbate SCI-

IDS.

Sympathetic noradrenergic nerves innervate the vasculature and tissue parenchyma of the 

GALT, especially in regions of the GALT that are enriched with T and B lymphocytes 

(Straub et al., 2006). Generally, norepinephrine released by sympathetic post-ganglionic 

nerve terminals binds to beta-adrenergic receptors on innate and adaptive immune cells 

leading to suppression of their antimicrobial functions (Elenkov et al., 2000). Impaired 

sympathetic signaling may also alter the functional specialization of recently discovered 

macrophage networks found in the lamina propria and muscular layers of the intestine 

(Gabanyi et al., 2016). Overall, a break in immune homeostasis in GALT, caused by SCI-

induced changes in sympathetic tone, will change how the mucosal immune system 

regulates the enteric microbiota.

After SCI, microbes that bypass the intestinal epithelial barrier could release peptides, 

metabolites and neurotransmitter-like molecules (e.g., quorum sensing molecules) that can 

directly activate vagal afferents located in the lamina propria. For those microbes that persist 

in the gut lumen, they also can elicit vago-vagal reflexes by signalling directly to 

enterochromaffin or enteroendocrine cells (EECs). EECs are sensor transducer cells that 

respond to nutrients, hormones, and microbe-derived factors produced in the gut lumen or 

the biofilm. In response to these stimuli, EECs release hormones, neuropeptides and 

neurotransmitters that activate neural networks via paracrine signaling. EECs also can 

directly activate sensory nerve terminals via neuropods, which are cytoplasmic extensions of 
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the EECs that form functional synaptic contacts with sensory nerves in the lamina propria 

(Bohórquez et al., 2015; Liddle, 2019).

Gut microbiota also influence systemic immunity through modulation of vago-vagal reflexes 

(Borovikova et al., 2000; van Westerloo, 2010) and monocyte egress from the bone marrow. 

Not surprisingly, gut microbes have been implicated as potent regulators of immune 

responses to respiratory infections and the development of atopic and autoimmune diseases 

(Hill et al., 2012; Ichinohe et al., 2011; Ochoa-Repáraz et al., 2010; Shi et al., 2011; Wu et 

al., 2010). Emerging data also implicate the gut microbiota in regulating CNS glial 

homeostasis and neuroinflammation. Indeed, metabolites (e.g., short-chain fatty acids, 

tryptophan metabolites) produced by gut microbiota affect the maturation and function of 

CNS resident microglia and cross-talk between microglia and astrocytes (Brown et al., 2019; 

Erny et al., 2015; Rothhammer et al., 2016, 2018).

SCI elicits a systemic autoimmune response, i.e., trauma-induced autoimmunity (TIA) 

(Ankeny et al., 2006, 2009; Arevalo-Martin et al., 2018; Davies et al., 2007; Hayes et al., 

2002; Hergenroeder et al., 2016; Jones et al., 2002). TIA develops when cells of the immune 

system recognize and mount an immune response against “self” antigens including proteins, 

carbohydrates, lipids and nucleic acids (Ankeny et al.,2009). Since SCI causes profound 

immune suppression, the onset of TIA seems paradoxical. However, it may be useful to 

think of TIA as a continuum of a non-resolving inflammatory response, dominated by innate 

immune cells, that is set in motion by SCI (Schwab et al., 2014). TIA may also be a 

secondary consequence of gut dysbiosis and bacterial translocation from the gut. Bacteria 

within the gut, notably segmented filamentous bacteria, can activate Th17 cells in GALT and 

trigger systemic and CNS autoimmunity (Flannigan and Denning, 2018; Ivanov et al., 2009; 

Kriegel et al., 2011). Bacterial translocation has been implicated as a trigger for the onset of 

systemic and CNS autoimmune diseases (Lee et al., 2011; Manfredo Vieira et al., 2018).

1.3. Mental and cognitive health

People living with a SCI and without concurrent brain injury develop anxiety and major 

depressive disorder or depression-like symptoms at higher rates than able-bodied 

individuals. Although the relationship between SCI and reduced mental health has been 

recognized for decades (Cao et al., 2017; Frank et al., 1992; Krause et al., 2000; Shin et al., 

2012), most have attributed changes in psychiatric and mental health to environmental 

stressors including sudden loss of independence, high health care costs and the unique 

physical challenges associated with living with a SCI. However, physiological changes also 

occur after SCI that can directly affect emotional and mental health. Magnetic resonance 

imaging of cortical volume in SCI patients has revealed changes in brain areas that are 

important for information processing and emotional affect (Hawasli et al., 2018; Nicotra et 

al., 2006). In preclinical SCI models, higher indices of depression, anxiety and cognitive 

impairment have been documented (Craig et al., 2017; Davidoff et al., 1992; Luedtke et al., 

2014; Roth et al., 1989; Wu et al.,2010) indicating that mental and cognitive impairments 

after SCI are likely stereotypical consequences of SCI and are caused by factors other than 

environmental stressors.
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The gut-brain axis is now recognized as a powerful physiological regulator of mood and 

mental health. When the gut is intentionally colonized with discrete types of bacteria, 

signaling networks in the brain can be activated that elicit anxiety-like behaviors, whereas 

anxiety-like behaviors are reduced in germ-free mice when compared to specific pathogen 

free control mice (Diaz Heijtz et al., 2011; Neufeld et al., 2011). Vagal afferent-microbe 

interactions in the gut are implicated in modulation of mental health. In rats, vagal afferents 

are stimulated by microbially-derived fatty acids and vagotomy makes mice resistant to 

microbially-induced anxiety-like behaviors (Bravo et al.,2011; Lal et al., 2001).

Gut dysbiosis can also impair mental health. When the ecology of fecal samples obtained 

from people with major depressive disorder was analyzed, large population shifts were noted 

in the types of bacteria that produce neuroactive metabolites (Zheng et al., 2016). When 

these fecal samples were transplanted into germ-free mice, recipient mice developed 

anxiety-like and depressive-like behaviors (Zheng et al., 2016). In rats and mice, SCI also 

affects mood and increases anxiety-like behaviors (Craig et al., 2017; Davidoff et al., 1992; 

Luedtke et al., 2014; Roth et al., 1989; Wu et al., 2014). Recent data suggest that post-SCI 

dysbiosis may be the reason why these behaviors develop. Specifically, a fecal transplant 

prepared from healthy rats, when delivered orally to SCI rats, reverses SCI-induced 

dysbiosis and has potent anxiolytic effects (Fouad, K; personal communication). The 

molecular basis for this treatment effect is unknown, even though fecal transplants are now 

being considered as treatments for depression in people (Kurokawa et al., 2018).

1.4. Metabolic disease

Emerging data indicate that after SCI, loss of sympathetic tone and the development of 

aberrant spinal autonomic reflex control over immune organs (e.g., spleen) and other major 

organs that control metabolism (e.g., liver, adrenal gland, muscle, adipose tissue and gut) 

causes immune dysfunction and multi-organ pathology. Since immune and metabolic 

processes are normally tightly coupled and are essential for life (Hotamisligil, 2017a, 

2017b), most, if not all, co-morbidities that affect SCI individuals (e.g., spontaneous 

infections in lung or skin, impaired wound healing, non-alcoholic fatty liver disease, chronic 

depression, atherosclerosis, type 2 diabetes, fatigue and anxiety), could be explained by 

impaired immunometabolism, which is caused or exacerbated by gut dysbiosis.

Metabolic function is significantly impaired in both paraplegics and tetraplegics; they have 

higher body fat content compared to able-bodied individuals (Gater, 2007; Gorgey et al., 

2011, 2014). SCI individuals also have higher levels of intramuscular fat that contributes to 

insulin resistance and impaired glucose sensitivity (Boettcher et al., 2009; Elder et al., 2004). 

Changes in Bacteriodetes and Firmicutes, two of the largest populations of gut bacteria 

found in both mice and humans (Eckburg et al., 2005; Krych et al., 2013), could cause or 

contribute to chronic metabolic disturbances after SCI (Baothman et al., 2016; Ley, 2010; 

Tilg and Kaser, 2011; Turnbaugh and Gordon, 2009). 16s rRNA sequencing of fecal samples 

from SCI mice revealed that the relative abundance of Bacteroidales decreased as a function 

of time post-injury with a corresponding increase in Clostridiales, a class of Firmicutes 

(Kigerl et al., 2016). In obese able-bodied individuals and rodents, a similar reduction in the 

Bacteroidetes:Firmicutes ratio occurs and the associated metabolic dysfunction can be 
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transmitted to naïve rats by colonizing their gut with fecal suspensions from obese animals 

or humans (Ley et al., 2006; Turnbaugh et al., 2006, 2008).

Signs of liver disease (e.g., nonalcoholic steatohepatitis), marked by an increase in liver 

adiposity and hepatic inflammation, also develop soon after SCI (Goodus et al., 2018; 

Sauerbeck et al., 2015). In SCI humans, liver adiposity is a prognostic indicator of metabolic 

disease (Rankin et al., 2017) and is associated with altered gut microbiota and increased 

bacterial translocation (Abu-Shanab and Quigley, 2010; Dumas et al., 2006). Similar to the 

GALT, the liver acts as a firewall between the gut and the body, filtering microbes that drain 

from the intestine into the hepatic portal vein (Balmer et al., 2014; Jenne and Kubes, 2013). 

In SCI animals and humans, an inflamed liver can limit hepatic filtration capacity, allowing 

gut microbes to pass through the liver and elicit systemic inflammation. These same 

microbes may also elicit or propagate liver inflammation.

1.5. Emerging topics and opportunities

Today, there is a growing appreciation in the field of SCI research and clinical care, that the 

gut microbiota represents an important but poorly understood biological variable that is 

capable of significantly affecting the health, recovery and well-being of SCI individuals. As 

a result, a growing number of pre-clinical and human subject research projects have been 

completed to better understand how SCI affects gut (and urine - see above) ecology. Below, 

we discuss technical aspects of gut microbiome research and emphasize the importance of 

understanding the limitations of commonly used techniques. We also introduce the gut 

virome as a novel and as yet understudied component of the gut microbiota, especially in the 

context of SCI.

Technical advances in microbiome science.—Recent technological advances have 

transformed the study of microbes throughout the life sciences. Early descriptions of the 

taxonomic profile, or enterotypes, of bacteria in the large intestine of mice were done using 

new (at the time) anaerobic culturing methods of fecal samples (Schaedler et al., 1965), 

where early studies characterized the relationship between mammalian gut commensal 

bacteria and development of the mammalian lymphatics (Bauer et al., 1963). With time, 

DNA-sequencing techniques improved and RNA experts transformed the study of microbial 

diversity. Now, rather than use culture-dependent techniques, they used gene markers (e.g., 

16s rDNA) to survey naturally-occurring microbial communities (Lane et al., 1985; Woese 

and Fox, 1977). Over time, this evolution in technique revealed that culture-based methods 

missed most of the microbes that could be detected using molecular markers, often with far 

less than 1% of microbes being captured with culture-based techniques (Rappé and 

Giovannoni, 2003). Subsequently, large-scale screening of fecal and plasma samples from 

mammalian models, including humans and mice, provided comprehensive “who is there?” 
(compositional) databases using such molecular surveys rather than the less comprehensive 

in vitro culture-based methods. To date, 16S-based taxonomic profiling has enabled 

community-wide microbial surveys across diverse environments with unprecedented 

temporal and spatial scales. These emerging databases have transformed our understanding 

of such ecosystems, necessitating an eco-systems biology perspective to best understand the 

role of microbes in complex communities. For example, 16S studies in the human gut now 
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implicate specific bacteria in determining whether you are obese or lean (Turnbaugh et al., 

2008, 2006) or whether you will be susceptible to inflammatory bowel disease (Imhann et 

al., 2018). The same tools have also revealed associations between the gut microbiota and 

other ‘ecosystems’ found in humans such as the oral cavity (Olsen and Yamazaki, 2019; 

Segata et al., 2012).

As sequencing costs have decreased, gene-targeted sequencing is rapidly being overtaken by 

metagenomic sequencing (i.e., shotgun sequencing or community genomic sequencing). In 

this approach, whole communities of organisms - including bacteria, archaea, fungi and their 

viruses - can be surveyed simultaneously. The 16S-based approach is commonly biased 

against archaea, and misses entirely fungi and viruses, as they lack this gene marker. Fungi 

can be targeted using 18S primer sets (Banos et al., 2018) but there are no universal gene 

markers to capture viruses (Sullivan, 2015). In many ecosystems, fungi remain virtually 

unstudied, but viruses are now credited with drastically impacting microbial communities 

through lysis, gene transfer and metabolic reprogramming during infection (Brum et al., 

2015). Thus, to gain a fuller ecosystem perspective, it is critical to advance beyond 16S-

based surveys so as to avoid known taxonomic blind spots in bacteria and archaea, while 

also capturing other entities such as viruses or fungi.

Fortunately, concomitant with the rise of new sequencing technologies that have enabled 

metagenomic data generation, legions of researchers have developed analytics and 

community-available tools to interpret these large-scale datasets (Fig. 2; Table 1). Beyond 

expanding our abilities to answer “who is there?” to non-bacteria, metagenomics also 

enables functional analyses to help answer “what are they doing, and with whom?”. Such 

advances are gaining recent attention in human microbiome studies (e.g., (Quince et al., 

2017)), but they have long been transforming our understanding of the oceans (DeLong et 

al., 2006) and other complex systems (Tringe et al., 2005; Tyson et al., 2004). For the oceans 

in particular, global scale surveys have now been conducted for viruses (Brum et al., 2015; 

Gregory et al., 2019b; Roux et al., 2016), prokaryotes (Sunagawa et al., 2015) and microbial 

eukaryotes(de Vargas et al., 2015). Such surveys have become the basis for analytics that 

have revealed global “interactomes” (the hypothesized interactions between hundreds of 

thousands of organisms)(Lima-Mendez et al., 2015), as well as genes-to-ecosystems based 

modeling approaches that take such data and identify those that best predict a feature of 

interest (Guidi et al., 2016). In oceans, this feature of interest was carbon flux and 

surprisingly identified viruses as the best predictor (Guidi et al., 2016). Still, the scalable 

analytical approach is generalizable to any large-scale dataset, such that it can be used to 

identify which tens of thousands of different microbes best predict disease. Given the 

importance of microbes and their viruses to ‘ecosystem properties’ in so many other 

environments, it is now well-accepted that anywhere microbes are abundant they are likely 

major players. Here, we will briefly consider what is known about the human gut virome in 

health and various disease states, as well as the potential role for the human gut virome in 

SCI.

The Virome.—In contrast to pathogenic eukaryotic viruses, the gut virome is dominated by 

viruses that infect bacteria (bacteriophages, or phages). Within the human gut, most known 

bacteriophages are in the order Caudovirales (containing the families myoviridae, 
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podoviridae, and siphoviridae) or the floating family, microviridae. While there are highly 

conserved phages across individuals (Dutilh et al., 2014; Yutin et al., 2018), the gut virome 

is largely unique between individuals and within an individual and is largely stable over time 

(Manrique et al., 2017; Reyes et al., 2010). Further, it has been shown that the composition 

of the gut virome can be altered by development, the immune system, diet, cohabitation, 

pharmacologic factors and disease (Abeles et al., 2015; Ly et al., 2016; Manrique et al., 

2017; Minot et al., 2011; Scarpellini et al., 2015). Bacteriophages, like eukaryotic viruses, 

reproduce using a lytic (causing death of host bacteria) or lysogenic (non-lytic) life cycle, 

and metagenomic sequence data suggest that most phages in the human gut are lysogenic 

(Minot et al., 2011; Monaco et al., 2016). While the dynamics of the human gut virome are 

not well characterized, a system dominated by lysogenic vs lytic phages allows persistence 

of individual bacteria over longer time spans. Additionally, lysogenic viruses can be 

activated by stimuli, such as changes in diet, to rapidly alter gut bacterial community 

structure (Duerkop et al., 2018; Minot et al., 2011).

The human gut virome has now been examined in a handful of diseases: colorectal cancer, 

HIV, inflammatory bowel disease, hypertension, obesity, type 1 diabetes, Clostridium 
difficile infection, and autism. Though this is a nascent field of study, new data are revealing 

the dynamics of the microbiome in response to disease, viral interactions with the host 

immune system, and the classificatory power of the enteric virome. In obesity, mouse 

models have demonstrated an expansion of Caudovirales phages (Kim and Bae, 2016). In 

HIV, enteric eukaryotic viruses, including adenovirus and anelloviruses, can be found in 

blood, suggesting immune dysfunction and translocation across a compromised gut 

epithelium. At the same time, abundance of these viruses in the gut increases, while bacterial 

diversity decreases (Handley et al., 2012; Monaco et al., 2016). In inflammatory bowel 

disease, patient gut viral composition was sufficient to distinguish patients with ulcerative 

colitis from those with Crohn’s disease. Further, as in HIV, it was observed that viral 

diversity increased as bacterial diversity decreased (Norman et al., 2015). While viral and 

bacterial diversity are calculated using different methods that are not directly comparable, it 

is unusual that they would move in opposite directions, raising the possibility that gut 

virome dynamics are not simply mirroring expansion or reduction in bacterial communities.

The role of phages is not limited to interactions with their host bacteria. In ulcerative colitis, 

there is evidence that phages directly interact with the immune system through stimulation 

of dendritic TLR9, inducing IFN-gamma production by CD4+ T-cells and exacerbating 

symptoms (Gogokhia et al., 2019). Phages also have high bio-marker potential: in colorectal 

cancer, differences in the gut virome and bacteriome could be used to distinguish human 

patients with cancer from healthy controls (Handley and Devkota, 2019; Hannigan et al., 

2018). In hypertension, it has been shown that gut viruses have higher discriminatory power 

than gut bacteria in distinguishing between healthy, prehypertension and hypertension 

samples (Han et al., 2018). Likewise, in children with type 1 diabetes, changes in gut viral 

community structure were found to precede autoimmunity and changes in gut bacterial 

communities, suggesting that the gut virome is a sensitive predictor of disease risk (Kostic et 

al., 2015; Zhao et al., 2018). In fact, phages may be more sensitive than bacteria in 

predicting at-risk individuals (Moreno-Gallego et al., 2019) and also as biomarkers of 

disease and pathogenesis (Flores et al., 2013; Gregory et al., 2018). Finally, commensal 
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phages may have therapeutic potential. In C. difficile infection, where fecal microbiota 

transplant (FMT) has been growing as an alternative to antibiotic therapy, it has been shown 

that bacteria are not necessary for therapeutic success, raising the possibility that 

bacteriophages, i.e., the virome that is transferred in FMT, is responsible for recovery from 

C. difficile infection (Ott et al., 2017). Indeed, successful bacteriophage transfer in FMT has 

been associated with treatment outcome in C. difficile (Zuo et al., 2018). In a small open-

label study, sustained FMT treatment suggested that viruses and microbes from healthy 

donors could mitigate autism symptoms in children (Kang et al., 2017). To date, the human 

virome in SCI remains unexplored, but it is clear that phages are altered in diseases ranging 

from infectious to metabolic to inflammatory and beyond. One key challenge in interpreting 

such “human virome” studies is that non-quantitative sample preparations are commonly 

used, which minimizes the ecological interpretations that can be made from the data 

(Gregory et al., 2019).

In summary, there are numerous critical interactions between phages and their bacterial 

hosts: phage-host dynamics alter commensal bacterial communities and determine 

community assembly trajectory early in life (Lim et al., 2015), provide bacteria with 

additional survival and virulence genes (De Smet et al., 2016; Torres-Barceló, 2018), and 

reprogram their bacterial hosts in ways that alter metabolic outputs or confer protection from 

invasion by pathogenic bacteria at mucosal surfaces (Barr et al., 2019; Mirzaei and Maurice, 

2017; Reyes et al., 2012). Like bacteria, gut phage populations change in disease, and 

sometimes these changes precede disease onset, highlighting the possibility that gut phage 

profiles could be used as biomarkers to predict disease risk. Like bacteria, phages can also 

interact with the immune system to promote inflammation or strengthen mucosal defenses 

and protect the host from disease (Kernbauer et al., 2014). Emerging data suggest that 

therapeutic phages can work in tandem with the host immune system to resolve bacterial 

infections in skin (Abedon et al.,2011) and the lung (Roach et al., 2017). Together, these 

findings suggest that phages likely play an integral role in the microbe-gut-brain axis in 

disease and should be considered as part of any Eco-Systems biology study.

2. Conclusions

Like so many other human diseases, research in SCI has for decades overlooked the possible 

impact of microbes and their viruses, largely due to technological limitations that prevented 

us from seeing these “hidden” movers and shakers in the human body. However, there are 

now numerous examples where microbes likely play supporting, if not causal, roles in 

disease pathogenesis. As new tools and approaches become more readily available to the 

broader research community, the “ecogenomic” toolbox described above will enable a more 

wholistic, Eco-Systems Biology approach to study SCI that should help unravel the complex 

interplay along the virus/microbe-gut-brain axis.
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Fig. 1. 
Spinal cord injury (SCI) sets in a motion a systematic breakdown of communication 

between the nervous system, the immune system and the gastrointestinal system (1). As a 

result of SCI, normal sympathetic control over all body systems is lost, creating an 

imbalance in autonomic tone in most organs. Consequently, physiological control of 

hematopoiesis (bone marrow and spleen) and immune surveillance (controlled by bone 

marrow, spleen, lymph nodes, gastrointestinal- associated lymphoid tissue/GALT) (2) as 

well as gastrointestinal function (e.g., motility, transit, mucin production) and liver function 

are lost. This break in homeostasis causes chronic immune dysfunction and gut dysbiosis, 

i.e., a lasting change in the ecological balance of microorganisms found in the biofilm and 

gut lumen (3). The metabolites and cytokines produced by microbes and cells in the 

dysbiotic gut enter the circulation or activate the vagus nerve, creating a feedback loop by 

which functional changes in the gut-immune axis affect structure and function within the 

CNS (brain, brainstem and spinal cord) (4).
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Fig. 2. 
The metagenomic pipeline. Raw sequencing reads are provided by the sequencing center. 

The first step is to quality control (QC) the reads (Bolger et al., 2014; Bushnell, 2019; Joshi 

and Fass, 2011), which involves removal of reads that map to the model organism from 

which samples were collected, removal of adaptors and common sequencing center 

contaminants, and removal of low-quality reads. The final result of this step is a set of clean 

reads. Next, the clean reads are assembled to form long contigs (Kulikov et al., 2012; Li et 

al., 2015; Peng et al., 2012). Ideally, these contigs correspond to all or part of the genomes 

of the microbial taxa (bacteria and viruses) within the sample. In the microbial identification 

step, bacteria can be grouped (called binning) by operational taxonomic unit (OTU) with a 

variety of tools (Alneberg et al., 2014; Dick et al., 2009; Graham et al., 2017; Imelfort et al., 

2014; Kang et al., 2015; Lu et al., 2016; Parks, 2017; Sieber et al., 2018; Uritskiy et al., 

2018; Wu et al., 2016)(ggkbase.berkeley.edu). Viral OTUs (vOTUs) are similarly identified 

with a variety of tools (.Akhter et al., n.d; Amgarten et al., 2018; Arndt et al., 2016; Ren et 

al., 2018; Roux et al., 2015; Vik et al., 2017; Zheng et al., 2019). At this point, a user 

possesses two sets of contigs corresponding to complete or near-complete genomes of the 

viruses and bacteria present in the original sample. Here, analysis can diverge. Common 

analyses include read mapping (Bushnell, 2019; Langmead and Salzberg, 2012; Li and 

Durbin, 2009; Rabosky, 2014; Woodcroft, 2019) to calculate abundances, taxonomy 

classification (Doulcier et al., 2017; Parks et al., 2018), and functional annotation 

(identification of genes present within contigs) (Finn et al., 2014; Huerta-Cepas et al., 2018; 

Kanehisa et al., 2015; Tatusov et al., 2000). For phages (viruses that infect bacteria), host 

prediction (Altschup et al., 1990; Bland et al., 2007; Galiez et al., 2017; Laslett and 
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Canback, 2004; Lowe and Eddy, 1997; Villarroel et al., 2016) to identify the bacterial host is 

a common downstream analysis. For bacteria, pathway analysis (Boyd, 2019; Caspi et al., 

2012) may be of interest.
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