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Abstract

Background: The lifelong accumulation of somatic mutations underlies age-related phenotypes and cancer.
Mutagenic forces are thought to shape the genome of aging cells in a tissue-specific way. Whole genome analyses
of somatic mutation patterns, based on both types and genomic distribution of variants, can shed light on specific
processes active in different human tissues and their effect on the transition to cancer.

Results: To analyze somatic mutation patterns, we compile a comprehensive genetic atlas of somatic mutations in
healthy human cells. High-confidence variants are obtained from newly generated and publicly available whole
genome DNA sequencing data from single non-cancer cells, clonally expanded in vitro. To enable a well-controlled
comparison of different cell types, we obtain single genome data (92% mean coverage) from multi-organ biopsies
from the same donors. These data show multiple cell types that are protected from mutagens and display a
stereotyped mutation profile, despite their origin from different tissues. Conversely, the same tissue harbors cells
with distinct mutation profiles associated to different differentiation states. Analyses of mutation rate in the coding
and non-coding portions of the genome identify a cell type bearing a unique mutation pattern characterized by
mutation enrichment in active chromatin, regulatory, and transcribed regions.

Conclusions: Our analysis of normal cells from healthy donors identifies a somatic mutation landscape that
enhances the risk of tumor transformation in a specific cell population from the kidney proximal tubule. This unique
pattern is characterized by high rate of mutation accumulation during adult life and specific targeting of expressed
genes and regulatory regions.

Keywords: Somatic mutations, Aging, Kidney cancer, Proximal tubule, kidney progenitors
Background
Over a lifetime, the human body is vulnerable to a vast
number of mutagenic forces that collectively lead to loss
of genome integrity and subsequently cellular aging and
cancer initiation [1]. Sequencing studies have revealed
genetic variations among cells within an individual,
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referred to as “somatic variance.” This information can
be used to study the genome evolution during the life-
span of an individual [2] and outline specific mutagenic
processes that promote the transition from a normal to
a cancer cell [3]. Variants that are exclusively detected in
the clonal-cell population of a tumor are believed to rep-
resent the mutations that occurred in the cell prior to
the initiation of cancer [4] and are widely used to study
mutational processes in normal tissues. However, inher-
ent within cancer clones are characteristics (increased
genomic instability and selective advantage), which can
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present a conundrum in understanding the etiology of
somatic mutations in normal tissues. The elimination of
confounding factors can be achieved by studying muta-
tions in non-cancerous cells, thus allowing a direct as-
sessment of genomic changes occurring with typical
aging of organ systems. Whole genome sequencing
(WGS) of a high number of single cells would be the
most informative method. However, there are technical
challenges associated with single-cell WGS and these
have impeded massive analysis of somatic variance in
normal cells [5, 6]. An alternative strategy is the bulk se-
quencing of non-cancer human tissues [7–10]. This ap-
proach provides only selected variants, i.e., variants
contained in the genome of cells that clonally expanded
in the normal tissues and contributed a detectable num-
ber of copies. But, similar to what observed for cancer,
detectable variants may not be fully representative of the
common mutational processes. In addition, bulk data
are not ideal for analyses that compare the frequency of
mutations in specific genomic regions or for exploring
the non-coding portion of the genome [7–10]. It is pos-
sible to obtain WGS data relative to a single genome
while avoiding single cell sequencing. This method re-
quires in vitro clonal expansion of a single cell prior to
sequencing, and a specific processing of data, in order to
select the somatic variants that were present in vivo and
eliminate those that occurred during culture [2, 6]. This
strategy has some limitations. For example, it is neces-
sarily restricted to cells that are able to proliferate
in vitro (e.g., stem/progenitor cells or reprogrammed
cells), and the culturing procedure is demanding and not
suitable for the analysis of a large number of cells. Des-
pite these limitations, the strategy has been successfully
applied to the analysis of skeletal muscle progenitors
[11]; intestine, colon, and liver stem cells [12]; blood
stem and progenitor cells [13, 14]; and reprogrammed
skin fibroblasts [15].
Results generated from clonally expanded, normal cells

demonstrate that aging is correlated with a linear in-
crease of somatic mutations and specific mutation pat-
terns and distributions. These features appear very
consistent among different cells of the same tissue, even
when obtained from different individuals. Therefore,
despite the low number of genomes analyzed per tissue,
important general conclusions regarding the rate of oc-
currence and the main features of somatic mutations
have been drawn for skeletal muscle, liver and intestinal
stem cells, and blood cells during aging [11, 12, 14]. Im-
portantly, information can be gleaned from these data
and used to build an understanding of cellular and gen-
omic activities prior to the appearance of mutations. A
catalogue of somatic mutations can be deconstructed
into distinct components or mutational signatures,
through non-negative matrix factorization (NMF) [16].
In multiple cases, mutational signatures obtained
through the analysis of thousands of cancer genomes
have efficiently been attributed to a specific etiology [17]
(http://cancer.sanger.ac.uk/cosmic/signatures). This is
the case of signature 7, which is found predominantly in
cancers derived from the skin and is consistent with the
chemical modifications of DNA expected after sunlight
UV exposure [17]. Unfortunately, the mechanisms
underlying other signatures remain unknown. For ex-
ample, the single base substitution signature (SBS)40
was recently separated from signature 5 and shown to
induce a large number of mutations in cancer samples,
especially those derived from the kidney [18]. While the
etiology of signature 5 seems to be related to uncor-
rected errors [19, 20], the etiology of SBS40 is unex-
plored. Another strategy to identify the mutagens that
shape a given genome is to study regional differences in
the distribution of somatic mutations [21]. Genomic fea-
tures that determine the non-random localization of mu-
tations are (1) DNA replication timing [22], (2)
chromatin organization [11, 23, 24], and (3) the levels of
active transcription [25]. Consequently, these features
influence DNA exposure to both extrinsic (genotoxic
compounds and radiations) and intrinsic (DNA synthesis
and repair mechanisms) mutagens [21–23, 25] and are
thought to be dependent on the organ or tissue. Taken
together, it is the current belief that the development of
somatic mutations in healthy tissues occurs as tissue-
specific somatic mutagenesis [12, 14, 17, 26].
The findings derived from our atlas of somatic muta-

tions in healthy tissues do not support a simple associ-
ation of each tissue to a specific somatic mutation
pattern. In contrast, we identify a stereotypical, muta-
tional pattern across progenitor cells from a variety of
tissues and two distinct mutation profiles in the same
tissue portion, indicating that mutagen exposure is mod-
ulated by multiple factors in addition to tissue type. In
particular, we identify cell differentiation state and cell-
type-specific activities as critical determinants of muta-
genesis. Importantly, our high coverage WGS data
allowed us to define that the landscape of somatic muta-
tions in different cell types is different in terms of muta-
tional signatures, but also genomic distribution of
mutations. Our analyses, based on single genome data
from the kidney, skin, subcutaneous, and visceral fat
cells from healthy donors, and complemented with a
meta-analysis of somatic mutations from healthy (N =
161) and tissue-matched cancer genomes (N = 192),
identify a unique mutation pattern in a population of
proximal tubule (PT) cells. This population expresses
the distinguishing markers of a PT cell type previously
identified as the cell of origin of the most common kid-
ney cancer subtypes [27]. Its unique mutation pattern is
characterized by high rate of mutation acquisition
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during adult life and mutation enrichment in regulatory
regions and expressed genes, ultimately resulting in a
higher risk of a transition to cancer. Overall, our work
constitutes the proof of principle for exploiting somatic
mutation data from healthy cells to tailor cell-type-
specific approaches of cancer prevention.
Results
Detection of mutations in different tissues from the same
individual
To explore differences in mutagenic processes occur-
ring in adult human tissues, we analyzed the somatic
variation in human kidney tubules (KT), epidermis
(EP), and subcutaneous and visceral adipose tissue
(SAT and VAT, respectively) from healthy individuals
of different ages. These tissues are subjected to exten-
sive morphological changes during aging, including
loss of regenerative potential and atrophy in the case
of kidney tubules, epidermis, and subcutaneous fat
and progressive hypertrophy in the case of visceral fat
[28, 29]. Genomic alterations, for example those con-
nected with premature-aging syndromes, have been
associated to kidney, skin, and fat changes [30–32],
and our analysis aims to better establish a link be-
tween loss of genome integrity and specific morpho-
logical modifications in these tissues.

Genomic data were obtained by WGS of single
cells freshly isolated from tissue biopsies and clonally
expanded in vitro (Fig. 1a). This strategy allowed the
survey of ~ 92% of the genome at a minimum cover-
age of 15x and the discovery of somatic mutations
present in the single cell at the moment of isolation
from the tissue. A stringent filtering on the allele
frequency (AF), allowing only variants with AF com-
prised between 0.4 and 0.6, efficiently discarded
somatic variants acquired during in vitro culture (see
the “Methods” section). A well-controlled compari-
son of tissue-specific differences was achieved
through the analysis of cells derived from multiple
tissues from the same individual (Fig. 1a, b). Multi-
tissue biopsies were obtained from three living, kid-
ney donors of younger age (30, 31, 38 years) and
three donors of older age (63, 66, 69 years). Charac-
teristics of the donor pool were as follows: (1) pro-
vided an extensive, clinical evaluation before surgery;
(2) no history of cancer, only two donors reported
forms of benign hyperplasia that are very common
in the population; (3) a body mass index ranging
from 20 to 30 kg/m2; and (4) normal kidney function
(Additional file 1: Table S1A). None of the donors
carried a genetic predisposition to cancer, according
to our analysis of germline mutations in 47 known
cancer genes (Additional file 1: Table S1B).
Specific cell types were cultured from all tissues tested:
kidney tubule cells from the kidney, pre-adipocytes from
fat, and keratinocytes from the skin (Additional file 1:
Figure S1). Cells were sequenced only if they were able
to attach and proliferate as a colony for 17–20 divisions
(Additional file 1: Table S1C). Based on these unique
properties of colony formation and long-term prolifera-
tion, we named our samples as progenitors from KT, EP,
SAT, and VAT.
Our newly generated data comprises a total of 69

single genomes (Fig. 1b, Additional file 1: Table
S1D). From one donor (a 69-year-old woman), we
obtained multiple, progenitor clones from four tis-
sues. From the other individuals, we sequenced mul-
tiple KT clones and, in most cases, also multiple
SAT and VAT clones (Fig. 1b). The sequencing data
yielded information on single nucleotide variants
(SNVs) and small insertion/deletions (InDels) (Add-
itional file 1: Table S1D and Additional file 2) that
were validated using a technical replicate. The valid-
ation rate was 99 and 97% for SNVs and InDels, re-
spectively (Additional file 1: Table S1E). This
validation confirmed that our pipeline could recover
a set of high-confidence somatic variants and ex-
clude variants that occurred during cell culture, as
demonstrated in our previous publication [11]. The
false-negative rate is also expected to be the same
(0.41) [11].
The data have been used in either tissue- or age-

focused analyses in order to explore both the tissue-
specific differences of somatic mutation accumulation
and the age-related genome modifications common
among tissues (Fig. 1b).

The tissue of origin of a cell is not the only determinant
of the somatic mutation profile
To understand somatic mutagenesis in different tis-
sues, we compared the spectrum of somatic mutations
recovered in each sample. Somatic SNVs were orga-
nized in 96 classes based on the type of base substi-
tution and its trinucleotide context. This classification
yielded a somatic mutation profile that was used to
cluster samples (Fig. 2a). As expected, EP samples,
rich with UV-induced C > T transitions, separated
from all the others (first cluster to the left). Unex-
pectedly, the other samples did not cluster according
to the tissue of origin, but created two main sub-
groups. The largest group (right) included all SAT
and VAT clones and some of the KT samples (KT1).
The other cluster (center) consisted of the remaining
KT samples (KT2; 54% of KT clones). All but one bi-
opsy showed the concomitant presence of KT1 and
KT2 cells (Fig. 2b). The KT2-mutation profile charac-
terized all the clones with the highest numbers of



Fig. 1 Somatic mutation detection in single genomes from different tissues of the same individual. a Experimental strategy for single genome
analysis of progenitor cells from multiple tissues from the same healthy individual. Blood, kidney, subcutaneous fat (SAT), visceral fat (VAT), and
skin biopsies were obtained from living kidney donors undergoing surgery. The blood tissue was whole genome sequenced (WGS) as a bulk to
obtain the individual’s reference sequence. The kidney tubule (KT) and epidermis (EP) portions were separated from the kidney and skin biopsies,
respectively. Single progenitor cells were isolated from KT, SAT, VAT, and EP and clonally expanded in culture to obtain WGS data. These data
were filtered using the individual’s reference sequence to obtain the catalogue of somatic variants for every clone. b Schematic summary of
sequenced samples and analysis strategy. Two to five single genomes per biopsy were sequenced (white numbers in the round plot) from six
individuals of either younger (30–38) or older (63–69) age. KT progenitors were sequenced for all six individuals, while SAT, VAT, and EP
progenitors were sequenced in a subset of the donors. Somatic mutation data were used to study either the tissue or the age effect on mutation
accumulation. An example of tissue-related differences found in the study is provided (top right): somatic SNVs found in 4 clones from different
tissues of the same individual were plotted according to their genomic position and in different colors according to the type of base substitution.
An example of age-related changes is provided (bottom right): total amount of SNVs in the genome of each sequenced clone from two selected
individuals of either younger (30 years) or older (69 years) age
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variants, both SNVs and InDels (Fig. 2c, d, respect-
ively). In agreement, KT2 clones showed higher, yearly in-
crease of mutations (56.6 SNVs and 8.0 InDels per
genome per year), compared to the other cell types (KT1
clones 11.7 SNVs and 1.4 InDels; SAT 17.5 SNVs and 0.9
InDels; VAT 27.2 SNVs and 1.4 InDels) (Fig. 2e, f).
In summary, we identify a stereotyped mutation

spectrum in multiple, different tissues (KT, SAT, VAT)



Fig. 2 Clustering of samples on the base of mutation types defines similarities between different tissues and two subsets of KT cells. a Mutation
pattern of 69 single genomes obtained from different human tissues of six healthy individuals of either younger (30–38) or older (63–69) age
(horizontal). SNVs were subdivided in 96 classes based on the single base substitution types and their trinucleotide context (vertical) and the
relative amount of mutations for each class were plotted as a heatmap. Hierarchical clustering of the samples based on the mutation pattern is
shown on top of the heatmap. b Percentage of kidney-tubule-derived cells clustering in the KT1 or KT2 subset per biopsy. Each biopsy is defined
by the age of the donor (30 years N = 4; 31 years N = 5; 38 years N = 3; 63 years N = 4; 66 years N = 5; 69 years N = 4 clones). c, d Number of
somatic single nucleotide variants (SNVs, c) and small insertions/deletions (InDels, d) found in single genomes of multiple progenitors from 6
individuals of different ages. (x axis) The numbers of somatic variants per clone were normalized to the percentage of autosomes covered by the
sequencing. Linear regression curves and P values calculated with the linear mixed models are shown for each tissue. e, f Average yearly increase
of somatic SNVs (e) and InDels (f) per tissue. * P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA and multiple comparisons tests. EP epidermis,
KT1 kidney tubule 1, KT2 kidney tubule 2, SAT subcutaneous fat, VAT visceral fat
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and two distinct spectra in the same tissue (KT1 and
KT2), suggesting that the tissue of origin is not the main
determinant of somatic mutation accumulation in this
sample set.

An atlas of somatic mutagenesis in healthy tissues
distinguishes basal and mutagen-driven processes
In order to build a more comprehensive atlas of somatic
mutation landscapes in human tissues, we extended our
analysis to public datasets of somatic mutations from
WGS of clonally expanded non-cancer cells. The cell
types in this meta-analysis include skin fibroblasts
(SkinFB) [15]; stem cells from the liver, intestine, and
colon [12]; and progenitor cells from skeletal muscle
(SkM) [11] and blood [13] (Additional file 1: Table S2).
A total of 92 genomes were analyzed, in addition to our
69 genomes, and the samples subjected to unsupervised
clustering on the base of their trinucleotide spectra
(Fig. 3a). The groups defined in our initial clustering
(Fig. 2a) were mostly maintained. Interestingly, the clus-
ter including cells from multiple tissues (KT1, SAT,
VAT) was confirmed and two more cell types, the SkM
and blood progenitors, overlapped with it in the center
of the plot. This cluster was called the “common progen-
itors” (Fig. 3a).
To understand the main factors driving the sample

clustering (Fig. 3a), mutational signatures were analyzed
(Fig. 3b–d and Additional file 1: Figure S2–S5). To in-
crease the power, the WGS of 192 tissue-matched tumor
samples were analyzed along with the 161 healthy sam-
ples (Additional file 1: Table S2). Eight signatures were
obtained by NMF and named after the most similar, sin-
gle base substitution (SBS) signature from the catalogue
of signatures observed in cancer [18] (Additional file 1:
Figure S2). The relative exposure of each signature in
different normal and cancer types was analyzed in order



Fig. 3 Meta-analysis of somatic mutation data from healthy donors defines basal and mutagen-driven mutagenesis in adult tissues. Sixty-nine
single genomes from epidermis (EP), kidney tubule 1 (KT1), kidney tubule 2 (KT2), subcutaneous fat (SAT), and visceral fat (VAT) were analyzed
together with public datasets of somatic mutations from WGS of clonally expanded non-cancer cells, including skin fibroblasts (SkinFB) [15]; liver,
intestine, and colon stem cells [12]; skeletal muscle progenitors (SkM) [11]; and blood progenitors [13]. a tSNE plot of the trinucleotide profile of
somatic SNVs. Multiple tissues displaying a common mutation profile (SkM, SAT, VAT, KT1, and blood) were named “common progenitors.” b
Relative contribution of the eight mutational signatures identified in healthy cells via non-negative matrix factorization. Each signature was
named after the most similar single base substitution (SBS) signature from [18]. c Average yearly increase of somatic SNVs obtained by linear fit of
mutations with age in the common progenitors, KT2, liver stem cells, and intestinal stem cell (intestine and colon) groups. P values from linear
mixed models are shown in Additional file 1: Table S3a. d. e Linear increase of mutations with age and signature profile of SBS5 (d) and SBS40 (e)
in KT2 (red), liver (yellow), and common progenitors and intestine-derived (colon and intestine stem cells) samples (gray). SBS5 and SBS40
showed similar profiles (bottom), but different tissue distribution
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to identify cell types with significantly higher exposure
to specific signatures (Additional file 1: Figure S3 and
Table S3). Two signatures, SBS2 (APOBEC) and SBS17b,
appeared largely tumor-specific in the sample set exam-
ined here and were found at high levels in sparse cancer
genomes and at negligible levels in healthy samples
(Additional file 1: Figure S3). Apart from these signa-
tures, the somatic mutation profiles found in cancer
samples broadly supported the results found in the cor-
responding healthy samples (Additional file 1: Figure S3
and S4a).
Overall, our analysis shows that signatures SBS1, 3/8,

and 5 were found ubiquitously (Additional file 1: Figure
S3) and linearly increased with age (Additional file 1:
Table S4). The common progenitors (SAT, VAT, KT1,
SkM, and blood) presented the lowest yearly increase of
mutations among the cell types analyzed, and the major-
ity of these mutations could be attributed to SBS1,
SBS3/8, and SBS5 (Fig. 3c). These evidences suggest that
the signature combination comprised of SBS1, SBS3/8,
and SBS5 is the unavoidable product of core cellular
processes. Therefore, we define it as “basal mutagenesis.”
Consistent with this concept, cell types that were not
common progenitors had higher exposure to additional
signatures that are associated with specific, mutagen ex-
posure. Examples are (1) EP samples showing high levels
of SBS7a, a signature induced by UV light exposure, and
(2) the SkM cells used as a control for culture-induced
mutagenesis in our previous study [11] (SkM-long),
which showed SBS18, a signature linked to in vitro cul-
ture stress [20, 33] and consequent production of intra-
cellular reactive oxygen species [34] (Fig. 3b). These
samples were used as positive controls for prolonged ex-
posure to a mutagen.
KT2 and liver stem cells generated two specific clus-

ters, adjacent to each other (Fig. 3a). This similarity
matched the higher rate of age-related accumulation of
SBS5 seen in KT2 and liver samples (Fig. 3d). However,
this increase did not seem to be the consequence of a
major defect of nucleotide excision repair (NER) [19] be-
cause SBS5 was 15-fold lower in liver and KT2 cells
compared to our positive controls for NER deficiency,
the ERCC2-null tumors (Additional file 1: Figure S4b-c).
In contrast to SBS5, SBS40 increased with aging mainly
in KT2 cells (Fig. 3c, e). Among analyzed samples,
SBS40 was stronger in KT2 and two types of kidney can-
cer, clear cell and papillary renal cell carcinomas (KIRC
and KIRP, respectively) (Additional file 1: Figure S3).
Like KT2, these tumor types demonstrated a rise in
SBS40 with aging (Additional file 1: Figure S4d-e), sug-
gesting that signature SBS40 is the result of a mutagen
active in the kidney. Interestingly, the chromophobe
subset of kidney carcinoma (KICH) and KT1 showed
low SBS40 contribution (Additional file 1: Figure S3 and
S4d-e), indicating that only specific subsets of kidney
cells are exposed to the mutagenic process eliciting this
signature. To obtain insight into possible mutagens ac-
tive in these cells, the mutation profiles of 161 normal
and 192 tissue-matched tumor samples were compared
to the spectrum induced by 53 genotoxic compounds in
a clonal population of iPSCs [33]. The spectrum of mu-
tations found in KT2 and kidney tumors KIRC and KIRP
(Additional file 1: Figure S5b) was similar to that gener-
ated by exposure to formaldehyde and alkylating agents,
suggesting that these specific cell types in the kidney
might be exposed to these mutagens, more likely derived
by endogenous chemical reactions [35].
Taken together, results indicate that a group of cells

from different tissues (common progenitors) provide a
model of minimal mutagenesis, which we named “basal
mutagenesis.” Relative to these cells, all other cell types
show signs of exposure to additional extrinsic (UV light
in EP, in vitro culture stress in SkM-long), intrinsic (high
SBS1, probably caused by higher proliferation rate in in-
testinal stem cells [12]), or endogenously produced
(KT2) mutagens.

KT2 are damaged cells from the proximal tubule
To better understand mutagen exposure in KT cells,
the similarities between normal kidney cells and dif-
ferent subsets of kidney cancer were further explored.
A comparison of somatic mutation profiles showed
that KT1 cells did not overlap with any kidney cancer
type, but were intermixed with the common progeni-
tor group (Fig. 4b). Conversely, the KT2 mutational
profile was similar to KIRPs and KIRCs and very dis-
tant from the distal-tubule-derived KICH (Fig. 4b).
The different subsets of kidney tumors show specific
genetic, epigenetic, and transcriptional profiles [27,
36, 37], due to their origin from distinct cell types
within the kidney (Fig. 4a). KIRCs and KIRPs origin-
ate from the proximal tubule (PT) [27, 36], where the
epithelial layer is exposed to a continuous flow of po-
tentially mutagenic compounds either reabsorbed
from or excreted into the urine (Fig. 4a). A specific
population of epithelial cells from the convoluted PT
(named PT1) was recently identified as the more
likely precursor of ccRCC and pRCC tumors on the
base of scRNA seq data [27]. Given the similarities
between KT2 and ccRCC/pRCC at the somatic muta-
tion level, we hypothesized that KT2 clones may over-
lap with the PT1 population and tested the
expression of a number of markers by FACS and
qPCR (see the “Methods” section and Table 1). Se-
lected KT1 and KT2 clones were tested and found
positive for markers of kidney progenitors, while most
markers of differentiated cells were not expressed,
suggesting that both populations are in an



Fig. 4 KT2 cells are proximal tubule cells exposed to mutagens. a Cartoon representing a kidney nephron and the location of the different tumor
samples included in the analyses (according to [27, 36]). A section of proximal tubule (PT) is enlarged to show the trafficking of water, solutes,
and other compounds across the PT epithelium. b tSNE plot of the trinucleotide profile of somatic SNVs in healthy (n = 161) and tumor (n = 192)
samples. The common progenitors (SAT, VAT, SkM, and blood) and kidney-derived healthy and tumor genomes are highlighted with specific
colors, while all other samples are shown in gray. c FACS analysis of the kidney progenitor markers CD133 and CD24 in selected KT1 and KT2
clones (n = 4). The average percentage of double- or single (CD24)-positive cells per clone is shown. d Heatmap showing the relative expression
of markers of undifferentiated and differentiated kidney cells in single clones (subdivided in 11 categories described in the legend on the right)
from either the KT1 (n = 4) or the KT2 (n = 2) group, tested by qPCR. Human embryonic stem cells (ESC bulk) and skin fibroblasts (SkFB bulk) were
included as negative controls, together with a VAT clone. RNA extracted from a fresh kidney biopsy was included as positive control. The same
KT1 clone is marked with an arrow in b and d, to highlight its intermediate KT1/KT2 phenotype at both somatic mutation (b) and gene
expression (d) levels. KT1 and KT2, healthy kidney-tubule-derived cells; KIRC, clear cell renal cell carcinoma; KIRP, papillary renal cell carcinoma;
KICH, chromophobe renal cell carcinoma; PT, proximal tubule; DT, distal tubule; S1, first segment of PT, convoluted; S3, last segment of
PT, straight
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undifferentiated state. Despite this, KT2 also
expressed VCAM1/CD106 and SLC17A3, the markers
that define the PT1 population found by Young et al.
In addition, KT2 expressed AQP1 and PDZK1, two
PT markers, and KIM1, a marker of tubule damage.
The same markers were absent or expressed at lower
levels in KT1 clones, except for a clone that showed
a mutation spectrum very close to KT2 and alkylating
agent exposure (marked with an arrow in Fig. 4a, d;
Additional file 1: Figure S5b). Overall, these data sug-
gest that KT2 cells can originate from the PT1 popu-
lation, but are found in a less differentiated state.
Indeed, our cell culture procedure selects for proliferating
cells and KT epithelial cells are known to reacquire prolifer-
ative capacities after de-differentiation in response to tubule
damage [38]. Conversely, the KT1 population expression
profile is overall consistent with a previously characterized
population of scattered kidney tubule progenitors [39].
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Somatic mutagenesis in the kidney proximal tubule
predisposes to the acquisition of driver mutations
Tumors derived from the PT (KIRC and KIRP) consti-
tute the vast majority of tumors diagnosed in the kidney
(Fig. 5a) [40], supporting the hypothesis that somatic
mutagenesis in the PT favors tumorigenic transform-
ation. Since KT2 are non-cancer clones from the PT of
healthy kidneys, we studied these cells as a model of mu-
tagenesis in the PT, prior to cancer initiation.
First, we confirmed that KT2 were not cancer clones

at the moment of isolation from the tissue by analyzing
the possible presence of the genetic lesions that com-
monly drive cancer initiation in KIRC and KIRP [41].
KT2 showed lower mutation burden compared to KIRC
and KIRP (Fig. 5b) and did not display the typical kidney
cancer genetic lesions, nor mutations in TP53, a tumor
suppressor often mutated in pre-cancer clones in human
tissues [7, 8, 10] (Additional file 1: Table S5). Yet, the
mutation burden in cells from 63- to 69-year-old donors
was higher in KT2 compared to other kidney cells (KT1;
Fig. 5b) and the specific mode of somatic mutation accu-
mulation in the PT could facilitate the acquisition of
driver mutations and ultimately promote tumor
initiation.
Kidney tumors are very rare at 30 years of age, but

the incidence increases constantly and peaks in the
8th decade of life [40]. To model driver mutations,
we selected the somatic mutations predicted to have
a functional effect on a gene that is actually
expressed in the tissue of origin. We defined these
variants as potentially pathogenic mutations and de-
termined their age-related increase (Fig. 5e, f). KT2
cells acquired higher numbers of potentially patho-
genic mutations compared to other cell types from
the same donors (KT1-SAT-VAT, Fig. 5e, f). The
yearly increase was 5.7-fold higher in KT2 compared
to KT1-SAT-VAT (Fig. 5f). From these data, we esti-
mate that each PT cell accumulates an average of
86.5 potentially pathogenic mutations by the age of
70. A higher rate of accumulation of potentially
pathogenic mutations makes the acquisition of can-
cer driver mutations in PT cells a more likely event
compared to other cell types. These data are in
agreement with the overall higher somatic mutation
burden in KT2 (Fig. 2c-f). However, we also noticed
that the mutation load in introns and exons of tran-
scribed genes was higher than expected by random
distribution and higher compared to non-expressed
introns and exons (Fig. 5d). Conversely, the other
cell types from the same donors (KT1-SAT-VAT,
Fig. 5 d and Additional file 1: Figure S6) showed
mutation depletion in these regions, in agreement
with previous reports [11, 12]. Similarly, conserved
regions were protected from mutations in KT1-SAT-
VAT and enriched in KT2 (Fig. 5e). Finally, KT2
showed a particularly strong enrichment of muta-
tions in regulatory regions (Fig. 5d). Overall, our
somatic mutation analysis of non-cancer cells points
to substantial differences in the genomic distribution
of mutations depending on the cell of origin. These
differences make specific cell types more vulnerable to the
acquisition of mutations that affect the function of im-
portant genes, and this feature correlates with increased
chances of a transition to cancer.

Different efficiency of DNA repair in cells exposed to
basal mutagenesis or additional mutagens
The regional pattern of distribution of mutations across
the genome is shaped not only by mutagen exposure,
but also by DNA repair. In fact, transcribed DNA is gen-
erally depleted of mutations due to the activity of the
transcription-coupled NER (TC-NER) [25, 42]. In
addition, mismatch repair (MMR) more efficiently pro-
tects from mutations the early-replicating and
H3K36me3-rich DNA [21, 43]. Transcribed genes are
usually located in early-replicating and H3K36me3-rich
chromatin and benefit of both high TC-NER and MMR
activities. Specific alterations in the pattern of regional
differences of mutation accumulation are signs of TC-
NER and MMR defects [21, 25, 42–44]. Therefore, we
analyzed these patterns in our catalogue of healthy
genomes.
Figure 6a shows the specific contribution of early/late

DNA replication timing (RT), abundance of H3K36me3
marks, and transcription levels to the enrichment/deple-
tion of mutations in different cell types. The group of
common progenitors, including SAT, VAT, SkM, and
blood, but not KT1, showed the expected depletion of
mutations with earlier RT, higher H3K36me3 abundance
and higher transcription levels (Fig. 6a and Add-
itional file 1: Figure S7a-b). This pattern indicates that
the basal mutagenesis is actively counteracted by MMR
and/or TC-NER. However, EP, KT2, KT1, liver, SkM-
long, and SkinFB deviated from the pattern seen for
common progenitors and showed a loss of association of
mutation rates with RT and H3K36me3 (Fig. 6a and
Additional file 1: Figure S7c).
KT2 showed a severely affected RT and H3K36me3

pattern (Fig. 6a), thus suggesting that many mutations
escaped MMR activity. While an increased proportion of
InDels compared to SNVs in KT2 genomes was consist-
ent with MMR defects (Fig. 6b), no evidence of a clas-
sical form of microsatellite instability (MSI) was
detectable (Fig. 6c). These data suggest that some form
of MMR is likely operative in these cells. Interestingly,
KT2 were the only cell types displaying higher amounts
of mutations in highly transcribed regions, while in all
other cell types transcription protected from mutations
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Fig. 5 Kidney PT shows a unique somatic mutation pattern that confers high risk for tumor transformation. a Epidemiologic data showing the
percentage of kidney tumors either derived from the proximal tubule, such as KIRC (clear cell renal cell carcinoma) and KIRP (papillary cell renal
cell carcinoma), or from other kidney structures (other subtypes). b Somatic mutation burden in KT1, KT2, KIRP, and KIRC of either a younger (30–
40) or older (60–70) age range. Significance among older groups was measured by one-way ANOVA. c, d Linear fit with age (c) and yearly
increase (d) of potentially pathogenic variants in KT2 vs KT1-SAT-VAT clones. Potentially pathogenic variants are defined as follows: all variants
were annotated with CADD (Combined Annotation Dependent Depletion; https://cadd.gs.washington.edu/). SNVs and InDels predicted to affect
the coding sequence (presenting CADD score > 15) were selected and subsequently filtered on expression data in order to select only variants
affecting a gene actually expressed in the tissue of origin of the clone. Tissue-specific and non-tissue-specific genes correspond to the expressed
and non-expressed genes in the corresponding tissue according to the Human Protein Atlas (http://proteinatlas.com). Adjusted P values of the
linear fit are calculated with the linear mixed model (c) or two-sided t test (d). e Enrichment (upward bars) or depletion (downward bars) of
somatic mutations in indicated genomic features. The log2 ratio of the number of observed and expected point mutations indicates the effect
size of the enrichment or depletion in each region. Log2 = 0 corresponds to a number of observed mutations equal to the number expected by
random distribution. f Enrichment (upward bars) or depletion (downward bars) of somatic mutations in conserved and non-conserved regions of
the genome. #P < 0.05, one-sided binomial test. ***P < 0.001, ****P < 0.0001 two-sided t test of log2 ratios for either KT2 or KT1-SAT-VAT in
specified genomic regions. EP epidermis, KT1 kidney tubule 1, KT2 kidney tubule 2, SAT subcutaneous fat, VAT visceral fat
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(Fig. 6a, right). This suggests that a transcription-
coupled mutagenic process [45] may be active in KT2
cells, supported by a striking, altered pattern of
transcription-strand asymmetry of the different substitu-
tion types (Fig. 6d).
Overall, these results indicate a mechanism in cells

that are exposed only to basal mutagenesis for sparing
early-replicating-, H3K36me3-rich and highly tran-
scribed regions from mutations. This occurs in diverse
tissue types and is consistent with previous evidence of a
more efficient activity of MMR and NER pathways
directed towards active chromatin [22, 42]. In cells puta-
tively exposed to a mutagen (EP, KT2, KT1, liver, SkM-
long, and SkinFB), the altered, mutation-depletion
pattern suggests that NER- and/or MMR-mediated pro-
tection is not as effective. KT2 cells show a unique pat-
tern of mutation distribution that explains the higher
mutation rate in transcribed genes (Fig. 5e).

Aging affects the efficiency of MMR and NER
Finally, we focused on non-tissue-specific effects of
aging. Chromosomal instability is known to increase
with age in normal tissues [2, 46]. Sequencing data from
the 69 genomes from KT, SAT, VAT, and EP samples
from 6 healthy kidney donors and 29 SkM progenitor
genomes from 7 healthy donors from [11] were used to
detect large chromosomal aberrations (Additional file 1:
Table S6). These aberrations were recovered in three dif-
ferent tissues, i.e., skeletal muscle, VAT, and kidney tu-
bules (both KT1 and KT2 cell types), but only in
association with aging (Fig. 7a, b), supporting a general
age-related increase of chromosomal instability.
The number of SNVs and InDels per genome also in-

creased in all surveyed tissues with aging (Fig. 2c, d). To
explore whether an age-related decline in DNA repair
could contribute to somatic mutation accumulation, we
selected cell types showing the more effective MMR and
NER activities (Fig. 6a and Additional file 1: Figure S7a-
c) and analyzed differences in mutation distribution and
spectra in different age groups. Older genomes showed a
weakened association of mutations with RT compared to
younger ones, indicating a partial loss of MMR activity
(Fig. 7c and Additional file 1: Figure S8a). The effect size
of this defect was approximately one third of that ob-
served in tumors with known MMR loss (MSI-H) (Add-
itional file 1: Figure S8b), suggesting that aged, healthy
cells acquire an early-stage mutator phenotype. MSI tu-
mors were also found to lack mutations in binding sites
for CTCF and Cohesin, in agreement with the require-
ment of a functional MMR to produce mutations at
these sites [47]. Relative amount of mutations at CTCF/
Cohesin peaks was lower in old vs young genomes. This
result constitutes a further proof in support of a partial
defect of MMR activity in old cells.
To investigate if defects extend to other pathways, we

analyzed the age-related increase of SBS5, known to be
associated with NER inactivation [19]. Results show that
the fraction of SBS5 mutations per genome increases
with age progression (Fig. 7d). This age-related expan-
sion was specific for SBS5 and not detectable for the
other ubiquitous signatures SBS1 and SBS3/8 (Add-
itional file 1: Table S3b); this supports the hypothesis
that NER weakens with advancing age. In summary, evi-
dence demonstrates the decline of both MMR and NER
in the genome of healthy cells as they age. This
phenomenon is conserved across different tissues and
occurs in cells that did not show genomic evidence of
exposure to extrinsic mutagens.

Discussion
We present here the basis of a somatic mutation atlas
that can systematically guide the identification of
cancer-prone cell types and high-risk somatic mutation
processes. This collection exclusively includes whole
genome data and high-confidence somatic variants ob-
tained from single human cells, clonally expanded
in vitro. Our newly generated data from the kidney, epi-
dermis, subcutaneous fat, and visceral fat are based on

https://cadd.gs.washington.edu/
http://proteinatlas.com


Fig. 6 Mutation enrichment in specific genomic regions provides information on DNA repair efficiency and mutagen exposure in different cell
types. a Enrichment/depletion of mutations in specific genomic regions. The genomes were divided in multiple sectors (bins) according to
decreasing DNA replication time (RT, bins 0 to 5. For clarity, only bins 1, 3, and 5 are shown), increasing abundance of the histone mark
H3K36me3 (bins 0–3), and increasing transcriptional levels (RNA-seq, bins 0–3). The relative abundance of mutations in each bin vs bin 0 for every
tissue (EP, liver, KT1, KT2) or tissue group (common progenitors: SAT, VAT, SkM, blood; intestine-colon) is estimated as the coefficient in negative
binomial regression (expressed as log2), where error bars show its 95% C.I. b Linear regression of SNVs and InDels per genome in the KT2 vs KT1-
SAT-VAT group. c Percentage of sites subjected to microsatellite instability (MSI) in each genome of either the KT2 or the KT1-SAT-VAT group. d
Enrichment of the six classes of substitution types in either transcribed or non-transcribed strand of genes. The log2 ratio of the number of
observed and expected point mutations indicates the effect size of the enrichment in the transcribed (upper) or non-transcribed (lower) strand.
#P < 0.05, one-sided binomial test

Franco et al. Genome Biology          (2019) 20:285 Page 12 of 22
samples derived from multiple tissues from the same in-
dividual. This strategy provides the advantage of a reli-
able comparison of tissue-specific differences, excluding
the variability derived from different genetic back-
grounds and environmental exposure. Newly generated
data are complemented and compared with publicly



Fig. 7 Genomic instability and weakening of DNA repair with aging. a Number of clones showing large chromosomal aberrations per tissue and
age group. Young 21–38, old 63–78. b Fraction of genomes showing large chromosomal aberrations in the samples analyzed in a, but divided in
tighter age groups (10 year-span). c Enrichment/depletion of mutations according to DNA replication timing (RT) while controlling for CTCF
binding sites in either younger (< 50 years old, N = 52) or older (> 50 years, N = 54) genomes from the tissues not showing signs of exposure to
external mutagens (SkM, SAT, VAT, intestine, and colon, according to the analyses in Figs. 3 and 6). Enrichments are coefficients from negative
binomial regression (as log2), and error bars are their 95% C.I. Significance of young-vs-old differences was tested via a Z-test on the interaction
term between age and replication time bin d. Fraction of SBS5 mutations per genome in different age groups of SkM, SAT, VAT, blood, intestine,
and colon cells. *P < 0.05, one-way ANOVA and multiple comparison tests
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available data sets from either healthy donors [11–13,
15] or tissue-matched cancer samples from TCGA and
ICGC, for a final catalogue of 353 genomes and 12 dif-
ferent healthy cell types.
The comparison of somatic mutation landscapes in

different cell types enables the identification of cells
more susceptible to somatic mutagenesis and conse-
quent cancer initiation [3]. This knowledge is expected
to promote significant therapeutic advantages, including
more targeted and efficient means of cancer prevention
[3]. A major result of our analysis is recognizing that
mutagen exposure can be very different even within the
same tissue, and this correlates with different suscepti-
bility to cancer initiation. It is possible that analysis of
great numbers of genomes will uncover the concomitant
presence of multiple cell subsets showing distinct muta-
tion spectra in most tissues. We provide here the proof
of principle by characterizing two populations of prolif-
erating cells residing in the kidney tubule, one likely de-
rived from de-differentiated epithelial cells of the



Franco et al. Genome Biology          (2019) 20:285 Page 14 of 22
proximal tubule (PT) and the other presenting features
of undifferentiated kidney tubule progenitors. The som-
atic mutation spectrum of PT-derived cells presents
unique characteristics that could not be identified in any
other kidney or non-kidney cell. PT-derived cells showed
the highest yearly increase of mutations among the cell
types analyzed and a high incidence of the signature
SBS40. The only samples that showed similar levels of
SBS40 were kidney cancers derived from the PT, namely
the clear cell and papillary cell RCCs (KIRC and KIRP,
respectively). This analogy suggests that there is a spe-
cific process ongoing in the kidney PT and this process
underlies the signature SBS40. Unfortunately, the eti-
ology of this signature has not yet been determined.
However, the extensive screening of cancer samples that
identified SBS40 highlighted its predominance in kidney
cancer [18]. Nonetheless, high levels of this signature
have also been found in sporadic cases of tumors derived
from multiple tissues, including the lung, skin, esopha-
gus, bladder, head, intestine, stomach, liver, and ovary
carcinoma, thus supporting the hypothesis that the
mutagen causing SBS40 is more common, but not exclu-
sively present in the kidney [18]. PT cells also displayed
a unique distribution of mutations across the genome.
The regions that are commonly spared from mutations
as a consequence of more intense MMR and NER activ-
ity [21, 25, 42, 43] presented equal or higher mutation
load compared to the rest of the genome. In particular,
highly transcribed genes were enriched of mutations and
the distribution of the different substitution types on the
transcribed and non-transcribed strand was altered.
These data indicate not only inefficient DNA repair, but
also the presence of a mutagenic process that is more
active on transcribed DNA. An important consequence
of this unique mutation pattern was a mutation enrich-
ment in functional genes and an age-related accumula-
tion of high-risk mutations that was 5.7-fold faster in PT
cells, compared to other cells from the same individuals.
We estimated the presence of 86 mutations altering the
protein sequence of expressed genes in every PT cell of
70-year-old individuals. Absolute numbers and other es-
timates of age-related increase of mutations presented in
this work will be more accurate when a larger number
of cells, distributed along the whole spectrum of ages,
are analyzed. In addition, our numbers are certainly an
underestimation, since our somatic mutation detection
has a false-negative rate of 0.41 and does not allow the
detection of all the variants present in a clone. However,
our estimates support a strong acceleration in the ap-
pearance of pathogenic mutations in the genome of PT-
derived cells. Mutations in the non-coding portion of
the genome are also expected to affect the function of
the cell, and we detected an enrichment of mutations in
regulatory regions which is expected to significantly
impact on overall gene expression. The high-risk som-
atic mutation landscape that we describe in PT cells pre-
dicts an elevated rate of tumorigenic transformation in
this portion of the nephron. In agreement, somatic muta-
genesis is recognized as a major tumorigenic mechanism
in the kidney [41, 48, 49] and the PT-derived tumors
KIRC and KIRP constitute up to 95% of all cancers diag-
nosed in this organ [36, 40]. Therefore, our analysis points
to PT cells as a cell type at particularly high risk of tumor
transformation. A clear understanding of the underlying
mutational mechanisms can be exploited to slow down
mutation accumulation and kidney cancer incidence.
The comparison of mutational profiles observed in

healthy cells with the landscape of mutations observed
after in vitro exposure to common mutagens [33] pro-
vides interesting hypotheses about the mutagens active
in the kidney PT. The genomic modifications observed
in healthy PT cells or tumors derived from the PT were
similar to those induced by formaldehyde and alkylating
agents [33]. Alkylating agents used in [33] are chemo-
therapeutic drugs, such as 1,2-dimethylhydrazine and di-
ethyl sulfate. The healthy kidney donors from which
cells were isolated were never treated with those agents
nor exposed to formaldehyde. Therefore, we hypothesize
that the mutation spectrum might be due to the action
of endogenously produced compounds that interact with
the DNA in a similar way as the synthetic drugs [35]. In-
deed, the epithelial layer of the kidney PT presents a
complex chemical environment that is the consequence
of ongoing physiological activities, such as ammonia
production and excretion, amino acid reabsorption and
modification, and transformation and excretion of xeno-
biotics [50]. Further analyses might support a link be-
tween the presence of these compounds in the kidney
PT and enhanced mutagenesis in this specialized
epithelium.
The kidney PT is an example of particularly high and

specific mutagen exposure. However, our analysis also
found cell types that are broadly protected from muta-
gens and constitute a model of minimal or “basal” muta-
genesis. These cells are progenitors from multiple,
unrelated tissues, namely skeletal muscle, kidney tubules,
blood, and both subcutaneous and visceral fat. Unex-
pectedly, these different cell types present a somatic mu-
tation profile that is strikingly similar. This finding is in
contrast to the hypothesis of a tissue-specific mutation
profile consequent to different activities and mutagen
exposure in each tissue [2, 17]. The absence of tissue-
specific mutagen exposure constitutes a simple way to
explain how different cell types can share the same mu-
tation profile. In this perspective, mutations observed in
skeletal muscle, kidney tubules, blood, and fat progeni-
tors are necessarily the consequence of common cellular
activities, such as “house-keeping” activities. In support
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of this hypothesis, this group of cells, which we named
“common progenitors,” displays the lowest age-related
increase of mutations among the cells analyzed. In
addition, the signatures characterizing the common pro-
file are found ubiquitously, but most cell types accumu-
late other tissue-specific mutations in addition to the
common profile.
The lack of exposure to tissue-specific mutagens in

the common progenitors is not surprising since tissues,
like the skeletal muscle and blood, have stem/progenitor
cells that reside in a protected microenvironment and
are shielded from damage [51]. Somatic mutation pro-
files are a record of the cell lineage and activities during
an individual’s lifetime. Therefore, somatic mutation
data can be used to address unsolved questions about
stem cell hierarchy and tissue architecture [13, 52]. In
the kidney, the existence of resident stem cells is contro-
versial and the presence of a potential, protective niche
is debatable [53]. Presently, the regeneration of damaged
KTs appears to be mediated by (1) resident progenitors
[39] and (2) tubule-epithelial cells that lose their differ-
entiation and reacquire proliferative capacities [38]. Our
analysis of the somatic mutation landscape supports
both types of progenitors. Cells with in vitro proliferative
capacities derived from human KTs showed either a mu-
tation profile similar to the resident progenitors of fat
and SkM (consistent with a resident KT stem cell) or a
profile similar to PT-derived tumors and signs of cellular
damage at both DNA and RNA level (consistent with a
de-differentiated cell). The two populations do not seem
completely separated. In agreement, we found a genome
from a 38-year-old individual that showed an intermedi-
ate mutational and expression profile. The population of
uncommitted KT progenitors also showed signs of
mutagen exposure when we explored the distribution of
mutations. This is consistent with their location in an
environment that is not completely protected. We
hypothesize that they reside in the PT, but are not part
of the epithelial layer. Finally, our analyses also explored
potential differences between adipose tissue progenitors
residing either in the subcutaneous or visceral fat. SAT
and VAT are considered two different tissues and show
important differences, especially concerning the mor-
phological changes occurring with aging [29]. However,
our somatic mutation data do not support specific differ-
ences in mutagen exposure in progenitor cells from the
two different types of fat during aging.
The finding and characterization of an age-related

process that most likely occurs in every cell throughout
the human body is a major finding of this study. This
phenomenon has been termed here as “basal mutagen-
esis.” Somatic mutation analysis in cancer genomes has
identified two signatures that present clock-like features,
i.e., inevitable increase in all cells as the human body
ages [54]. These signatures are considered to be the
products of core cellular processes, such as spontaneous
deamination of methyl-cytosines (signature 1) and poly-
merase errors that escape the DNA repair system (signa-
ture 5) [17, 19, 20]. Results from our study expand the
clock-like concept and define basal mutagenesis directly
in non-cancer genomes from healthy, human tissues. Be-
sides signatures SBS1 and 5, basal mutagenesis includes
a signature that is similar but does not completely over-
lap with SBS3 and SBS8. In addition, we propose that
SBS5 increases in a clock-like way in most cell types, but
can also be enhanced by specific mutagenic processes, as
observed in liver stem and kidney PT cells.
Our characterization of basal mutagenesis also includes

the distribution of mutations in relation to specific,
genomic features and the impact on DNA repair over
time. Thanks to the comparison of older vs younger sam-
ples from multiple tissues, we are able to determine a loss
of efficiency of MMR coupled with aging. In particular,
the MMR-mediated protection of early-replicating DNA
deteriorates with aging. We estimate that the effect size of
this defect is one third of that observed in tumors with a
complete MMR deficiency. These results show that the
rate of somatic mutagenesis increases with aging especially
in the gene-rich, early-replicating DNA, overall increasing
the chances of acquiring cancer driver mutations. In
addition, we found that samples from aged individuals
were subjected to a relative expansion of mutations attrib-
uted to SBS5, a signature that is enhanced by another
DNA repair pathway, NER. Overall, these findings suggest
that the efficiency of DNA repair, in particular the MMR
and NER pathways, is decreased in aged cells. These evi-
dences point to the loss of DNA repair as an accelerating
factor in cellular aging and open the door to innovations
in pharmacology.
Conclusions
We provide a comprehensive genome-wide analysis of
somatic mutagenesis in human cells. Our model of basal
mutagenesis offers an enhanced understanding of the
unavoidable loss of genome integrity and the protective
forces that counteract this process, including the stem-
cell niche and DNA repair. The finding of cell-type-
specific mutagen exposures and consequences on cell
fate in the kidney are a proof of principle supporting the
importance of understanding mutational processes active
in healthy human cells to understand cancer. WGS data
from single genomes constitute a precious tool for
achieving the goal because they allow the analysis of the
non-coding portion of the genome. Overall, our compre-
hensive classification of mutagenic processes introduces
a novel perspective for clinical advancements in prevent-
ing cancer- and age-related diseases.
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Methods
Clonal cultures from multi-organ biopsies from kidney
donors
Human biopsies were obtained intra-operatively from
healthy living kidney donors, according to Ethical Permit
Dnr 2015/1115-31. From the explanted kidney of each
donor, a needle biopsy from the kidney cortex and a
piece of suprarenal fat were obtained. In addition, a
piece of skin with annexed subcutaneous fat was ob-
tained. Tissues were preserved in cold PBS and immedi-
ately processed for cell isolation.
Isolation and clonal expansion of tubular progenitors
from human kidney biopsies
Using a needle biopsy (1 mm diameter/10 mm height),
7–8 mg of tissue from the kidney cortex of the explanted
kidney were obtained intra-operatively. The protocol for
cell isolation and culturing was adapted from [55, 56].
Tissue was minced in tiny pieces with a scalpel. Around
1/5 of the biopsy was used for direct DNA/RNA extrac-
tion from whole kidney tissue. The rest was resuspended
in medium and passed through tissue strainers with
mesh sizes of 100 and 70 μm, thereby excluding glom-
eruli from the preparation. The tubular portion, which
had passed through the cell strainers, was pelleted, then
treated with 1× trypsin–EDTA for 5 min at 37 °C and
gentle agitation, then mixed with medium and passed
through a 40-μm strainer to obtain a single cell suspen-
sion. FACS sorting of CD133+ cells and single cell clonal
expansion in 96-well plates was attempted (n = 4 biop-
sies) using the clone AC133 antibody (Milteny biotec,
Bergisch Gladbach, Germany), but was unsuccessful. To
obtain clone growth, single cell suspensions were dir-
ectly plated in 6–8 wells of 6-well microtiters at 37 °C
and 5% CO2. Culture dishes were fibronectin coated
(Sigma-Aldrich) and culture medium was EBM + EGM-
2 MV BulletKit (Lonza, Basel, Switzerland). Twenty-four
hours after plating, the medium was changed. First, the
plating medium was collected and re-plated in a new 6-
well microtiter to allow further attachment of kidney
progenitors. One week after plating, 1–20 colonies per/
well were distinguishable. Colonies with round shape
and tight cell-cell contacts were considered for further
culture, while scattered cells were discarded (Add-
itional file 1: Figure S1b). When reaching ≈ 1000 cells, col-
onies were detached with trypsin, manually picked, and
moved to new fibronectin coated 6-well microtiters, one
colony per well. The whole procedure was performed
under stereomicroscope inspection. Colonies were grown
until confluence and used for DNA extraction. Clones that
reached confluence within 1 week were moved to 10-cm-
diameter petri dishes. Mean time in culture was 27.9 ± 0.8
days (n = 26 clones from 6 biopsies).
To assess the effectiveness of the culturing strategy, a
selection of clones was subjected to FACS analysis of
tubular progenitor markers [39] and qPCR analysis for
markers of different kidney cell types. One hundred
thousand cells per clone were stained for the kidney tu-
bule progenitor markers CD133 (clone AC133) and
CD24 (clone 32D12, both from Milteny biotec, Bergisch
Gladbach, Germany) and analyzed with FACS (FACSCa-
libur™ - BD Biosciences). The percent of double positive
cells was calculated by comparison with cells from the
same clone stained with matching control IgGs (Milteny
biotec) (see also Additional file 1: Figure S1c). A subset
of sequenced and non-sequenced clones was also tested
for the expression of transcripts considered markers of
different cell types present in the kidney (see Add-
itional file 1: Figure S1e and the section “RNA extraction
and qPCR” in the “Methods” section). FACS and qPCR
analyses of expression of kidney cell markers in KT
clones were performed after 3–5 weeks in culture. To
avoid loss of cells from clones meant for sequencing,
only selected sequenced clones were inspected for the
expression of kidney markers: P4903_104; P4903_117,
P4903_118, P4903_119, P4903_131, P4903_132, tested
by FACS; P4206_106; P4206_107; P4206_122; P4903_
102, tested by qPCR; and P4903_128 and P4903_131,
tested by both FACS and qPCR. The analyses were ex-
tended to clones not used for the sequencing (non-se-
quenced clones). These clones either came from a test
biopsy (n = 7, female individual, age 57) or were selected
among non-sequenced clones from individuals KD10
(n = 3), KD11 (n = 4), and KD12 (n = 11).

Clonal expansion of fat progenitors from human biopsies
One to ten grams of abdominal subcutaneous (external
to the fascia superficialis) and visceral (peri-renal) fat
were obtained from kidney donors undergoing surgery
according to Ethical Permit Dnr 2015/1115-31. Part of
the tissue was frozen for direct DNA/RNA extraction.
The rest was accurately rinsed, cleaned of visible vessels,
and minced with a scalpel. Tissue was placed in 30–50
ml of Hank’s balanced salt solution (HBSS) containing 1
mg/ml collagenase (Collagenase A, Roche, Basel,
Switzerland) in a 37 °C shaking incubator until complete
digestion (30–40 min). To separate the stromal vascular
fraction (SVF) from mature adipocytes, the digested tis-
sue was centrifuged at 500g for 10 min and the super-
natant discarded. The SVF pellet was resuspended in 1
ml of erythrocyte lysis buffer (RBC lysis solution, Qia-
gen) at room temperature for 5 min. To stop the lysis,
cells were pelleted by centrifugation at 500g for 5 min
and supernatant discarded. SVF was resuspended in
medium and filtered through a 40-μm strainer, then
plated in a 10-cm-diameter culture dish with low-serum
plating medium (Dulbecco’s modified Eagle’s medium
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(DMEM)/Ham’s F-12, Life Technologies that contained
0.5% bovine serum). After 12 h in a 37 °C and 5% CO2

incubator, non-adherent cells were carefully washed
away and adherent pre-adipocytes were detached by 3–
5 min of trypsinization. Cells were rinsed and stained for
the hematopoietic marker CD45-APC (clone HI30, BD
Biosciences, USA) and the endothelial marker CD31-PE
(clone L133.1, BD Biosciences). CD45neg CD31neg fat
progenitors were FACS sorted using a BD FACSAria™
Mu cell sorter (BD Biosciences) (see Additional file 1:
Figure S1f) and single cell plated in uncoated 96-well
culture plates, one plate/biopsy. Additional cells were
sorted in 6-well plates as a population of 10,000–30,000
pre-adipocytes, 1 well/biopsy, and grown for 1 week before
freezing. The plating medium (DMEM F12 10% FBS) of
single cell cultures was changed every 2 days. The number
of colonies was scored at 2 weeks after plating. At conflu-
ence (around 3 weeks), cells were trypsinized and moved
to 24-well plates. Depending on the cell confluency, the
colonies were then moved to 6-multiwell plates. After an
average of 46.2 ± 1.3 and 48.0 ± 1.5 days in culture for sub-
cutaneous and visceral fat, respectively, the colonies were
confluent and used for DNA extraction.

Clonal expansion of epithelial progenitors from human
biopsies
Skin biopsies from the lower abdomen were obtained
from kidney donors undergoing surgery. The tissue was
placed in cold HBSS without Ca2+and Mg2+(Life Tech-
nologies) containing antibiotics and antimycotics (Anti-
anti, Gibco, Life Technologies) and kept at 4 °C for 4–6
h. Subcutaneous fat and loose connective tissues (hypo-
dermis) were carefully removed. The tissue was flattened
and cut into strips about 3–4 mm wide. The pieces were
placed with the dermal side down in a dish containing
HBSS with antibiotics and dispase (Corning, USA) and
kept at 4 °C overnight. The digested epidermis was
peeled from the dermal side, minced, and trypsinized
with TrypLE Select (Gibco, Life Technologies) at 37 °C
for 30–40 min. The digested tissue was passed through a
70-μm mesh filter, collected in a new tube containing
medium and centrifuged. Pellet was resuspended in Epi-
Life medium, filtered through a 40-μm strainer and
plated in 4 wells of a 6-well multiwell coated with colla-
gen (5 μg/cm2 of Collagen I bovine protein, Gibco, fol-
lowing the “thin coating procedure”). Growth medium
was EpiLife medium (Gibco, Life Technologies), no
serum. The procedure did not produce any colonies for
individuals KD05, KD09, KD10, KD11, and KD12. The
culture of the epidermis from individual KD06 produced
2 colonies. Colonies of small, tight, and fast proliferating
cells were visible on the extremities of the dish starting
from 2 weeks after plating. When reaching ≈ 1000 cells,
colonies were detached with trypsin, manually picked,
and moved to new collagen-coated 6-well microtiters,
one colony per well. The whole procedure was per-
formed under stereomicroscope inspection. The cells
tended to differentiate into mature large keratinocytes
(see the picture in Additional file 1: Figure S1a), but a
portion of cells kept small size and very high prolifera-
tive capacity for multiple passages. DNA was extracted
34 days after initial plating.

DNA extraction
DNA was extracted from the confluent wells of the 6-
multiwell plate using the Gentra Puregen Kit, Qiagen.
DNA was extracted from tissue biopsies using the Gen-
tra Puregen Kit, supplemented with a lysis buffer con-
taining Proteinase K as recommended by the supplier.
DNA was extracted from 3ml of total blood that was
collected in EDTA as recommended by the instructions
of the Gentra Puregen Blood Kit.

Sequencing
The library preparation and sequencing were carried out
at NGI Sweden, Science for Life Laboratories,
Stockholm, following standard methods. For cell clones,
the library preparation was performed by a semiauto-
matic NeoPrep station using the Illumina TruSeq Nano
Kit (350 bp average insert size) and 25 ng of DNA as
starting material. The libraries of the bulk blood samples
were prepared with Illumina TruSeq PCR-free library
preparations (350 bp average insert size). Sequencing
was performed on Illumina HiSeq X, PE 2 × 150 bp.

Somatic variant calling
Raw reads were aligned to the human reference genome
(GRCh37/hg19 assembly version), using bwa mem 0.7.12
[57]. Alignments were sorted and indexed using sam-
tools 0.1.19 [58]. Alignment quality control statistics
were gathered using qualimap v2.2 [59]. The raw align-
ments were then processed following the GATK best
practice [60] with version 3.3 of the GATK software
suite. Alignments were realigned around InDels using
GATK RealignerTargetCreator and IndelRealigner, du-
plicates were marked using Picard MarkDuplicates
1.120, and base quality scores were recalibrated using
GATK BaseRecalibrator. Finally, genomic VCF files were
created using the GATK HaplotypeCaller 3.3. Reference
files from the GATK 2.8 resource bundle were used. All
above steps were coordinated using Piper v1.4.0 (www.
github.com/NationalGenomicsInfrastructure/piper).
Somatic variants were defined as heterozygous in the

single cell clone and either absent or very rare in an un-
related tissue (blood), sequenced as a bulk. To identify
somatic variants, a specific pipeline was developed. For
each clone, variants were initially called with Haplotype-
Caller (GATK) [61], MuTect2 (GATK 3.5.0), and
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FermiKit version r178 [62]. The union of these three sets
of variants was subjected to further filtering steps in
order to exclude (1) sequencing artifacts, (2) germline
variants (detected both in the clone and blood bulk), and
(3) variants that occurred during the in vitro culture of
the clone (found only in a subset of cells of the clone,
therefore showing low AF). To this aim, the AF of each
variant was derived from the .bam files and matched to
the relative blood bulk sequencing. Somatic variants
were defined as follows: the read fraction supporting the
alternative allele was comprised between 0.4 and 0.6 in
the clone sequence, a minimum of 3 reads supported the
variant, the read fraction in the blood was low (alterna-
tive < 0.1), and the coverage in both the clone and blood
was at least 15X. Chromosomes X and Y were excluded
from the analyses (however, variants recovered on the X
chromosomes of female donors can be found in Add-
itional file 3). Additional quality filters were applied as
follows: the reads supporting the variants were on both
strands, the maximum coverage was 1000X, and the var-
iants that were located in problematic regions [63, 64]
were removed. Variants common to more than one sam-
ple were considered artifacts and removed. Variant valid-
ation was performed to ensure that our lists of somatic
mutations only contained somatic variants that were
present in the cell before in vitro culturing (see the sec-
tion “Variant validation” in the “Methods” section).
Comparison of variants recovered in DNA from a clone
derived from the same ancestor cell, but cultured in 2
different wells and independently sequenced, shows high
validation rate (99 and 97% for SNVs and InDels, re-
spectively, Additional file 1: Table S1e) and supports low
levels of culture-induced variants in our lists. However,
we cannot exclude the presence of non-neutral, posi-
tively selected variants that might have occurred in vitro.
Variants were annotated using the Ensembl Variant Ef-
fector Predictor from [65]. Frequency of detected som-
atic SNVs in the Swedish population (germline variants)
was annotated in Additional file 2 and Additional file 3
using SweGen [66] version 20180409.

Variant validation
The variant validation was performed on a technical rep-
licate of WGS. Two clones derived from the same ances-
tor cell (P4206_128 and P4206_130) were independently
grown in culture. The DNA was extracted and se-
quenced independently, but clone P4206_130 was not
included in the study. Variants were called in clones
P4206_128 (discovery set) according to our somatic vari-
ant calling pipeline. Called variants that had a minimum
coverage of 10x in both the discovery and the validation
sets were used for the validation. In total, 870 SNVs and
71 InDels were tested. Variants were considered vali-
dated when at least 3 reads supporting the alternative
alleles were present in the validation set. As a control
for the background signal, we validated the variants in
unrelated clones, e.g., clones derived from a different
founder cell obtained from the same or a different bi-
opsy. Additional validation and discussion of our som-
atic mutation calling strategy are available at [11].

Microsatellite instability
Microsatellite instability was assessed using MSIsensor
v.0.5 [67] where every cell clone and representative
blood bulk were analyzed and the msi score calculated.

Copy number variation
Copy number variation was detected in clonally ex-
panded cells using Ascat [68]. Ascat detects allele-
specific copy number variation in a tumor sample using
Log R and B allele frequency (BAF) information at
specific SNP loci in the tumor sample and a matched
germline sample from the same individual. We used
the loci of all bi-allelic SNPs in 1000 Genomes phase
3, release date 20130502 [69] with minor allele fre-
quency > 0.3 to calculate Log R and BAF data in the
clonally expanded cells and the matched blood sam-
ples. The software AlleleCount (https://github.com/
cancerit/alleleCount) was used to generate the num-
ber of reads in the bam files supporting the two al-
leles of the SNPs. BAF and LogR was then calculated
at all SNP loci according to:

BAFci ¼
CountsBc

i

CountsAc
i þ CountsBc

i

BAFbi ¼
CountsBb

i

CountsAb
i þ CountsBb

i

LogRc
i ¼ log2

CountsAc
i þ CountsBc

i

CountsAb
i þ CountsBb

i

−median log2
CountsAc þ CountsBc

CountsAb þ CountsBb

� �

LogRb
i ¼ 0

where i is a specific SNP locus, c is the clonally ex-
panded sample, b is the blood sample, CountsA is the
number of reads supporting one of the alleles of the
SNP, and CountsB is the number of reads supporting
the other allele of the SNPs.
Ascat was run with parameter gamma set to 1. We re-

port only large copy number aberrations that were de-
tectable by visual inspection of the ASPCF.png and
ASCATprofile.png images generated by Ascat for each
sample. Execution of Ascat and the generation of Log R
and BAF was coordinated using Sarek release v2.1.0 [70].
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Meta-analysis
Newly generated and publicly available somatic SNVs
from normal and cancer samples underwent a common
filtering step to exclude variants from the repeat-masked
hg19 genome assembly. In particular, we excluded re-
gions with CRG Alignability-75 score [71] below the
maximum (< 1.0) and additionally the UCSC Browser
blacklisted regions (DAC and Duke) were excluded; this
step retained 2393.43Mb of the genome. Furthermore,
we excluded from all analyses the regions with low gen-
omic coverage in our data (< 15 reads in WGS of > 5%
of the samples), retaining 2094.95Mb of the hg19 gen-
ome for the final analysis.

Mutational signature inference
Analysis of mutational signatures was performed as
described in [21]. Briefly, the SNVs from the healthy
samples and the tumor samples were analyzed jointly,
where a NMF (non-negative matrix factorization) ana-
lysis was applied to matrices of mutation counts
across the 96 mutational contexts, as customary (see,
e.g., [16]). Upon repeated runs (n = 200) of the NMF
procedure (function nmf in the R package NMF, using
the default “Brunet” algorithm) on the bootstrap-
resampled mutation count data, the 200 NMF results
were clustered using k-medoids algorithm (function
pam in R package cluster) to obtain the final set of
mutational signatures and their contributions (expo-
sures) in every sample. The signature profiles ob-
tained from this NMF analysis were compared using
cosine similarity to the known mutational signatures
(http://cancer.sanger.ac.uk/cosmic/signatures and [18]).

Genomic distribution of mutations
Analysis of enrichment or depletion of mutations in
exons, introns, regulatory, and conserved regions was
carried on using the R package MutationalPatterns [72].
Tissue-specific genes were obtained from the Human
Protein Atlas (http://proteinatlas.com). The genes that
had the annotation “elevated in …,” “expressed in all,”
and “mixed expression pattern” were considered tissue-
specific gene for that tissue. To define the conserved re-
gions, PhastConsElements46way data was used and
downloaded from http://hgdownload.cse.ucsc.edu/gold-
enpath/hg19/phastCons46way/.
The association of mutation enrichment/depletion

with specific genomic features was performed as de-
scribed in [21, 44]. In brief, regression analysis was
performed to examine the relationship between the mu-
tations and the covariates (replication timing,
H3K36me3, transcriptional levels, CTCF motif) individu-
ally while controlled for others. The replication timing
(RT) data was obtained from the ENCODE project
(RepliSeq) and divided into six bins ranging from latest
replicating (bin 0) to earliest replicating (bin 5); values
are averages over eight diverse cell types (source file
names in the form “wgEncodeUwRepliSeq_____Wave-
SignalRep1.bigWig” where the gap contains cell line
names: Helas3, Hepg2, Huvec, Nhek, Bj, Imr90, Mcf7,
Sknsh). The RNA-seq levels and H3K36me3 histone
mark were collected from Roadmap Epigenomics project
and averaged over eight diverse cell types (for
H3K36me3: E017 LNG.IMR90, E114 A549, E117
CRVX.HELAS3.CNCR, E118 LIV.HEPG2.CNCR, E119
BRST.HMEC, E127 SKIN.NHEK, E125 BRN.NHA, E122
VAS.HUVEC; for RNA-seq, these same cell types except
that we substituted E096 and E071 for E017 and E125
because of data availability). The RNA-seq was divided
into four bins where non-expressed regions were in bin
0 and expressed regions were in bins 1 (low expression)
to 3 (high expression). The H3K36me3 was divided into
four bins, with bin 0 as absent from H3K36me3 (fold-
enrichment versus ChIP-seq “input” ≤1.0) and ranging
up to bin 3 with the highest abundance.

Predicted pathogenic variants
To obtain the number of potentially pathogenic muta-
tions in each clone, SNVs and InDels were annotated
with CADD (Combined Annotation Dependent Deple-
tion) [73]. Mutations that obtained a PHRED score
higher than 15 were selected and filtered on gene ex-
pression (obtained from Human Protein Atlas, as de-
scribed in the section “Genomic distribution of
mutations”). Variants with CADD score higher than 15,
but no gene annotation were excluded, as well as vari-
ants affecting the sequence of a gene not expressed in
the tissue of origin of the clone.

RNA extraction and qPCR
RNA from KT clones was extracted from plated cells,
previously snap-frozen in their tissue culture plates,
using the RNeasy Mini kit (Qiagen), according to the
manufacturer’s instructions. RNA from total kidney was
obtained from a needle biopsy from a healthy kidney not
included in the study (female, age 38) undergoing ex-
plant for kidney donation. The fresh biopsy was minced
in tiny pieces, and around 1/5 of the material was snap-
frozen for RNA extraction. The rest of the biopsy was
used for KT progenitor culture. RNA from the biopsy
was extracted using the RNeasy Mini kit (Qiagen) and
homogenized with a syringe. RNA from all samples used
in the qPCR analyses were extracted at the same time.
cDNA synthesis was performed using random hexamers
and SuperScript Reverse Transcriptase (Invitrogen).
Quantitative RT-PCR was performed using either a Taq-
Man gene expression assay from Applied Biosystems
(Podocalyxin, PDX, Hs00193638-m1) or SYBRgreen
using the set of primers specified (Table 1).
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Table 1 QPCR primers for gene expression analysis

Forward Reverse

ACTA2 acaggaatacgatgaagccg gctttggctaggaatgatttgg

AQP1 ggaccggcagagctctacag acgtcttctggacccatgct

CALB1 ttacctggaaggaaaggagctgca tcttctgtgggtaatacgtgagcc

COL1A1 atgaccgagacgtgtggaaa tttcttggtcggtgggtgact

CUBN tgtttcttacggggtctgctca gcagaccaattgcactcccttt

KIM1 (HAVCR1) cgtgggtggttcaatgacatga tgacggttggaacagttgtgac

LPR2 ccaaagactgttcagatgacgc ctgagccatcatcacagtcttg

Nephrin (NPHS1) cacacggtcagcacaacagagg gaaacctcgggaataagacacct

PAX2 caaagttcagcagcctttcc tcaccattggagcgaggaat

PAX8 atccggcctggagtgatagg tggcgtttgtagtccccaatc

PDZK1 ccctgtgatgaatggaggtgt tcatagccacaccttgaggtgt

PECAM1 ttcaagccttgagggtcaag tgtaaaacagcacgtcatcctt

Podocin (NPHS2) taccaaatcctccggcttagg tttggctcttccaggaagcaga

SLC5A12 ttgtgggcttcttaacggttc cgcctgagaggatctacatca

SLC9A3 ttgaggaggtccatgtcaacg gcgccacgaaagattcaaaca

SLC17A3 aagaacgcacaagatatgcaagt tgtaagacgagggctattccat

SLC22A7 actttcttcttcgccggtgt attacatagctgacggaggctg

UMOD actacgtctacaacctgacagc tctatactgcactcctcacacg

VCAM1/CD106 cagtaaggcaggctgtaaaaga tggagctggtagaccctcg
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Statistical analyses
Unless otherwise indicated, the P values were calculated
using either two-tailed distribution, two-sample unequal
variance Student’s t tests (when comparing two groups),
or one-way ANOVA with multiple comparison post hoc
test. Significance was defined as P < 0.05 (*P < 0.05,
**P < 0.005, ***P < 0.0005). The results are presented as
the mean ± standard error of the mean (SEM). All calcu-
lations were performed using GraphPad Prism software.
The linear fits between mutation numbers and age were
obtained using a linear mixed-effects model where the
dependent variable is the number of mutations or a
given mutational signature, the fixed effect is age, and
the random effect is the individual. Bonferroni correc-
tion was used to adjust for multiple testing. Analyses
were performed in R. T-SNE analysis was performed
using tsne package in R, and clustering showed in Fig. 2a
was performed using heatmap3 package in R.
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