Skip to main content
. Author manuscript; available in PMC: 2019 Dec 18.
Published in final edited form as: Med Image Comput Comput Assist Interv. 2019 Oct 10;11764:120–128. doi: 10.1007/978-3-030-32239-7_14

Table 1.

Mean absolute distance (MAD) and standard deviation (Std. Dev.) in μm evaluated on 20 manually delineated scans of 9 surfaces, comparing AURA toolkit [13], R-Net [9], ReLayNet [18], SP (shortest path on our surface map), and our proposed method. Depth resolution is 3.9 μm. Numbers in bold are the best in that row.

Boundary MAD (Sth. Dev.)
AURA R-Net ReLayNet SP Our’s

ILM 2.37 (0.36) 2.38 (0.36) 3.17 (0.61) 2.70 (0.39) 2.41 (0.40)
RNFL-GCL 3.09 (0.64) 3.10 (0.55) 3.75 (0.84) 3.38 (0.68) 2.96 (0.71)
IPL-INL 3.43 (0.53) 2.89 (0.42) 3.42 (0.45) 3.11 (0.34) 2.87 (0.46)
INL-OPL 3.25 (0.48) 3.15 (0.56) 3.65 (0.34) 3.58 (0.32) 3.19 (0.53)
OPL-ONL 2.96 (0.55) 2.76 (0.59) 3.28 (0.63) 3.07 (0.53) 2.72 (0.61)
ELM 2.69 (0.44) 2.65 (0.66) 3.04 (0.43) 2.86 (0.41) 2.65 (0.73)
IS-OS 2.07 (0.81) 2.10 (0.75) 2.73 (0.45) 2.45 (0.31) 2.01 (0.57)
OS-RPE 3.77 (0.94) 3.81 (1.17) 4.22 (1.48) 4.10 (1.42) 3.55 (1.02)
BM 2.89 (2.18) 3.71 (2.27) 3.09 (1.35) 3.23 (1.36) 3.10 (2.02)

Overall 2.95 (1.04) 2.95 (1.10) 3.37 (0.92) 3.16 (0.88) 2.83 (0.99)