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Abstract
Schizophrenia (SCZ) is recognized as a disorder of distributed brain dysconnectivity. While progress has been made
delineating large-scale functional networks in SCZ, little is known about alterations in grey matter integrity of these
networks. We used a multivariate approach to identify the structural covariance of the salience, default, motor, visual,
fronto-parietal control, and dorsal attention networks. We derived individual scores reflecting covariance in each structural
image for a given network. Seed-based multivariate analyses were conducted on structural images in a discovery (n = 90)
and replication (n = 74) sample of SCZ patients and healthy controls. We first validated patterns across all networks,
consistent with well-established functional connectivity reports. Next, across two SCZ samples, we found reliable and
robust reductions in structural integrity of the fronto-parietal control and salience networks, but not default, dorsal
attention, motor and sensory networks. Well-powered exploratory analyses failed to identify relationships with symptoms.
These findings provide evidence of selective structural decline in associative networks in SCZ. Such decline may be linked
with recently identified functional disturbances in associative networks, providing more sensitive multi-modal
network-level probes in SCZ. Absence of symptom effects suggests that identified disturbances may underlie a trait-type
marker in SCZ.
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Introduction

The human brain is organized into large-scale networks, which
have been reliably delineated using resting-state functional
connectivity MRI methods (Power et al. 2011; Yeo et al. 2011;
Buckner et al. 2013). These large-scale brain systems can be
characterized by examining structural covariance networks, an
approach that examines inter-individual differences in regional
brain volume, co-varying with other brain structures, across the
population (Alexander-Bloch et al. 2013a). Across individuals,
intrinsically connected functional brain networks can be
topographically represented in the structural patterns of cortical
grey matter, complementing functional investigations. Recent
studies have successfully leveraged such approaches to define
structural covariance networks across the human lifespan
(DuPre and Spreng 2017), and subsequently used this topology to
estimate the structural integrity of such networks from standard
individual T1 anatomical images. Structural covariance analysis,
as a method, largely replicates the network architecture defined
using functional neuroimaging approaches, including the
salience, default, motor, visual, fronto-parietal control, and
dorsal attention systems (Zielinski et al. 2010; Clos et al. 2014).
Such methods can provide unique insights into grey matter
integrity within these networks, which could be severely
impacted by neuropsychiatric illness.

Schizophrenia (SCZ) in particular is one of the most disabling
neuropsychiatric conditions in the world (Murray et al. 1996)
and is associated with distributed neural abnormalities. It is
well established that SCZ is a disorder of distributed brain
‘dysconnectivity’ (Stephan et al. 2006; Cocchi et al. 2014;
Ellison-Wright et al. 2014) emerging from complex biolog-
ical alterations across multiple neural systems (Coyle JT
2006). Its symptoms lead to profound economic cost and
lifelong disability for most patients (Murray and Lopez 1996).
Therefore, characterizing neural disturbances in SCZ consti-
tutes a critical research goal and requires the identification
of both pathophysiological mechanisms and better neural
markers to guide intervention and treatment. Resting-state
functional connectivity approaches have revealed evidence
for functional connectivity disruptions in associative fronto-
parietal control networks in chronic SCZ (Baker et al. 2014),
which appear to be related to abnormal blood oxygen level
dependent (BOLD) signal variance across these same networks
(Yang et al. 2014). Concurrently, studies have identified
profound alterations in thalamo-cortical information flow
(Woodward et al. 2012; Anticevic et al. 2013a; Anticevic et al.
2014) and neural systems involved in salience processing
(Palaniyappan et al. 2013). These studies provide emerging
support for functional disruptions in associative cortical
networks in SCZ (Pearlson et al. 1996; Pearlson and Marsh 1999;
Whitfield-Gabrieli et al. 2009; Cocchi et al. 2014). However, it
is unclear whether SCZ is associated with altered structural
integrity across these same networks. Testing this hypothesis
is vital for two reasons: i) it establishes a potentially comple-
mentary neural marker that can be used in conjunction with
functional measures, extending standard localization methods
of voxel-based morphometric studies (Bora et al. 2011); ii) if
viable, this structural network measure can lead to important
re-analyses of many existing structural datasets with a measure
sensitive to network-level disturbances in structural gray matter
integrity.

Prior work examining structural covariance in SCZ
identified altered inter-regional correlations between the

frontal–temporal and frontal–parietal regions (for review, see
(Alexander-Bloch et al. 2013b). Using graph analytic measures,
this work showed that SCZ is associated with significantly
reduced hierarchy and increased connection distance, resulting
in attenuated network relationships among associative cortical
areas (Bassett et al. 2008; Lynn and Bassett 2018). Structural
covariance analysis has revealed alterations across cortex in
primary and association regions in SCZ (Palaniyappan et al.
2015; Zugman et al. 2015; Kuang et al. 2017; Lefort-Besnard et al.
2018; Liu et al. 2018; Palaniyappan et al. 2018) with moderate
convergence across studies implicating executive and salience
processing regions. The goal of our study was to test the
hypothesis that structural covariance methods can reveal robust
and replicable network-level alterations in SCZ relative to
matched controls.

We used a novel seed-based multivariate approach to iden-
tify the structural covariance of the brain’s large-scale net-
works and to provide novel insights into grey matter differ-
ences within these networks in SCZ relative to healthy control
participants. Our aim was to first isolate the structural covari-
ance networks – that is, regions that show similar variabil-
ity in gray matter volume. In turn, we sought to characterize
changes to the grey matter integrity within these networks in
SCZ. As noted, based on existing functional studies, we hypoth-
esized that structural integrity disturbances would be partic-
ularly pronounced in executive/control and salience networks
(Anticevic et al. 2013b; Frangou 2014). We tested this hypoth-
esis in a large sample of chronic SCZ patients (N = 90) by: i)
identifying the salience, default, motor, visual, fronto-parietal
control, and dorsal attention structural covariance networks
across all individuals; ii) quantifying alterations in SCZ across
these systems; iii) replicating our findings using an independent
large sample of chronic SCZ patients (N = 74).

Materials and Methods
Participants

We examined two independent SCZ samples: i) discovery
sample: 90 chronic SCZ patients and 90 demographically
matched HCS (Table 1); ii) replication sample: 71 SCZ patients
and 74 demographically matched HCS obtained from a publicly-
distributed dataset provided by the Center for Biomedical
Research Excellence (COBRE) (http://fcon_1000..projects.nitrc.
org/indi/retro/cobre.html) (Table 2). Identical recruitment and
exclusion criteria were used to assess participants at both
sites. Furthermore, across samples, all subjects met identical
neuroimaging exclusion criteria and underwent identical
preprocessing and analyses.

Discovery sample SCZ participants (N = 90) were identified
through outpatient clinics and community mental health
facilities in the Hartford, CT area. Complete recruitment details
for this sample are described in our prior work (Anticevic et al.
2013a). Briefly, patient inclusion criteria were as follows: i) SCZ
diagnosis as determined by the Structured Clinical Interview
(SCID) for the Diagnostic and Statistical Manual of Mental
Disorders-IV (DSM-IV) (First et al. 2002), administered by
experienced MA or PhD-level research clinicians; ii) no major
medical or neurological conditions (e.g. epilepsy, migraine,
head trauma with loss of consciousness); and iii) IQ > 70
assessed by widely-accepted methods for estimating premorbid
intelligence levels [either National Adult Reading Test (NART),
Wide Range Achievement Test (WRAT) or Wechsler Test of
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Table 1 Clinical and Demographic Characteristics - Discovery Sample

Characteristic HCS (N = 90) SCZ (N = 87) Significance

M S.D. M S.D. T Value / Chi-Square P Value (two-tailed)

Age (in years) 30.71 11.99 32.93 11.25 1.35 0.18
Gender (% male) 65.56 73.00 1.15 0.25
Father’s Education (in years) 14.37 3.21 13.67 3.47 1.22 0.22
Mother’s Education (in years) 13.99 2.81 13.50 2.92 0.94 0.35
Participant’s education (in years) 15.24 2.22 13.18 2.21 6.03 0.00∗
Handedness (% right) 88.89 80.00 0.44 0.66
IQ Estimate 106.77 8.92 97.78 15.71 4.34 0.00
Medication (CPZ equivalents) - - 225.43 197.31 - -
PANSS Positive Symptoms - - 15.76 4.78 - -
PANSS Negative Symptoms - - 14.18 5.42 - -
PANSS General Psychopathology - - 30.43 7.31 - -
PANSS Total Psychopathology - - 60.37 14.36 - -

HCS, healthy comparison subjects; SCZ, patients diagnosed with schizophrenia; PANSS, Positive and Negative Syndrome Scale; M, mean; SD, standard deviation; IQ,
intelligence quotient; CPZ, chlorpromazine; age, education levels, parental education, are expressed in years. CPZ equivalents were calculated according to latest
validated approaches (Andreasen et al. 2010). ∗ denotes a significant T statistic for the between-group t-test.

Table 2 Clinical and Demographic Characteristics - Replication Sample

Characteristic HCS (N = 74) SCZ (N = 71) Significance

M S.D. M S.D. T Value / Chi-Square P Value (two-tailed)

Age (in years) 35.82 11.58 38.14 13.99 1.09 0.28
Gender (% male) 68.92 80.28 1.57 0.12
Parental Education 4.62 1.83 4.15 2.05 1.45 0.15
Participant’s education 4.64 1.31 3.93 1.43 3.10 0.00∗
Handedness (% right) 95.95 84.29 1.91 0.06
Medication (CPZ equivalents) - - 372.53 304.82 - -
PANSS Positive Symptoms - - 14.85 4.76 - -
PANSS Negative Symptoms - - 14.52 4.86 - -
PANSS General Psychopathology - - 29.15 8.38 - -
PANSS Total Psychopathology - - 58.52 13.76 - -

HCS, healthy comparison subjects; SCZ; patients diagnosed with schizophrenia; PANSS, Positive and Negative Syndrome Scale; M, mean; SD, standard deviation; CPZ,
chlorpromazine. Education level for the replication sample was determined based on the following scale: Grade 6 or less = 1; Grade 7–11 = 2; high school graduate = 3;
attended college = 4; graduated 2 years college = 5; graduated 4 years college = 6; attended graduate or professional school = 7; Completed graduate or professional
school = 8. CPZ equivalents were calculated according to latest validated approaches (Andreasen et al. 2010). ∗ denotes a significant T statistic for the between-group
t-test.

Adult Reading (WTAR) depending on the study protocol]
(Spreen and Strauss 1998). As in our prior studies, these
measures were normed and converted to IQ equivalents for
each subject. If more than one premorbid achievement measure
was available per subject, the scaled scores were averaged per
standard practice (Lezak 1995). Here we did not exclude
patients with lifetime co-morbid Axis I anxiety disorders and/or
history of substance abuse in the SCZ sample to ensure an
inclusive and representative sample of patients (Krystal et al.
2006). However, all discovery sample SCZ participants were
required to be abstinent >6 months prior to the study. Healthy
comparison subjects (HCS) (N = 90) were recruited through
media advertisements and flyers posted in the Medical Center
area. Inclusion criteria for HCS were: i) no current or lifetime
Axis I psychiatric disorder, as assessed by SCID-NP; ii) no
history of medical or neurological conditions; and iii) no history
of psychotic disorders in first-degree relatives (reported by
detailed family history) (Anticevic et al. 2011; Cole et al. 2011;
Anticevic et al. 2012).

The SCZ replication sample (N = 71) was provided to the
neuroimaging community by the COBRE initiative. Critically,
this large and independent SCZ sample has been extensively

characterized, demographically matched to a distinct sample
of healthy comparison subjects, and quality-assured across
a number of prior reports (http://fcon_1000.projects.nitrc.org/
indi/retro/cobre.html). Replication sample SCZ patients were
excluded if they had: i) history of neurological disorder; ii)
history of mental retardation; ii) history of severe head trauma
with more than 5 minutes loss of consciousness; iv) history
of substance abuse or dependence within the last 12 months.
Diagnostic decisions were reached using the SCID interview
for the DSM-IV. Collectively, these criteria and demographics
were highly comparable across the two SCZ samples. In both
discovery and replication samples, symptoms were assessed
using the Positive and Negative Syndrome Scale (PANSS)
(Kay et al. 1987) (Table 1-2).

MRI acquisition

Discovery Sample: Structural images were acquired at the Olin
Neuropsychiatry Research Center, Hartford, CT, using a Siemens-
Allegra 3 T scanner and a T1-weighted, 3D magnetization-
prepared rapid gradient-echo (MPRAGE) sequence (TR/TE/TI =
2200/4.13/766 ms, flip angle = 13◦, voxel size [isotropic] = .8mm,
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image size = 240x320x208 voxels), with axial slices parallel
to the anterior commissure - posterior commissure (AC-PC)
line. Three SCZ patients were excluded due to insufficient
image quality. Replication sample: Data were collected by the
Mind Research Network at the University of New Mexico
using a Siemens Tim-Trio 3 T scanner. Full acquisition details
for the SCZ replication sample and corresponding HCS are
noted in previous work (Hanlon et al. 2011; Mayer et al. 2012;
Stephen et al. 2013). Structural images were acquired using a
6-minute T1-weighted, 3D MPRAGE sequence (TR/TE/TI = 2530/
[1.64, 3.5, 5.36, 7.22, 9.08]/900, flip angle = 7◦, voxel size [isotropic]
= 1 mm, image size = 256x256x176 voxels), with axial slices
parallel to the AC-PC line. All of the above parameters were
provided via a publicly distributed website (http://fcon_1000.
projects.nitrc.org/indi/retro/cobre.html). Four SCZ patients were
excluded here due to insufficient MPRAGE image quality.

MRI data preprocessing

All structural images were preprocessed in the VBM8 and DAR-
TEL toolboxes from SPM8 (Kurth et al. 2010). Anatomical images
were first segmented into grey matter, white matter, cerebral
spinal fluid, bone and soft tissue implemented in VBM8. This
segmentation method builds on New Segmentation with the
incorporation of a maximum a posteriori technique, partial vol-
ume estimation, and two de-noising methods. The segmented
gray and white matter images were then DARTEL warped to
generate a study-specific template in Montreal Neurological
Institute (MNI) space to optimize registration across participants
(Ashburner 2007). Individual gray matter images were subse-
quently normalized to this study-specific template using high-
dimensional DARTEL normalization (Ashburner 2007). In VBM8,
all images were subjected to non-linear modulation that com-
puted the absolute amount of brain tissue for each participant,
corrected for individual head size. Images were then smoothed
with a 8 mm full width at half maximum Gaussian kernel
with the resulting voxel size 1 .5mm3. In the discovery sample
analysis, these preprocessed images were then entered into the
seed partial least squares (PLS) structural covariance analysis
(detailed below). Estimated total intracranial volume (eTIV) was
calculated by taking the sum of the grey matter, white matter,
and cerebrospinal fluid volumes derived from non-normalized
segmented images. Estimated whole brain volume (eWBV) was
calculated as the proportion of the non-normalized grey and
white matter volume divided by eTIV. Finally, the mean voxel-
wise proportion of grey matter (pGM) relative to the template
was calculated for all participants.

Structural covariance network analysis

The preprocessed structural images from the discovery sample
were analyzed with structural seed PLS, as implemented
previously (PLSgui version 5.07 run on Matlab 2012b, (Krishnan
et al. 2011)). Briefly, seed PLS is a data-driven multivariate
statistical technique that reveals structural integrity (e.g. volume
of grey matter) across the entire brain that correlates with
structural integrity in a seed region, computed across subjects.
Put differently, the technique reveals gray matter volume across
the entire brain that correlates with the gray matter volume
of the seed, across subjects and groups. The between-subject
correlation matrix of the structural integrity between the seed
and all other brain voxels is decomposed into latent variables
(LVs) using singular value decomposition that identifies unique

patterns of structural correlation. The advantage of seed PLS
is that decomposition and associated resampling techniques
consider all voxels simultaneously, thus avoiding the problem of
multiple statistical comparisons. Because of its ability to identify
brain regions with co-varying structural integrity, this technique
is methodologically suited to the investigation of large-scale
structural covariance networks, as demonstrated by prior work
(Spreng and Turner 2013).

Two seed region coordinates with the highest reliability
of network membership were selected based on resting-state
functional connectivity MRI in 1000 subjects for the fronto-
parietal control network (FPCN), salience network (SN), dorsal
attention network (DAN), default (mode) network (DMN), and
visual network (VN) (Yeo et al. 2011). Motor network (MN)
seeds were selected from functionally localized hand and foot
regions (Yeo et al. 2011). Seed regions were: for the FPCN, the
rostrolateral prefrontal cortex (X = -40, Y = 50, Z = 7) and anterior
inferior parietal lobule (X = -43, Y = -50, Z = 46); for the SN, the
anterior insula (X = -31, Y = 11, Z = 8) and dorsal anterior cingulate
cortex (X = -5, Y = 15, Z = 32); for the DAN, the anterior MT+
(X = -51, Y = -64, Z = -2) and frontal eye fields (X = -22, Y = -8,
Z = 54); for the DMN, the posterior inferior parietal lobule
(X = -41, Y = -60, Z = 29) and posterior cingulate cortex (X = -7,
Y = -52, Z = 26); for the MN, the foot (X = -6, Y = -26, Z = 76)
and hand (X = -41, Y = -20, Z = 62) regions; and for the VN, the
extrastriate cortex (peripheral field; X = -3, Y = -74, Z = 23) and
V1 (peripheral field; X = -16, Y = -74, X = 7) (see Table 3 for list of
all network seeds).

For each network, the structural integrity of each seed (i.e. the
proportion of grey matter volume) was extracted (centered on
the coordinate, with a neighborhood of three voxels, 10.5mm3

volume) and averaged with the integrity of the other network
seed, then correlated across participants with all other brain
voxels. PLS was then used to identify patterns of correlation,
referred to here as the structural covariance network. The sig-
nificance of the LVs was determined by 500 non-parametric per-
mutation tests, using resampling without replacement. Robust-
ness and reliability of each voxel’s contribution to the LV was
provided by a bootstrap that resampled the data 100 times, with
replacement, to estimate the standard error of the weight of
each voxel on the LV. A bootstrap ratio (BSR), calculated as the
ratio of each weight to its standard error, was thresholded to
the top 5% of reliable voxels (FPCN BSR ± 9.85; SN BSR ± 11.32;
DAN BSR ± 9.02; DMN BSR ± 8.71; MN BSR ± 11.30; VN BSR ± 5.60),
equivalent to p < 1x10−4 for display purposes and the calculation
of subsequent covariance network scores. To further validate the
identified structural covariance networks, the spatial similarity
with resting-state functional networks (Yeo et al. 2011) was
computed. This similarity was quantified by the proportion of
voxels in each structural covariance network that overlapped
with each of the functional networks.

For each participant, a composite structural covariance net-
work score was calculated, which provides an index of how
strongly each participant expresses the pattern identified by the
LV. This score is mathematically expressed as the dot product
of the grey matter voxel value in each participant’s normalized
segmented image and the corresponding voxel salience (i.e.
weight) in the spatial pattern derived from the thresholded PLS
group result image. The resulting value, a single number, reflects
the degree to which the singular structural covariance pattern
was manifest in the participant’s grey matter and provides a
measure of the integrity of each individual participant’s brain
network. The composite scores were used as the primary depen-
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Table 3 List of seed regions used to define individual networks

Network Region MNI Coordinate

x y z

Fronto-parietal Control Network
Rostrolateral prefrontal cortex -40 50 7
Anterior inferior parietal lobule -43 -50 46

Salience network
Anterior insula -31 11 8
Dorsal anterior cingulate cortex -5 15 32

Dorsal Attention Network
MT+ -51 -64 -2
Frontal eye fields -22 -8 54

Default-mode Network
Posterior inferior parietal lobule -41 -60 29
Posterior cingulate cortex -7 -52 26

Motor Network
Hand region -6 -26 76
Foot region -41 -20 62

Visual Network
Extrastriate cortex -3 -74 23
V1 -16 -74 7

dent measures of interest in subsequent multiple analyses of
covariance (MANCOVA) to determine network integrity differ-
ences between groups.

In order to produce a complete and direct replication, the
composite structural covariance network score in the indepen-
dent replication sample was based on the structural covari-
ance network images from the discovery sample. This score
was the dot product of the grey matter voxel value in the
replication sample participant’s normalized segmented image
and the corresponding voxel salience in the spatial pattern
derived from the thresholded PLS discovery sample result image.
Covariates in the MANCOVA were the demographical variables
gender, age, handedness, and education, as well as global scaling
factors for the neuroimaging data, including eTIV, eWBV, and
pGM. The inclusion of global grey matter measures allows the
examination of specific network integrity effects, over and above
potential global grey matter differences. In the final combined
sample MANCOVA, the additional covariate of study (i.e. discov-
ery vs. replication dataset) was additionally included. We calcu-
lated medication levels using chlorpromazine (CPZ) equivalents
according to latest validated approaches (Andreasen et al. 2010),
which did not correlate with any of the network scores.

Structural covariance analysis with PLS is sensitive to detect-
ing group-wise differences in qualitative patterns of covariance
(e.g. (Persson et al. 2014)) In a final analysis, we assessed SCZ and
HCS group differences in the pattern of covariance between the
seeds regions and the whole brain across the 6 networks.

Results
Alterations in Structural Covariance

As critical validation of the approach, we first assessed the
covariance between the seed network regions and whole
brain patterns of grey matter in a Voxel-based morphometry
(VBM) seed-based PLS analysis. For each analysis, we observed
a significant and reliable pattern of structural covariance,
consistent with the topology of these intrinsic connectivity
networks (Figure 1; Table 4), replicating prior effects using
this method (Spreng and Turner 2013). FPCN seed region
integrity covaried with contralateral prefrontal and parietal
regions, as well as dorsal anterior cingulate and caudate

nucleus. SN seed region integrity covaried with extensive
dorsal anterior cingulate cortex and contralateral anterior
insula. DAN seed region integrity covaried with contralateral
frontal eye fields and MT+, as well as the cuneus, pre-
supplementary motor area, bilateral superior parietal lobule,
anterior insula and thalamus. DMN seed region integrity
covaried with extended posterior cingulate cortex, contralateral
posterior inferior parietal lobule, medial prefrontal cortex,
bilateral lateral temporal cortex, inferior frontal gyrus, and
mid-insula. MN seed region integrity covaried with the bilateral
motor strip and supplementary motor area, as well as regions of
the insula. VN seed region integrity covaried within a massive
extent of occipital cortex, terminating at the parietal-occipital
fissure. Structural covariance networks also included some
smaller clusters outside of the canonical resting-state functional
connectivity (RSFC) networks (see Figure 1 and Table 4 for
full results). We also computed the spatial overlap between
each of the structural covariance networks and well-validated
functional networks derived from resting-state functional
connectivity (Yeo et al. 2011), shown in Figure 2. While there are
some discrepancies between structural and functional networks
(see Discussion), there is a high degree of correspondence
between the two sets of networks, and the proportion of overlap
for each structural network is notably highest for the analogous
functional network.

Next, we tested the hypothesis that SCZ patients would show
structural network integrity alterations relative to HCS. As pre-
dicted, we found a significant difference between SCZ patients
and HCS in the discovery sample when using the structural
covariance network scores. These scores reflect the degree to
which the covariance pattern was manifest in each participant’s
structural image (i.e. integrity of the participant’s grey matter
weighted by the group structural covariance of the thresholded
network map, Wilks’ Lambda F(6,163) = 2.92, p < .01). Composite
scores for the FPCN and SN were significantly lower in SCZ
than in HCS [F(1,168) = 6.89, p < .01 and F(1,168) = 8.55, p < .005,
respectively] (Figure 3). Conversely, no differences were observed
for the DAN [F(1,168) = .07, p = .789], DMN [F(1,168) = .30 p = .584],
MN [F(1,168) = .42, p = .517) or VN [F(1,168) = 1.57, p = .213].

In the replication SCZ sample, significant differences were
again observed in the structural covariance network composite



5274 Cerebral Cortex, 2019, Vol. 29, No. 12

Figure 1. Structural covariance networks. Whole brain structural covariance of the (A) fronto-parietal control network (B) salience network, (C) dorsal attention network,
(D) default-mode network (E) motor network, and (F) visual network across all subjects in the Discovery sample (i.e. both patients and healthy comparison subjects).

Results are thresholded to the top 5% reliable voxels, all exceeding p < .001. PLS is performed in a single analytic step; thus, no correction for multiple comparisons is
required (see Materials and Methods). The color scale indicates the bootstrap ratio (BSR), equivalent to a z-score.

scores (Wilks’ Lambda F(6,127) = 3.31, p < .01). Consistent with
discovery effects, significant decreases were observed for the
SCZ group in the FPCN (F(1,132) = 11.22, p < .001), and the
SN (F(1,132) = 2.87, p < .05, single tailed). Somewhat higher
composite scores were observed for the SCZ group in the
DAN [F(1,132) = 7.10, p < .01] and MN (F(1,132) = 5.29, p < .05).
No differences were observed for the DMN [F(1,132) = .43 p = .513]
or VN [F(1,132) = 1.26, p = .263] in the replication SCZ sample.

We next combined the discovery and replication SCZ samples
to achieve maximal power across the two datasets. Significant

differences remained in the structural covariance network
composite scores [Wilks’ Lambda F(6,303) = 5.32, p < .001). The
only significant difference that remained after combining the
samples was reduced SCZ integrity of the FPCN [F(1,308) = 17.63,
p < .001, partial η2 = .054] and SN [F(1,308) = 13.90, p < .001,
partial η2 = .043]. No overall differences were observed in the
DAN [F(1,308) = 1.22 p = .271], DMN [F(1,308) = .03 p = .858], MN
[F(1,308) = 2.72, p = .10] or VN [F(1,308) = .18, p = .675] when the
samples were combined (see Table 5 for effect sizes of the pair-
wise comparisons across structural covariance network scores).



Structural Covariance in Schizophrenia Spreng et al. 5275

In a final analysis, we assessed whether group-wise differ-
ences were observable in the qualitative expression of structural
covariance (i.e. was there a significant latent variable that dis-

sociated the groups by the pattern of grey matter covariance).
In this analysis, no qualitative differences were observed that
separated the groups (all p’s > 0.40). This finding suggests that

Table 4 List of regions showing covariance between the seed network regions and whole brain patterns of grey matter

Frontoparietal control network
Lat Region x y z BSR

L Rostrolateral prefrontal cortex −41 51 6 41.98
L Anterior inferior parietal lobule −44 −48 48 32.89
R Dorsal anterior cingulate cortex 2 45 32 16.02
R Rostrolateral prefrontal cortex 29 63 −6 16.95
R Anterior insula 45 17 −8 12.94
L Middle cingulate cortex 0 −17 45 12.51
L Inferior frontal gyrus −48 12 29 11.35
R Lateral temporal cortex 65 −44 11 11.27
R Anterior inferior parietal lobule 42 −51 54 11.04
L Caudate nucleus −9 12 11 10.89
R Postcentral gyrus 60 −5 39 10.60

Salience network
Lat Region x y z BSR

L Anterior insula −33 9 6 48.30
L Dorsal anterior cingulate cortex −3 14 36 34.85
R Anterior insula 38 23 0 24.48
R Rostrolateral prefrontal cortex 29 65 −3 15.19
R Superior temporal gyrus 53 −27 6 13.72
L Rostrolateral prefrontal cortex −48 44 −11 13.10
L Paracentral lobule −14 −27 72 12.86
L Middle temporal gyrus −65 −41 5 12.00

Dorsal attention network
Lat Region x y z BSR

L Frontal eye fields −24 −8 56 31.53
L Middle temporal motion complex −51 −66 2 23.45
R Frontal eye fields 27 −3 57 18.30
L Cuneus 0 −72 35 13.32
R Pre-supplementary motor area 6 11 44 12.94
R Superior parietal lobule −15 −59 60 12.40
L Superior parietal lobule 23 −62 63 11.93
L Anterior insula −41 15 −3 11.37
R Anterior insula 38 23 −15 10.66
R Middle temporal motion complex 54 −71 −2 9.61
L Thalamus −14 −30 8 9.89
R Rostrolateral prefrontal cortex 8 62 0 9.55

Default-mode network
Lat Region x y z BSR

L Posterior cingulate cortex −3 −51 30 34.05
L Posterior inferior parietal lobule −44 −63 29 30.74
R Posterior inferior parietal lobule 39 −62 53 13.35
L Middle insula −32 −15 14 12.64
R Lateral temporal cortex 69 −33 0 12.25
R Medial prefrontal cortex 2 45 −6 12.12
R Inferior frontal gyrus 45 17 −5 11.37
L Lateral temporal cortex −68 −32 −2 11.29
R Middle insula 36 0 5 11.28
L Rostrolateral prefrontal cortex −41 57 −2 10.57
L Postcentral gyrus −48 −11 54 9.88

Continued
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Table 4 Continued

Motor network
Lat Region x y z BSR

L Motor cortex −38 −21 66 71.32
R Motor cortex 29 −26 69 36.31
L Supplementary motor area −2 −21 63 29.45
L Posterior insula −38 −8 5 16.66
R Insula 45 17 −6 16.55
L Rostrolateral prefrontal cortex −27 63 −2 16.34
L Lateral temporal cortex −65 −51 12 14.99
L Precuneus −8 −71 60 14.59
R Thalamus 17 −27 5 13.10

Visual network
Lat Region x y z BSR

L Occipital cortex −14 −72 3 47.51
R Precentral gyrus 44 −20 63 6.40

Note: BSR – bootstrap ratio equivalent to a z-score

there are no differences in the pattern of structural covariance
between the seed regions and the rest of the brain to dissociate
SCZ from HCS, and that a single factor structure is more appro-
priate to account for these data (but see (Winterer et al. 2006) for
a discussion of multidimensional functional differences). Only
quantitative differences in the integrity of the networks were
observed as described above.

Relationship Between Structural Findings and
Schizophrenia Symptoms

Finally, we quantified across-subject relationships between
structural covariance network scores and SCZ symptoms,
measured using PANSS (Kay et al. 1987). Given no strong a priori
predictions, we comprehensively examined all relationships
across networks and symptoms to provide an exploratory guide
for future studies (Figure 4), while appropriately accounting
for type I error. Two important motifs emerged: i) as evident
from the correlation matrix, there were no strong relationships
between structural network covariance scores and symptoms
(all r-values <.4), despite more than adequate statistical
power (N > 150); ii) patient results revealed consistent and
strong across-subject relationships for all structural networks,
suggesting that the same patients generally exhibit low (or high)
network covariance across networks (Figure 5). Collectively,
the lack of symptom relationships and strong across-network
relationships suggest a stable ‘trait-like’ effect.

Discussion
Emerging functional investigations have documented abnor-
malities across large-scale neural networks in SCZ
(Anticevic et al. 2013a; Anticevic et al. 2013b; Uhlhaas 2013).
However, it remains unknown if similar alterations occur in
the structural integrity of these networks, which could be
identified by patterns of structural covariance. To address this
gap in knowledge, we characterized the structural covariance
of six major networks in SCZ: FPCN, SN, DAN, DMN, MN, and
VN. We quantified differences in the grey matter integrity
of these networks between a large sample of individuals
diagnosed with SCZ (N = 90) and HCS (N = 90). Next, we fully
replicated the identified patterns in an independent large

SCZ dataset (N = 71). We identified and replicated reliable
reductions in the integrity of the FPCN and SN in SCZ. We
found highly stable individual differences in the integrity of
structural covariance networks across patients. Exploratory
symptom analyses, despite being adequately powered, revealed
generally weak relationships, suggesting that the integrity of the
structural covariance networks may be a ‘trait’ effect, possibly
independent of current clinical status. Collectively, these repli-
cated effects demonstrate that chronic SCZ is associated with
widespread and robust structural integrity disruptions across
associative cortices (Lefort-Besnard et al. 2018), in line with
emerging functional network investigations (Baker et al. 2014;
Yang et al. 2014).

Structural Network Integrity Abnormalities are Evident
in Chronic Schizophrenia

This study demonstrates that multiple large-scale structural
covariance networks are observable using a seed-based PLS
approach. This approach allows for an investigation of multi-
variate patterns in structural network covariance, which can be
applied to clinical datasets. This approach is capable of detecting
large-scale brain networks by observing inter-individual
differences in co-varying brain volume with other brain struc-
tures across subjects. While most canonical regions are also
apparent with RSFC methods (DuPre and Spreng 2017), subtle
differences also emerge that warrant further investigation
(e.g. (Clos et al. 2014). For instance, the hippocampal formation is
not observed in the current sample or in other default network
structural covariance networks (Spreng and Turner 2013), but is
reliably involved in RSFC (Vincent et al. 2006). However, some
subcortical structures are observed to covary with cortical
nodes, such as the caudate with prefrontal and parietal regions
of the FPCN. A key strength of the seed PLS method is the
derivation of composite structural covariance network scores,
which can be used as viable markers of structural alterations
across large-scale neural systems concurrently (as opposed to
regional changes). These scores reflect the degree to which
the covariance pattern in the networks’ grey matter was
expressed in each participant’s brain (i.e., the structural integrity
of the identified network). In turn, composite scores can be
further quantified in subsequent analyses to examine structural
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Figure 2. Overlap between structural covariance networks and a priori functional networks. Surface views of whole brain structural covariance of the (A) fronto-parietal
control network (B) salience network, (C) dorsal attention network, (D) default-mode network (E) motor network, and (F) visual network across all subjects in the
Discovery sample (i.e. both patients and healthy comparison subjects). Results are thresholded to the top 5% reliable voxels, all exceeding p < .001. PLS is performed

in a single analytic step; thus, no correction for multiple comparisons is required (see Materials and Methods). The color scale indicates the bootstrap ratio (BSR),
equivalent to a z-score. (G) Proportion of each structural covariance network that overlaps with each of six a priori functional networks from (Yeo et al. 2011).

alterations in clinical groups relative to healthy comparison
subjects or in relation to symptoms. It should be noted, however,
that these scores represent widespread network-level markers.
One limitation of the approach is that we cannot localize the

specific areas of seed-related covariance disruption; therefore it
remains unclear whether the difference is driven by a localized
abnormality between two regions, or a more global effect on the
identified networks.
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Figure 3. Composite structural covariance network scores group differences. Composite structural covariance network scores are presented for the discovery, replication

and combined samples. Structural covariance network topographies were identified in the Discovery sample (see Figure 1 for whole brain results). Whole-brain
structural covariance of the (A) fronto-parietal control network (B) salience network, (C) dorsal attention network, (D) default-mode network (E) motor network, and
(F) visual network. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001. Error bars denote +/− 1 standard error of the mean. The color scale indicates the bootstrap ratio (BSR), equivalent to
a z-score.

Table 5 Effect Sizes for pair-wise comparisons across structural covariance network scores

Statistic Discovery Replication Combined

Fronto-parietal Control Network
t Value 2.63 3.35 4.20
P Value 0.009∗ 0.001∗ 0.000035∗
Cohen’s d 0.40 0.57 0.47

Salience Network
t Value 2.92 1.69 3.73
P Value 0.004∗ 0.093 0.00023∗
Cohen’s d 0.44 0.29 0.42

Dorsal Attention Network
t Value 0.27 2.67 1.11
P Value 0.789 0.009∗ 0.271
Cohen’s d 0.04 0.45 0.12

Default-Mode Network
t Value 0.55 0.66 0.17
P Value 0.584 0.513 0.858
Cohen’s d 0.08 0.11 0.02

Motor Network
t Value 0.65 2.30 1.65
P Value 0.517 0.023∗ 0.1
Cohen’s d 0.10 0.39 0.19

Visual Network
t Value 1.25 1.12 0.42
P Value 0.213 0.263 0.675
Cohen’s d 0.19 0.19 0.05

Many SCZ studies have documented regional structural
alterations (Pearlson and Marsh 1999; Pearlson and Calhoun
2007; Ellison-Wright et al. 2014). However, wide-spread struc-
tural alterations in complex psychiatric disease likely do not
occur independently within specific cortical location, but rather
may follow spatially coherent patterns that cluster around
common trajectories. This pattern has been reported in early
development (Zielinski et al. 2010; Alexander-Bloch et al. 2013a;
Khundrakpam et al. 2013), as well as in age-related decline and
dementia (Chen et al. 2011; Zhu et al. 2012; Spreng and Turner
2013). Recent work suggests that the distributed structural
covariance pattern is mediated in part by cortical gene expres-

sion (Romero-Garcia et al. 2018; Yee Y et al. 2018). Disturbances
in structural covariance patterns in SCZ have been associated
with the expression profiles of the genes involved in therapeutic
targets and brain development (Liu et al. 2018). A corollary of this
observation is that in SCZ, we might observe similar ‘co-varying’
alterations in structure across areas that form functional
systems, such as the FPCN (Fornito et al. 2012; Fornito et al.
2013), perhaps reflecting an underlying pathophysiological
mechanism (Schobel et al. 2013). Such distributed changes
in structural covariance would imply that SCZ is associated
with significantly reduced hierarchy with increased con-
nection distance across functionally related cortical regions
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Figure 4. Relationship between structural covariance network scores and symptoms. Comprehensive individual difference analysis presented in correlation matrix
form across all symptoms (green box), structural covariance networks (cyan box), and the relationship between networks and symptoms (pink box). As evident from

individual correlation values, these exploratory analyses indicated that there were generally no strong relationships between symptoms and covariance network
scores, suggesting a ‘trait’ effect. In contrast, the magnitude of covariance across patients in one network correlated highly with covariance across all other networks
(cyan box in the upper right corner. For completeness, we present scatterplots (see Figure 4) to ensure that outliers are not driving these network relationships.

(Bassett et al. 2008). Two regions in particular, the middle frontal
gyrus and anterior insula - key nodes of the FPCN and SN,
respectively - have been associated with reduced connectivity
in SCZ (Palaniyappan et al. 2013). Furthermore, recent resting-
state functional network studies have identified widespread
signal disruptions in associative cortices in SCZ (Baker et al.
2014; Yang et al. 2014). Present findings highlight the possibility
that structural brain differences, measured at the level of whole-
brain network integrity, are similarly affected in SCZ, providing
a convergent multi-modal neuroimaging marker that could
be leveraged in future structure–function studies (c.f. (Lefort-
Besnard et al. 2018)).

Structural Network Integrity Abnormalities are
Preferentially Found in Associative Cortices

Consistent with predictions, we identified robust alterations
in the FPCN and the SN. Both neural networks have been

repeatedly implicated in chronic SCZ via task-based acti-
vation studies and resting-state functional investigations
(Repovs et al. 2011; Barch and Ceaser 2012; Repovs and Barch
2012; Palaniyappan et al. 2013; Baker et al. 2014; Yang et al. 2014).
Thus, present findings provide converging support for concur-
rent structural network alterations in higher-order associative
cortices (Palaniyappan et al. 2015; Lefort-Besnard et al. 2018;
Palaniyappan et al. 2018). SCZ patients across both samples
exhibited coherent and highly co-varying reductions across
voxels that are part of wider neural systems. This finding in
part challenges the possibility that only ‘localized’, independent
structural changes occur in SCZ. Instead, this effect is more
consistent with the hypothesis that SCZ is associated with co-
occurring structural alterations within distributed systems –
a hypothesis that is further supported by robust individual
difference effects (see Figure 5). As noted, these alterations
were most apparent for higher-order FPCN and SN (see also,
(Palaniyappan et al. 2015; Palaniyappan et al. 2018)) and were
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Figure 5. Relationship across covariance networks. (A-O) Scatterplots showing across-subject relationships for patients (N = 154) between structural network covariance
for all networks. As evident from scatterplots, outliers did not drive these network relationships. These highly significant effects indicate that the magnitude of

structural integrity across networks was linearly related across patients. All relationships survived highly stringent Bonferroni correction.

not replicated in lower-order motor and visual systems. This
dissociation is compelling, as some studies have clearly docu-
mented functional alterations in primary sensory systems using
task-evoked paradigms (Yoon et al. 2010). Relatedly, it has been
established that sensory systems in SCZ show profound alter-
ations with thalamo-cortical networks defined both functionally
(Woodward et al. 2012; Anticevic et al. 2013a; Anticevic et al. 2014)
and structurally (Mitelman et al. 2006). However, preferential
structural alterations in higher-order associative cortices could
reflect two possibilities: i) there may exist more subtle alter-
ations in primary sensory systems, which we were not powered
enough to observe (although this is unlikely given the size of
current samples); ii) there may be an underlying neurobiological
mechanism that is ‘driving’ more rapid or profound structural
disturbances in some higher-order associative networks; this
may relate to unique computational mechanisms in higher-
order associative cortical territories (Murray et al. 2014). The
combination of pre-clinical and computational studies that
link mechanistic pharmacological probes to patterns of altered
structure may help address this question (see below). It is
unclear whether these specific structural patterns emerge only
as a consequence of long-standing illness, although recent
evidence suggests observable difference in individuals at ultra-
high risk for psychosis across multiple structural covariance
networks, including the executive and salience (Heinze et al.
2015).

Structural Network Integrity is Highly Consistent
Across Subjects but Unrelated to Current
Schizophrenia Symptoms

We attempted several exploratory individual difference anal-
yses, which revealed two general patterns: i) there were no

apparent strong relationships between network covariance
effects and current SCZ symptoms; ii) conversely, we identified
consistent and highly robust relationships in structural covari-
ance network scores across patients for each of the identified
networks, suggesting a consistent effect across subjects. Put
differently, patients with the most structural integrity ‘degrada-
tion’ in one network exhibited structural integrity ‘degradation’
across other networks, suggesting a robust and consistent
brain-wide pattern across subjects. The combination of these
two effects suggests that the identified structural covariance
network effects are perhaps indicative of a ‘trait’ marker, which
is generally unrelated to clinical status at the time of the
scan. However, as noted above, it remains unknown whether
these network-level measures show ‘state-like’ alterations
along the illness course. Furthermore, impaired performance
on a variety of neuropsychological tests can stably differen-
tiate patients with schizophrenia from unaffected controls
(Saykin et al. 1994; Rund 1998; Nuechterlein et al. 2004) and
previous studies have reported correlations between cortical
thickness and neuropsychological functioning in schizophrenia
(Gur et al. 2000; Hartberg et al. 2010; Ehrlich et al. 2012). However,
precise measures of cognitive (dys)function, which may be
linked to observed structural covariance alterations, were not
available in the current study.

Putative Mechanisms of Altered Structural Network
Co-variance

Developmental changes in regional brain volumes have been
frequently reported (Thompson et al. 2005). Emerging evidence
suggests that such changes are not isolated within specific brain
regions, but rather occur in topographically coherent patterns
across the brain. Zielinski and colleagues demonstrated that
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structural covariance across spatially distributed brain regions
follows a specific developmental trajectory from childhood to
early adulthood (Zielinski et al. 2010). These structural changes
continue across the lifespan, with significant differences in the
topography and architecture of large-scale networks observed
between younger and older healthy adults (Mitelman et al.
2006; Khundrakpam et al. 2013; Di et al. 2017). Indirect evidence
suggests that the brain’s functional architecture may provide
a common pathway for structural brain changes across devel-
opment, whereby structural covariance and intrinsic connec-
tivity networks are coupled in healthy young adults. Interest-
ingly, patterns of brain atrophy in neurodegenerative syndromes
also cohere with large-scale functional network topographies
(Seeley et al. 2009).

Collectively, these findings suggest that examining structural
covariance in regions with known intrinsic functional connec-
tivity may be a sensitive marker of shared structural integrity
change. Therefore, structural measures of network integrity
appear sensitive to widespread alterations in connectivity
across an entire neural system. A key hypothesis for future
studies is whether system-wide structural alterations involve
time-dependent changes that are exacerbated over the course
of the illness. For instance, recent animal studies have
mechanistically linked repeated actuate dosing of N-methyl-
D-aspartate receptor antagonists in hippocampal circuits to
subsequent structural decline (Schobel et al. 2013). The present
study provides a system-level structural neural marker, which
may prove more sensitive to such time-dependent alterations.
Also, examining these structural changes cross-diagnostically
(Anticevic et al. 2013a; Anticevic et al. 2014; Yang et al. 2014)
and during early illness phases (Anticevic et al. 2013c), as done
in functional studies, will be necessary to address questions
concerning long-term medication effects. Lastly, to improve
understanding of these system-wide effects, future studies
should explicitly combine neuroimaging modalities in order
to determine whether structural and functional network effects
are linked (Sui et al. 2012). Combining such measures across
modalities may substantially improve neuro-diagnostic tools
that could guide better classification and treatment approaches
(Sui et al. 2012).

Limitations

Several limitations need to be considered. First, as noted, it
is impossible to fully rule out the possibility that present
effects are a consequence of long-term medication (although
CPZ equivalents did not correlate with reported findings). As
noted, illness duration may have also played a role in these
effects. It remains unclear whether the observed effects predate
illness onset and/or occur in association with initial symptoms,
or whether they only present as a consequence of longer-
standing illness. Although we failed to observe significant
relationships with symptoms, it remains unknown whether
these effects are indeed specific to SCZ or whether they are more
generally associated with severe mental illness, a possibility
that can be examined in future cross-diagnostic studies.
Another consideration relates to the quality of structural
images. Future studies that capitalize on improving scan quality
(e.g. by leveraging the innovations made available via the
Human Connectome Project (Glasser et al. 2013) may yield
more sensitive effects. Finally, while we did not find strong
relationships with symptoms, we did not have access to state-
of-the-art measures of higher-order cognitive performance (e.g.

working memory and executive functioning) in these samples
(Barch and Ceaser 2012). It is possible that structural network
integrity degradation, especially in the FPCN, relates to cognitive
deficits, and this possibility should be systematically examined
in future SCZ studies.

Conclusion
We identified and replicated consistent and robust structural
network disruptions in two large chronic SCZ samples. We found
preferential reduction in the structural integrity of the FPCN and
SN in SCZ, which were consistent across samples and highly
related across patients. The lack of symptom effects suggests
that altered structural covariance network integrity may be a
‘trait-like’ effect, possibly independent of current clinical symp-
tom severity. Collectively, these replicated effects provide a novel
index of structural network alteration in chronic SCZ that can
be readily combined with additional neuroimaging modalities,
perhaps yielding more sensitive neural markers for SCZ.
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