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Brain functional network has been widely applied to investigate brain function changes among different conditions and proved to
be a small-world-like network. But seldom researches explore the effects of mental fatigue on the small-world brain functional
network organization. In the present study, 20 healthy individuals were included to do a consecutive mental arithmetic task to
induce mental fatigue, and scalp electroencephalogram (EEG) signals were recorded before and after the task. Correlations
between all pairs of EEG channels were determined by mutual information (MI). The resulting adjacency matrices were
converted into brain functional networks by applying a threshold, and then, the clustering coefficient (C), characteristic path
length (L), and corresponding small-world feature were calculated. Through performing analysis of variance (ANOVA) on the
mean MI for every EEG rhythm, only the data of α1 rhythm during the task state were emerged for the further explorations of
mental fatigue. For a wide range of thresholds, C increased and L and small-world feature decreased with the deepening mental
fatigue. The pattern of the small-world characteristic still existed when computed with a constant degree. Our present findings
indicated that more functional connectivities were activated at the mental fatigue stage for efficient information transmission
and processing, and mental fatigue can be characterized by a reduced small-world network characteristic. Our results provide a
new perspective to understand the neural mechanisms of mental fatigue based on complex network theories.

1. Introduction

Mental fatigue refers to a status that decreased mental
alertness and focus and worsening performances [1, 2].
And it is often caused by prolonged periods of cognitive
activities. Mental fatigue has become one of the most com-
mon subhealthy states in modern society and affects nearly
all aspects of cognitive functioning in humans, especially in
fatal traffic accidents [3–5]. Concerning the effects of mental
fatigue on our daily life, it is important to explore the neuro-
cognitive mechanisms of mental fatigue based on complex
network theories.

Brain functional network, as one type of the complex net-
works in statistical physics, is a demonstration of the tempo-
ral correlations among the different brain regions in the
course of nervous activities [6]. It has become one of the most
widely used methods to investigate neurodynamics of cogni-
tive functions [7–9], which are especially sensitive to mental

fatigue [10, 11]. Commonly explored neuroimaging tech-
niques of brain functional networks are mainly on the basis
of electroencephalogram (EEG) data [12], because EEG has
the advantages of high temporal resolution, low costs, and
easy operation.

Recent advances in the development of quantitative EEG
analysis have allowed the exploration of functional interac-
tions across the cerebral cortex during mental fatigue [13].
With increasing levels of mental fatigue, functional connec-
tivity patterns dynamically changed to meet the balanced
functional integration and segregation between different cor-
tical areas [13, 14], and the obtained network parameters,
such as degree, C, and L, also significantly changed at succes-
sive stages of the experiment [15]. It has been widely proved
that brain functional networks have the small-world property
since Kar and Routray [15] revealed the small-world charac-
teristic of most real networks in 1998. A small-world net-
work, with a high C and a short L [16], has been proposed
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as a sign of “optimal organization” during specific functions
[16–18]. The small-world feature is also obtained in brain
structural (anatomical) networks revealed by cortical thick-
ness [19]. The values of small-world vary along with the
change of brain functions [20, 21]. However, the influences
of mental fatigue on the small-world brain functional net-
work structures are still equivocal.

In the current study, we attempted to investigate the
effects of mental fatigue on brain functional network organi-
zation indexed by the small-world. To achieve this goal,
firstly, we induced mental fatigue among the participants by
a mental arithmetic math task and validated mental fatigue
with a power algorithm. Previous researchers have reported
that the power of low wave (θ and α activities) increases
and the power of fast wave (β activity) decreases during
mental fatigue [22, 23]. So, we chose the spectral power ratio
of ðθ + αÞ/β for mental fatigue detection, which has been
proved to be the best indicator on account of its highest
classification capability [24]. Secondly, we formed the full-
weighted adjacency matrix (AM) with multichannel EEG
data. Mutual information (MI) was applied to determine
the functional connectivity among all pairwise combinations
of EEG channels; MI can not only characterize the functional
interaction from the point of information transformation
between different brain regions based on information theory
but also quantify the comprehensive information both signal
phase and signal amplitude [9]. Then, AM was converted
into a brain functional network by applying a threshold for
further network analysis (C, L, and small-world) underlying
the impacts of mental fatigue.

2. Materials and Methods

2.1. Participants. Twenty healthy male volunteers (females
were excluded to eliminate the effects of sex difference on
the results) of engineering graduate students from Shandong
University were recruited. Their average age was 24:5 ±
1:5 years, and their body mass index was 20:7 ± 1:8 kg/m2.
Every participant should be right-handed and should have
a regular living habit, normal or rectified normal eyesight,
and no brain diseases. Every subject was required to do as fol-
lows: not staying up late at night and not drinking alcohol
and drugs in one week preceding the EEG recording, not
smoking and drinking coffee and tea in 8 hours before
EEG data acquisition, and washing their hair in 2 hours
before the experiment. Each subject was informed the exper-
imental procedures, and informed consent was gathered
from every participant. The local Ethics Committee have
approved this study. Every subject got some monetary reim-

bursement to motivate their better cooperation during the
whole experiment.

2.2. EEG Data Recording. Scalp EEG data were collected with
an apparatus (SYMTOP NT9200) at the following nineteen
electrodes in 10-20 systems: Fp1, Fp2, F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz (A1 and
A2 were chosen as the reference electrodes; Fpz was selected
to be the grounding electrode). Electrode impedance was
controlled under 5000 Ω. Sample frequency was 1000Hz.
For the sake of inducing mental fatigue, all participants were
asked to do a mental arithmetic task with 200 different prob-
lems for 100 minutes. The mental arithmetic problem is that
a random double-digit (between 60 and 90) plus another ran-
dom double-digit (between 60 and 90) and then multiplied
by a random single digit (between 6 and 9). Each math prob-
lem was designed to be completed in 30 seconds determined
by preceding pretests.

As shown in Figure 1, the whole mental arithmetic task
was equally divided into 4 tasks, and EEG was collected
before and after each task. Therefore, there were 5 times of
EEG data acquisition named as T0, T1, T2, T3, and T4 for
the whole task. Besides, two conditions were considered for
each data acquisition: resting state (C1) and task state (C2),
and 2 minutes of the EEG signals was collected for each con-
dition. The resting state means closing the eyes, being awake
and relaxed, and subjects were required to concentrate their
attention on the breath avoiding thinking about anything,
whereas the task state refers to keeping the body still and
doing a mental arithmetic math problem, a three-digit sub-
tracts a single digit continuously (keep same for each data
collections). All the mental arithmetic math problems were
automatically displayed on the computer screen one by one.
The whole test was conducted from 7 p.m. to 9 p.m. EEG data
were recorded in a sound-attenuated and light-, temperature-,
and humidity-controlled room.

2.3. EEG Data Preprocessing. EEG data from only 18 subjects
were analysed, because the other two were excluded in the
present analysis owing to the big head movements when
recording EEG data. Ten pieces of five seconds of artifact-
free continuous EEG data (containing no eye blinks, slow
eye movements, electrocardiogram artifacts (eliminated by
FastICA), and no baseline drift (removed by baseline correc-
tion)) were chosen from each condition by EEGLAB. These
pieces of data were then downsampled from 1000Hz to
256Hz. After digital FFT filtering to extract the EEG basic
rhythms (δ: 2-4Hz, θ: 4-8Hz, α1: 8-10Hz, α2: 10-13Hz, and
β: 13-30Hz), the MI (see [9] for detailed definition and
description) between all pairs of EEG channels was computed
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Figure 1: EEG data acquisition (EEG DAQ) procedures.
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by a software written byModdemeijer [25], obtaining an undi-
rected 19 × 19 AM.

2.4. Mental Fatigue Evaluation. In this study, a universal EEG
power algorithm, ðθ + α1 + α2Þ/β [22–24], was computed to
estimate the level of mental fatigue. Nine EEG channels,
including F3, C3, P3, F4, C4, P4, Fz, Cz, and Pz (distrib-
uted in the middle of the brain), were selected for mental
fatigue evaluation based on our existing study [11]. The
ratio of ðθ + α1 + α2Þ/β is calculated on the average of these
9 EEG channels.

2.5. Computation of the Network Characters. In this part, only
binary AM was considered in network construction. AM is a
means of representing that the nodes in a network are adja-
cent to the other nodes. To obtain the binary AM, the MI
values were set to zero when the MI value was smaller than
a specific threshold; otherwise, to 1. There are two widely
used methods to determine the threshold for brain functional
network construction. One way is to use the weight (MI) of
the functional connectivity as the threshold (Figure 2(a) is
an example) [17, 18]. This method can sufficiently reflect
the weight information of the functional connectivities. That
is, if the whole weights in an AM are higher than that in
another one, the corresponding brain functional network
would contain more edges, directly resulting in higher C
and shorter L. Therefore, the differences between these two
kinds of brain functional networks can be markedly distin-
guished. The other method is to fix the degree constant in
the network (Figure 2(b) is an example) [12]. The purpose
to keep the degree fixed is to compare the topological struc-
tures of the networks without bias from differences in mean
weights. By fixing the degree, all the networks have the same
number of nodes and edges; the only differences are in the
spatial arrangement [21]. The determination of the threshold
in these two methods followed two general principles. Firstly,

ensure no isolated nodes in the network. As shown in
Figure 2(a), when the threshold is over 0.35, the network of
T0 would have isolated nodes. Secondly, the results of the
network features are enlarged among T0, T1, T2, T3, and
T4. As shown in Figure 3(a), the difference of small-world
feature among T0, T1, T2, T3, and T4 is greater when the
thresholds are between 0.25 and 0.3, which the correspond-
ing average degree is about K = 5 or 6 (K is the average num-
ber of edges per node). Therefore, a series of thresholds
between 0.15 and 0.35 with increments of 0.01 and a fixed
degree K = 5 or 6 were applied to calculate the network char-
acters (C, L, and small-world) in these two methods.

C and L were defined and described in Equations (1) and
(2), respectively [16], whereN is the set of all nodes in the net-
work, n is the total number of nodes, and ði, jÞ is the link
between node i and node j (i, j ∈N). In Equation (1), Ci is a
ratio of the actual number of links between the neighbours
of node i to the total possible number of links between the
neighbours of node i; Ki represents the number of all neigh-
bour nodes adjacent to node i, then at most KiðKi‐1Þ/2 links
exist between them (this occurs when the network has no iso-
lated nodes); and Ei means the actual number of links between
the neighbour nodes. In Equation (2), lij is the shortest path
length between node i and node j. A fast algorithm to compute
C was given by Alon et al. [26]. And the shortest path length
was calculated by Dijkstra algorithm [27]:

C = 1
n
〠
i∈N

Ci, Ci =
2Ei

Ki Ki − 1ð Þ , ð1Þ

L = 1
n n − 1ð Þ 〠

i≠j∈N
Lij: ð2Þ

The small-world characteristic of a network is firstly pro-
posed by Micheloyannis et al. [17] and measured by C≫
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Figure 2: The brain functional networks during the mental fatigue process constructed with two methods. Networks were drawn by Pajek: (a)
a threshold of T = 0:35; (b) a fixed degree of K = 5.
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Crand and L ≥ Lrand based on a random network. Crand and
Lrand are C and L of the random network corresponding to
the brain functional network. In this study, we used the ratio
of ðC/CrandÞ/ðL/LrandÞ > 1, recommended by Humphries
et al. [28], to estimate the small-world character. The random
network was generated from the experimentally obtained net-
work by a constrained shuffle of the edges among nodes, keep-
ing both the number of nodes and the degree distribution
constant. The random networks were generated with a proce-
dure described by Maslov and Sneppen [29].

Before calculating network parameters, one-way analysis
of variance (ANOVA) was performed on the mean MI of
the original full-weighted AM between 5 time points for
every EEG rhythm at the resting state and task state to
identify the valid dataset for brain functional network
analysis. Only the EEG rhythm with significant statistical
difference (p < 0:05) would be considered for further net-
work analysis.

2.6. Statistical Analysis. One-way ANOVA was imple-
mented to identify significant statistical differences between
the 5 time points (T0, T1, T2, T3, and T4). This ANOVA
analysis was carried out for the algorithm of ðθ + α1 + α2Þ/
β, the mean MI of δ, θ, α1, α2, and β rhythms, as well as
the graph parameters (C, L, and small-world). Results are
demonstrated as themean ± standard deviation. A significant
level is reported at p < 0:05.

3. Results

Figure 4 shows the results of the ratio of ðθ + α1 + α2Þ/β
plotted over time. Both in the resting state (Figure 4(a))

and task state (Figure 4(b)), the ratio significantly increases
before T2 (ANOVA, p < 0:05; see Table 1) and has a small
decrease at T3 and T4. But no significant statistical differ-
ences are observed in these decreases (ANOVA, p > 0:05;
see Table 1).

Results of the mean MI for every EEG rhythm are given
in Figure 5. Significant difference (ANOVA, p = 0:002) is
observed only in α1 (alpha1) rhythm at the task state among
T0, T1, T2, T3, and T4, which shows that the mean MI
increases before T3 and has a small decrease at T4. There
are no significant statistical differences in another nine
group data (ANOVA, p > 0:05). Therefore, just the EEG data
from α1 rhythm during the task state are considered for
further analysis.

In Figure 6, it shows the results of mean C and L for α1
rhythm at the task state with a series of thresholds
(0:15 ≤ T ≤ 0:35, with increments of 0.01). As depicted in
Figure 6, a significant increase in C (0:15 ≤ T ≤ 0:25;
ANOVA, p < 0:05) and decrease in L (0:15 ≤ T ≤ 0:3;
ANOVA, p < 0:05) can be observed at successive stages
before T3, and a small irregularity is presented at T4. No sig-
nificant statistical differences are obtained at 0:26 ≤ T ≤ 0:35
(ANOVA, p > 0:05) for C and at 0:31 ≤ T ≤ 0:35 (ANOVA,
p > 0:05) for L.

Figure 3(a) shows the results of small-world for α1 rhythm
at the task state. The small-world characteristic significantly
decreases over time before T3 for threshold values lower than
0.30 (ANOVA, p < 0:001), and a small increase exists at T4.
No regular changes are showed when 0:31 ≤ T ≤ 0:35. To con-
trol the influences of mean MI between the groups, additional
results are obtained with the fixed degree of K = 5 and 6. No
regular variation trend and statistical differences are observed
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Figure 3: Mean small-world of the α1 rhythm at the task state with these two different methods. 250 random networks (keep both the number
of nodes and the degree distribution constant) were generated based on the brain functional networks for the small-world calculation. Each
plot shows the mean and standard deviation of all subjects. (a) Results obtained with a series of thresholds (0:15 ≤ T ≤ 0:35, with increments
of 0.01). Upper triangle refers to where the statistical difference between the five groups is significant (ANOVA, p < 0:001). (b) Results
obtained with two different degrees K = 5 and 6. Results of ANOVA analysis are given in Table 2.
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for C and L (not shown in this paper). But the changing pat-
tern of small-world (Figure 3(b)) is in line with that in
Figure 3(a). The small-world value has a reduction before T3
when the degree is fixed at K = 5 and 6 (ANOVA, p < 0:01,
except between T1 and T2 at K = 5; see Table 2) and a large
rise at T4 (ANOVA, p < 0:01; see Table 2).

4. Discussion

In the present study, we attempted to study the effects of
mental fatigue on the small-world brain functional network
organization. For the purpose of confirming the levels of
mental fatigue after completing the 25-minute task of mental
arithmetic math problems, we chose a widely acceptable
algorithm of ðθ + α1 + α2Þ/β to estimate mental fatigue
[22–24]. Eoh et al. [22] and Jap et al. [23] believed that the
algorithm of ðθ + α1 + α2Þ/β was a very reliable mental
fatigue indicator since it clearly indicated the increasing
mental fatigue as the ratio between the slow wave and fast
wave activities increased. Sauvet et al. [24] have proved the
ratio of ðθ + α1 + α2Þ/β as the best index for mental fatigue
estimation compared with θrel, αrel, βrel (the relative power
for each rhythm calculated as a ratio of the total EEG spectral
power), and fuzzy logic fusion (α, β). Previous researchers
have found increases in θ and α activities and a decrease in
β activity during mental fatigue [22, 23]. But in this part, δ
activity was excluded and not investigated in the algorithm,
because it is the reflection of the sleeping state, overlaps with
the artifacts, and is not expected to demonstrate high activity
during these tasks [22, 24]. In brief, ðθ + α1 + α2Þ/β ratio is a

reasonable and reliable index in mental fatigue detection. The
results of this ratio plotted over time in this study suggested
that mental fatigue can be induced by continuous mental
arithmetic tasks.

ANOVA analysis was performed onmeanMI of the orig-
inal full-weighted AM to identify the valid dataset for brain
functional network analysis. It is generally known that the
network structure can be completely determined by the asso-
ciated AM. TheMI, as the basic elements of the AM, has been
proved to be a valid approach to identify the eyes-closed state
and eyes-open state [9]. Similar applications of mean MI
were also found in other studies [30–32]. Therefore, basing
on the significance of the meanMI in demonstrating network
features, we statistically analysed the mean MI at all rhythms
during the two states. The results showed that significant
differences of the mean MI among T0, T1, T2, T3, and
T4 were gained only in α1 (8-10Hz) rhythm during the
task state (see Figure 5), which can reveal that α1 is the
most sensitive rhythm in response to mental fatigue. Sun
et al. [13] also extracted the same EEG rhythm in functional
cortical connectivity analysis of mental fatigue. Thus, only α1
rhythm at the task state was considered for brain functional
network construction.

The variation tendency of MI had a little inconsistency
with ðθ + α1 + α2Þ/β ratio. The MI dropped at T3, whereas
the ðθ + α1 + α2Þ/β ratio decreased at T2. But no significant
statistical differences were observed between T2 and T3 for
the ratio. Therefore, the mean MI can also be applied to eval-
uate mental fatigue. Besides, both of these two indicators are
nonmonotonically increasing at the middle or end of the test
time. This similar changing regularity in mental fatigue detec-
tion was also obtained in previous studies [13, 23]. Moreover,
consistent variation tendency was obtained between MI and
network characters (C and L). With the increasing of mean
MI, C increased and L decreased. In the controlled tests induc-
ing fatigue with sleep deprivation [15], it reported that the
results of C and L show highly coincident with ours.

In fact, the results of the MI and network characters can
explain the neural mechanisms of mental fatigue. We can

Table 1: ANOVA results (p values) of the spectral power ratio
(ðθ + α1 + α2Þ/β) for the resting state and task state between
different times. Table 1 is corresponding to Figure 4.

State T0-T1 T1-T2 T2-T3 T3-T4

Resting state 0.036 0.044 0.591 0.369

Task state 0.048 0.032 0.962 0.621
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Figure 4: The mean spectral power ratio of ðθ + α1 + α2Þ/β plotted over time: (a) results of resting state; (b) results of task state.
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Figure 5: Mean MI (mutual information) of the δ, θ, α1, α2, and β rhythms during T0, T1, T2, T3, and T4. Firstly, average all adjacency
matrices for each subjects. And then, compute the mean MI for all subjects. Figures of column (a) are the results of C1 (resting state);
figures of column (b) are the results of C2 (task state).
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infer from the increase of MI that with the increasing mental
fatigue, the network was expected to have more edges for a
given value of T . More network edges in a network can nat-
urally result in a higher C and shorter L, which implies a
more efficient transfer of information among cortical nodes.
In other words, there were more functional connectivities
activated on the basis of prior brain functional networks
(see Figure 2(a)), in line with the results reported by other
researchers [13–15]. Previous studies have also pointed out
that more functional brain areas would be activated for keep-
ing successful performances in the continuing attention task
[33, 34], which demonstrated a good consistency in our
results of the increasing number of functional connectivities.
Moreover, the increase of MI or functional connectivities
during the mental fatigue forming process can reveal the
better synchronization in α1 among the different brain areas
[15, 35, 36]. In conclusion, the brain should activate more
functional connectivities to complete the same task at the
mental fatigue stage, resulting in the further aggravation of
mental fatigue.

Besides, the increasing regularity of functional connec-
tivities was in line with the neural efficiency hypothesis.
According to neural efficiency hypothesis, more intelligent
individuals require less brain activations to fulfill a task, and
easier tasks are inclined to produce lower brain activations
compared with difficult tasks [18, 37–40]. At the mental

fatigue stage, the ability to deal with problems decreased,
which is like lower intelligent individuals. In order to accom-
plish the same task, a person at the mental fatigue stage and a
person with lower intelligence had similar reflections of brain
activations that more functional brain regions were activated.

A graph encapsulating the small-world network structure
was suggested be optimal for synchronizing neural activities
between different brain regions [41–44]. And it was diag-
nosed by high C and short L. At the mental fatigue stage, C
was significantly higher and L was evidently shorter. These
principal findings indicated that the brain functional net-
work modulated the neuronal organization to be more effi-
cient for information transmission and processing. Thus,
the brain can perform well in demanding sustained tasks at
the fatigue stage. Furthermore, with the deepening mental
fatigue, the changes in functional connectivities displayed a
loss of small-world features computed as a function of the
threshold (0:15 ≤ T ≤ 0:35). To eliminate the influences of
discrepancies in mean MI and keep the numbers of edges
equal in graphs, we repeated the analysis by calculating
small-world with a constant degree of K = 5 and 6 [17, 18].
These two analysis results were in agreement with each other
(see Figure 3). The decrease of small-world uncovered that
the optimal brain functional network structure was slowly
destroyed by the increasing level of mental fatigue. Previous
researchers have reported that the changes in brain dysfunc-
tions indicated a loss of small-world properties, such as in
schizophrenia [17], in Alzheimer’s disease [21], and in chil-
dren with attention-deficit/hyperactivity disorder [45], which
implied an agreement with the results of mental fatigue in the
reduction of small-world. Even if the small-world property
weakened at the mental fatigue stage, the brain still main-
tained small-world network organizations because the values
were all over than 1 [28]. And the small-world brain
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T1
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T3
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(a)

0.15 0.2 0.25 0.3 0.35
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1.5

2

2.5

3

L

T0
T1
T2

T3
T4

(b)

Figure 6: Mean network characters of the α1 rhythm at the task state with different values of thresholds (0:15 ≤ T ≤ 0:35, with increments of
0.01). The bars indicate the standard deviation of the mean. Upper triangle refers to where the statistical difference between the five groups is
significant (ANOVA, p < 0:05): (a) results of mean C; (b) results of mean L.

Table 2: ANOVA results (p values) of small-world for K = 5 and 6
between different times. Table 2 is corresponding to Figure 3(b).

K T0-T1 T1-T2 T2-T3 T3-T4

5 4:3e‐12 0.78 5:0e‐15 4:0e‐28
6 9:8e‐30 2:68e‐09 0.001 4:8e‐19
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functional network structure recovered at T4 when partici-
pants realized that the experiment was coming to an end
(relaxing their attention). Moreover, the loss of small-world
features seemed to be tuned during sleep. Ferri et al. [12]
and Dimitriadis et al. [46] noted that the small-world feature
of the brain functional network was strengthened at the sleep
stage. Koenis et al. [47] also stressed that sleep-related pro-
cesses played an important role in the maintenance of an
optimal small-world topology of the brain functional net-
work. These findings indicated that sleep can recover the
small-world network properties of the brain because of its
disorganizations during daytime. Besides, the brain func-
tional networks showed a shift toward more random net-
work structures in α1 rhythm reflected by a decrease in
small-world.

Our current study still has a limitation. Using scalp EEG
signals has some disadvantages, for instance, the coarse spa-
tial resolution of scalp EEG. If more EEG channels (32, 64, or
128) were included, the results may be more reliable, as well
as more findings may be uncovered.

5. Conclusions

In the present study, a group of strictly controlled experi-
ments were conducted to explore the effects of mental fatigue
on the small-world brain functional network organization.
To this end, mental fatigue was induced by the mental arith-
metic math task and then validated by the algorithm of
ðθ + α1 + α2Þ/β. The increased ratio of ðθ + α1 + α2Þ/β sug-
gested that the included individuals were induced to mental
fatigue. For the explorations of mental fatigue with complex
network theories, we performed ANOVA analysis on the
mean MI between 5 time points for every rhythm to identify
the valid dataset, and only the data of α1 (8-10Hz) rhythm
during the task state were emerged. The results of graph anal-
ysis showed that C increased and L and small-world feature
decreased with the deepening mental fatigue. Our present
findings indicated that more functional connectivities were
activated at the mental fatigue stage for efficient information
transmission and processing, resulting in a loss of small-
world features.
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