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Abstract

Decoy database search with target-decoy competition (TDC) provides an intuitive, easy-to-

implement method for estimating the false discovery rate (FDR) associated with spectrum 

identifications from shotgun proteomics data. However, the procedure can yield different results 

for a fixed dataset analyzed with different decoy databases, and this decoy-induced variability is 

particularly problematic for smaller FDR thresholds, datasets or databases. In such cases, the 

nominal FDR might be 1% but the true proportion of false discoveries might be 10%. The 

averaged TDC protocol combats this problem by exploiting multiple independently shuffled decoy 

databases to provide an FDR estimate with reduced variability. We provide a tutorial introduction 

to aTDC, describe an improved variant of the protocol that offers increased statistical power, and 

discuss how to deploy aTDC in practice using the Crux software toolkit.
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Introduction

Tandem mass spectrometry (MS/MS) can be thought of as a high-throughput technique for 

generating hypotheses, wherein complex biological samples are analyzed to yield potential 

insights into their protein contents. Accordingly, taking action on the basis of MS/MS results 

requires a method for assigning statistical confidence to these hypotheses. Our willingness to 

perform laborious confirmatory experiments on a set of detected peptides, for example, will 

be higher if we believe that the proportion of false discoveries in the peptide list is at most 

1%.

In the scenario we focus on here—bottom-up data-dependent acquisition tandem mass 

spectrometry— the most basic type of hypothesis concerns the generation of an observed 

fragmentation spectrum by a particular charged peptide species. In principle, the 
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corresponding peptide-spectrum match (PSM) can either be correct or incorrect, depending 

upon whether the specified peptide is responsible for generating the observed spectrum.

Accordingly, an extensive literature focuses on the problem of assigning statistical 

confidence estimates to individual PSMs or to collections of PSMs. This literature is quite 

complex, involving diverse methods such as expectation-maximization,1 parametric fitting 

of PSM scores to Poisson,2 exponential,3;4 or Gumbel distributions,5;6 nonparametric 

logistic regression,7 various types of dynamic programming procedures,8–10 as well as 

machine learning post-processors, such as linear discriminant analysis1 or support vector 

machines.11–13

Despite this dizzying array of techniques, by far the most widely used method for assigning 

statistical confidence estimates to PSMs is quite straightforward and easy to understand. The 

method, called “target-decoy competition” (TDC), involves assigning peptides to spectra by 

searching the spectra against a database that contains a combination of real (“target”) 

peptide sequences and reversed or shuffled (“decoy”) peptides.14 The decoys, which by 

definition represent incorrect hypotheses, provide a simple null model. Accordingly, for 

every decoy PSM that we observe, we estimate that one of the target PSMs is also incorrect. 

Thus, the TDC protocol simply involves ranking PSMs by their scores and then counting the 

number of targets and decoys observed at a specified score threshold.

Although TDC is employed routinely in many shotgun proteomics studies, the fact that the 

FDR estimates that TDC produces can exhibit high variability is not widely appreciated. In 

practical terms, this means that a set of PSMs with a nominal FDR of 1% might actually 

contain, say, 5% incorrect PSMs. We begin by illustrating this phenomenon, demonstrating 

that the level of variability increases as the size of the dataset or the size of the peptide 

database decreases. We then explain how to apply our previously described “average TDC” 

(aTDC) procedure to reduce the variability in the estimated FDR by searching multiple, 

independently shuffled decoy databases.15 Furthermore, we introduce an improved version 

of the aTDC protocol that yields better statistical power (i.e., more accepted PSMs at a fixed 

FDR threshold), especially for low FDR thresholds. Finally, we provide a detailed protocol 

for applying this improved aTDC procedure using the Crux mass spectrometry toolkit.16 

Note that, in keeping with the tutorial nature of this paper, we have opted to move the 

Methods section, which includes technical details, to the end and to begin the Results 

section with intuitive descriptions of TDC and aTDC.

Results

Target-decoy competition yields confidence estimates but sacrifices some identifications 
in the process

Explaining how the aTDC protocol works requires first carefully explaining the TDC 

protocol. Furthermore, to make the aTDC explanation easier later, we divide our description 

of the TDC protocol into three steps, even though in practice the first two steps are typically 

carried out jointly by searching a concatenated database of targets and decoys.
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In the first step, a given collection of spectra (a dataset) is searched against two peptide 

databases: the target database of interest and a corresponding decoy database. We assume 

that each target peptide has a corresponding decoy peptide, where the decoy is a shuffled or 

reversed version of the target. The database search procedure can be carried out by any 

search engine (reviewed in Verheggen et al.17). For each spectrum, this search identifies a 

best-scoring target peptide and a best-scoring decoy peptide (Figure 1).

In the second step, for each spectrum we compare the scores assigned to the target and the 

decoy, and we designate the PSM with the higher score as the winner, assuming that higher 

scores indicate better matches. This is the “competition” step of TDC.

Finally, in step three, we sort the winning PSMs by score and set a score threshold ρ. We 

will refer to PSMs with scores that exceed our specified threshold as “accepted” PSMs. The 

key idea of TDC is that, for each decoy PSMs we accept, we estimate that we have also 

accepted an incorrect target PSM. Accordingly, TDC estimates the FDR associated with the 

set of accepted target PSMs as

min ( # of decoy PSMs scoring > ρ) + 1
# of target PSMs scoring > ρ , 1 (1)

Two features of Equation 1 require further explanation. First, the “min” operation in 

Equation 1 is only included to account for the (hopefully rare) case where the number of 

decoys is at least as large as the number of targets at a specified threshold. Without the min 

operation, the estimated FDR could exceed 100%. Second, the numerator (the number of 

decoys scoring > ρ) has a “+ 1” added to it. This +1 correction was not included in the 

original description of TDC.14 Accordingly, we will refer to the TDC procedure that 

incorporates this +1 correction as “TDC+,” in order to distinguish it from the original TDC 

protocol. The need for this type of correction was proved by Barber and Candés in the 

context of linear regression18 (see their “knockoff+” procedure) and by He et al. in the 

context of mass spectrometry (see their Equation 25).19 Subsequently, Levitsky et al. 
provided a more intuitive explanation of the need for the +1 correction in shotgun 

proteomics.20

A key feature, and unavoidable drawback, of the TDC (or TDC+) protocol is that the 

competition has the undesirable side effect of randomly discarding some high-scoring target 

PSMs. For example, in Figure 1, spectra 198 and 201 matched a target peptide with scores 

greater than the specified threshold. Unfortunately, however, these high-scoring target PSMs 

got unlucky: they happened to be outscored by a random decoy peptide. In practice, the rate 

at which this random loss of high-scoring PSMs occurs is typically low, but the magnitude 

of the problem increases as the size of the peptide database grows, as well with a more 

permissive FDR threshold.

Using shuffled decoys leads to variation in the list of identified spectra

It should be clear, given the above description, that the TDC procedures only provide an 

estimate, not an exact count, of the number of incorrect accepted target PSMs. This is to be 

expected but leaves open the question of how variable the estimate is.
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One simple way to address this question is to re-shuffle the decoy database and then repeat 

the TDC procedure. We carried out such an experiment, using a single mass spectrometry 

run selected from the Kim et al. “draft human proteome” dataset21 and searched against the 

human proteome using the widely used XCorr score function22 followed by TDC+. Ten 

searches against different decoy databases are included. The results (Figure 2A) show a 

surprisingly high degree of variability. The first time we ran the search we accepted 4987 

target PSMs at a 1% FDR threshold, but after nine additional searches the count of accepted 

PSMs ranged from a minimum of 4757 to a maximum of 4987 (by chance, our first random 

shuffle provided the greatest number of discoveries). We quantify the observed variability by 

computing the percentage difference between the maximum and minimum, relative to the 

mean of the maximum and minimum. In this case, this variability is 4.7%. The percent 

variability is lower at less strict FDR thresholds (1.6% at a 5% FDR threshold, and 3.2% at 

10% FDR).

A similar trend can be observed when we vary either the number of spectra included in our 

search (Figure 2B–C) or the number of proteins in the sequence database (Figure 2D–E). For 

example, when we decrease the size of the database from 95,057 to 4000 proteins, the 

percentage difference between the minimum and maximum numbers of accepted target 

PSMs increases from 1.6% to 5.6% at a fixed FDR threshold of 5%. A similar trend at a 5% 

FDR threshold is seen when we decrease the number of spectra from 15,083 (1.6% 

variability) to 4000 (3.7% variability) or 1000 spectra (10.0%).

Reversing the decoys does not eliminate the variability

At this point, many readers may be thinking to themselves, “Luckily, I am immune to this 

variability problem because I use reversed peptide decoys rather than shuffled peptide 

decoys.” Unfortunately, reversal does not solve this problem; it merely makes the problem 

harder to see.

To understand why this is so, consider a “fixed permutation” strategy for generating decoys. 

One could imagine generating decoy peptides by taking each target peptide and permuting it 

according to some fixed rule; e.g., swap the amino acids in positions 1 and 3, then positions 

2 and 4, etc. Using such an approach, and armed with ten different sets of permutation rules, 

one could generate results similar to those in Figure 2. In this setting, the reversal scheme 

would represent just one, arbitrary choice of fixed permutation.

We repeated the search of the Kim dataset but using a set of reversed peptide decoys. As 

expected, the resulting curve (Figure 2F) falls into the middle of the curves generated by 

shuffled decoys.

Average target-decoy competition leads to reduced variability

The aTDC protocol was designed to reduce variability in decoy-based FDR estimates 

without sacrificing statistical power. The method works by creating multiple decoy 

databases, each one equal in size to the target database. Consequently, if we run aTDC with, 

say, three decoy databases, then for each observed spectrum we obtain one target score and 

three decoy scores (Figure 3). The key idea behind aTDC is to estimate that each decoy PSM 

that wins the target-decoy competition corresponds to 1/3 of an incorrect target PSM. 
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Consequently, we only lose one target for every three decoys that win the competition. The 

final FDR estimation is still performed using Equation 1, where the “+1” in the denominator 

can be included (for aTDC+) or not (for aTDC). All experiments reported here use aTDC+ or 

a new variant thereof, introduced below.

The aTDC+ protocol yields FDR estimates that are consistent with TDC+ but that exhibit 

markedly less variability. To illustrate the effect, we re-ran the search of the Kim dataset 10 

times with aTDC+, each time using 10 decoy databases. The resulting curves overlay the 

corresponding curves from TDC+ but exhibit much lower variability (Figure 4). At 5% FDR, 

the percentage change between the minimum and maximum number of accepted target 

PSMs reduces from 1.6% for TDC+ to 0.52% for aTDC+. We also note a slight increase in 

power of aTDC+ relative to TDC+ in Figure 4. This effect arises because aTDC selects 

which target PSMs to filter based on the number of times a given target won the target-decoy 

competition, and hence it is partially calibrating the score (see Keich and Noble15 for 

details).

The improved version of aTDC+ is less conservative than TDC+ for low FDR thresholds

One feature of the aTDC protocol, as originally described,15 is that it avoids TDC’s small 

liberal bias (i.e., underestimation of FDR), which has been observed previously for low FDR 

thresholds.23 However, if we correct this bias by switching to TDC+ and aTDC+, then we 

observe that aTDC+ exhibits a pronounced conservative bias for the same low FDR 

thresholds. The effect can be seen, for example, in the shift of aTDC+ curves, relative to the 

TDC+ curves, at very low FDR thresholds (< 0.01) when we search the Kim dataset using a 

database of 1000 proteins (Figure 5A).

To combat this problem, we have devised an improved version of aTDC+, denoted as aTDC1
+,

that provides better statistical power than TDC+ while still empirically controlling the FDR. 

As noted above, the only difference between aTDC+ and aTDC1
+ lies in the correction factor 

that we add to the number of decoy discoveries at the ith PSM in the ranked list (i.e., the ith 

row in Figure 3). In aTDC+, we use +1, whereas in aTDC1
+ we essentially use the average 

number of decoy scores that fall between the target scores with ranks i and i − 1.

To motivate this change we go back to the explanation in Levitsky et al.20 of why we need to 

add the +1 term in (1) in the first place. As shown in Theorem 1 of He et al.,19 the FDR 

estimate that does not involve the +1 term is in fact a conservative estimate of the FDR for 

each fixed t. The intuitive reason it is still liberally biased in the context of TDC is that we 

select our cutoff score as the smallest score threshold for which the estimated FDR is below 

the desired level. This implies that we conveniently select our threshold so that the next 

largest score corresponds to a decoy discovery which we have just excluded. This exclusion 

creates a slight liberal bias which the +1 term is correcting: essentially we are allowing for 

the subsequent decoy discovery.

In the context of aTDC we have multiple decoys, and we average their numbers of 

discoveries. Therefore, rather than blindly adding +1 to the number of decoy discoveries at 

the ith PSM in our observed ranked list, we postulate that we do not need to add more than 
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the average number of decoys we observed with scores between the scores associated with 

the ith and i + 1th PSM. Note that this is equivalent to the difference between the ith and i
−1th entries of the ”Cum dcy > tg” column in Figure 3. Intuitively, this number is an 

estimated bound on the expected number of decoy discoveries we exclude when setting the 

score threshold as we do.

Repeating the analysis of the Kim dataset with a database of 1000 proteins, we observe that 

the average number of PSMs at 1% FDR improves from 271 for aTDC+ to 284 for aTDC1
+. 

Supplementary Note 1 provides extensive evidence that the resulting FDR estimates are 

unbiased.

To facilitate adoption of aTDC1
+ by the research community, we have implemented the 

protocol within the Crux mass spectrometry toolkit (http://crux.ms).16 The procedure 

consists of creating a peptide index containing multiple decoy databases, searching with the 

index using the Tide search engine, and then post-processing the resulting target and decoy 

PSMs using the assign-confidence command in Crux. A detailed protocol, with 

supplementary input and output files provided, is provided in Figure 6.

Selecting the number of decoy databases

In practice, carrying out the protocol in Figure 6 requires that the user decide how many 

decoy databases to create in the very first step. Unfortunately, it is not always obvious how 

to select this number. Here, the trade-off is between reducing the variability of the FDR 

estimate versus the computational cost associated with searching multiple decoy databases. 

Clearly, this trade-off is something that cannot be decided on the basis of statistical theory, 

because it depends upon the time and resources available to the analyst.

To assist users in assessing this time-vs-variability trade-off, we have performed a systematic 

study that estimates how aTDC+
1 reduces variability as a function of the number of decoy 

databases, the number of spectra, the size of the peptide database, and the FDR threshold. 

For this study, we use ten randomly selected runs from the Kim dataset. Note that 

throughout the preceding exposition we have used as our measure of variability the 

percentage difference between the minimum and maximum number of accepted target 

PSMs. We selected this measure because it is intuitive and easy to understand. However, for 

our empirical study, we have instead opted to use the empirical standard deviation of the 

estimated FDR, since standard deviation is a more robust statistical measure.

The results of this empirical survey (Figure 7) show consistent trends across different FDR 

thresholds and varying sizes of databases and datasets. In particular, we observe a rapid 

decrease in decoy-induced variability when using even just a single additional decoy 

database. In nearly every case, the standard deviation continues to decrease as the number of 

decoys increases to 3, 5, 10 and 25. Not surprisingly, we also observe a diminishing returns 

property, such that each additional decoy database yields a smaller reduction in standard 

deviation as the total number of decoys increases. Given the trends in Figure 7, and taking 

into account the logarithmic y-axis, we suggest that a reasonable cost-benefit trade-off might 

be to employ five decoy databases. This represents a three-fold increase in computational 
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cost (searching one target plus five decoy databases compared to searching one target plus 

one decoy) while eliminating a large proportion of the decoy-induced variability.

Discussion

The average target-decoy competition protocol provides a straightforward and unbiased 

method for decoy-based estimation of the FDR among a given set of peptide-spectrum 

matches, while providing the user a means of reducing decoy-induced variability in the 

resulting estimate. In addition to explaining how the method works, we have provided an 

open source software implementation and an improved algorithm (aTDC1
+) that yields better 

statistical power at low FDR thresholds.

Some readers may wonder whether aTDC is more complex than it needs to be. In particular, 

perhaps the most natural approach to reducing decoy-induced variability is simply to 

increase the size of the decoy database: rather than shuffling each target peptide once, we 

could shuffle each peptide, say, 10 times, yielding a decoy database that is 10 times larger 

than the target database. This change requires a simple adjustment to the TDC protocol, such 

that each time we see an accepted decoy PSM, we estimate that it corresponds to 1/10th of 

an incorrect target PSM. This simple approach does indeed reduce the empirical variability 

in the estimated FDRs. However, particularly for a well-calibrated score function, expanding 

the decoy database in this way also leads to a decrease in statistical power; i.e., for a fixed 

FDR threshold, using a larger decoy database yields, on average, fewer accepted target 

PSMs than using a smaller decoy database. The source of this loss in statistical power is the 

“competition” component of TDC. As the size of the decoy database increases, each decoy 

has more chances to randomly achieve a high score. Hence, the rate at which high-scoring 

targets are eliminated due to competition with targets increases. The protocol avoids this 

trade-off, delivering reduced variability along with statistical power that is equal to or better 

than TDC+.

So far we have discussed the variability induced by the selection of decoy peptides, but this 

is only part of the story. Additional variability is produced by the “draw” of the spectrum set. 

Specifically, that set is a combination of native spectra generated by peptides in the database 

and foreign spectra generated by molecules not in the database. The relative proportions of 

each of these two components as well as the noise in the generation of each native spectrum 

inject random effects into the experiment. This randomness is independent of the decoy 

database but could still have a significant impact on FDR estimation and is not something 

we can eliminate.

The aTDC1
+ protocol uses multiple decoy databases to reduce decoy-induced variability, but 

we have also previously described an alternative use of multiple decoy databases to instead 

improve statistical power. The “progressive calibration” procedure provides a method for 

increasing the number of PSMs accepted at a specified FDR threshold by calibrating PSM 

scores using a collection of matched decoy scores.15 Like aTDC1
+ progressive calibration’s 

utility increases as the number of decoys increases, with diminishing returns as each 

successive set of decoys is added. Thus, a user with sufficient resources to generate a fixed 
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number of decoy databases can decide how to apportion those databases to achieve both 

reduced variability and improved power. In future, we plan to provide an implementation of 

progressive calibration in Crux, to complement the aTDC1
+ implementation.

We have also identified several other avenues for future work. For example, it is not yet clear 

how to combine aTDC1
+ with a post-processor like Percolator.13 Percolator employs decoys 

for two purposes: first, to train a classifier to discriminate between targets and decoys, and 

second, to estimate FDR. A cross-validation scheme is necessary in order to ensure that the 

same PSMs are not used in training the classifier and in FDR estimation.24 Fitting a 

collection of decoy databases into this cross-validation scheme while ensuring valid FDR 

estimation is non-trivial. Another direction for future work is to extend the averaging idea to 

FDR estimation at the peptide and protein levels.

Methods

Target-decoy competition

In our setting, a decoy-based FDR controlling procedure takes as input a list of target PSMs 

produced by searching a set Σ of spectra against a database 𝒟t of real (“target”) peptides and 

a corresponding list of decoy PSMs produced by searching the same spectra against a 

database 𝒟d of decoy peptides. The decoy peptides are created by the user and can be either 

shuffled or reversed versions of the targets. For any score threshold ρ, the TDC procedure 

defines its list T (ρ) of discoveries as all target PSMs with score ≥ ρ that outscore their 

corresponding decoy competition. Note that this definition is equivalent to saying that these 

PSMs remain discoveries in a search of a concatenated database 𝒟t∪𝒟d. Note also that we 

assume the score is defined such that larger values correspond to better matches. Denoting 

by D(ρ) the number of decoy discoveries at score level ρ in the concatenated search, TDC 

estimates the FDR in its target discovery list, at level ρ, as

FDR(ρ): = min 1, D(ρ)
T(ρ) (2)

where the min() operation is included to handle the rare case where the number of decoy 

discoveries exceeds the number of target discoveries at the specified threshold. Note that 

Equation 2 is equivalent to Equation 1.

We also define a variant of TDC, called “TDC+,” that incorporates a small theory-mandated 

correction that is particularly important for small sample sizes (more on that in the Results 

section). TDC+ is identical to TDC except that the FDR is estimated as

FDR(ρ): = min 1, D(ρ) + 1
T(ρ) (3)

Both TDC and TDC+ set the discovery score cutoff to be the smallest observed score ρ for 

which the corresponding estimated FDR is still below the desired FDR level.
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Average target-decoy competition

The average TDC procedure is similar to TDC except that the spectra Σ are searched against 

the target database 𝒟t and n independently generated (typically, shuffled) decoy databases 

𝒟1
d…𝒟n

d . The procedure then consists of the following steps:

• Sort the set of optimal target PSM scores, {w(σ) : σ ∈ Σ} in decreasing order and 

denote them by ρi.

• For every decoy database 𝒟 j
d, apply TDC to the target database 𝒟t and 𝒟 j

d and 

note the corresponding number of target, Tj (ρi), and decoy, 𝒟j (ρi), discoveries 

at level ρi.

• Use the above TDC data to compute the average number of target and decoy 

discoveries at score level ρi:T ρi : = ∑ j = 1
nd T j ρi /nd and D ρi : = ∑ j = 1

nd D j ρi /nd

• Initiate Tc, the cumulative number of target discoveries, to 0 and set 𝒯, the target 

discovery indicator, to a logical vector of size n (initiated to all TRUE)

• From the largest (best) target score to the smallest (i = 1 : n) do:

– if Tc ≤ T ρi − 1/2setTc = Tc + 1 and skip to next i

– else

* Consider all current target discoveries with score ≥ ρi (i.e., all 

j ≤ i for which 𝒯 (j) is currently TRUE).

* Restricting attention to those discoveries in the above list that 

lost the most decoy competitions, choose the one with the 

smallest score.

* Set the 𝒯 entry for that chosen target PSM to false (i.e., 

remove it from the current list of target discoveries) and 

continue to next i.

Please refer to Keich and Noble15 to see how the last step can be efficiently implemented.

• Set the vector T that yields the number of discoveries at level ρi to the cumulative 

sum of the vector 𝒯

•
Set FDR ρi : = min(1,

D ρi
T ρi

) for all i

• Set the cutoff score to be the smallest ρi for which FDR ρi ≤ α, where α is the 

selected FDR threshold

Analogous to TDC and TDC+, we also define a variant of aTDC (aTDC+) that replaces the 

FDR estimation in the final step with FDR ρi : = min(1,
D ρi + 1

T ρi
)
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Improved variant of average target-decoy competition

We introduce aTDC1
+, a more powerful version of aTDC+, where we estimate the FDR in the 

last step as,

FDR ρi : = min 1,
D ρi + δ ρi

T ρi
, (4)

where δ ρi = min(1, D ρi − D ρi − 1 )) . The motivation for this modification is given in 

Results; here we only note that because δ(ρi) ≤ 1, the FDR estimated in aTDC1
+ is generally 

no larger than the one estimated in aTDC+, and hence aTDC1
+ will report at least as many 

discoveries as aTDC+.

Datasets and analysis

All of the primary analyses are performed using a single run selected from the “draft human 

proteome” of Kim et al.21 This file (Adult Testis Gel Elite 69 f15) contains 15083 spectra.

All searches are carried out with respect to the Uniprot human reference proteome, 

downloaded on 12 July 2018 and including multiple isoforms per protein. This database 

contains 95,057 protein sequences.

Peptide indices are created using tide-index, allowing for clipping of N-terminal methionines 

(clip-nterm-methionine=T), at most one missed cleavage (missed-cleavages=1), a variable 

N-term peptide modification of 42.0367 Da (nterm-peptide-mods-spec=1X+42.0367), and 

allowing duplicates in the decoy database (allow-dups=T). This yields a peptide index 

containing 3,697,160 distinct target peptides.

All searches are performed using Tide25 with the default XCorr score function. Additional 

search parameters include a precursor window of 50 ppm (precursor-window-type=ppm 

precursor-window=50), an m/z bin width of 0.02 Da (mz-bin-width=0.02), one isotope error 

(isotope-error=1), and reporting a single match per spectrum (top-match=1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Target-decoy competition.
For each spectrum, a database search procedure identifies the top-scoring target peptide and 

the top-scoring decoy peptide. The target and decoy then compete such that the better of the 

two matches is assigned to the spectrum. The FDR among target PSMs at a given score 

threshold ρ is then estimated via Equation 1. Including “+1” in the numerator makes this the 

TDC+ protocol.

Keich et al. Page 13

J Proteome Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Variation in discoveries from TDC+.
(A) The figure plots the number of accepted PSMs as a function of FDR threshold for the 

Kim dataset, searched using Tide with the XCorr score function. Results from ten searches 

against different decoy databases are shown. (B-C) Same as panel A, but after randomly 

down-sampling the database to contain fewer proteins. (D-E) Same as panel A, but after 

randomly down-sampling the dataset to contain fewer spectra. (F) Same as panel A, but also 

including a line corresponding to TDC+ with reversed peptide decoys.
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Figure 3: Average target-decoy competition.
The procedure is similar to TDC (Figure 1), except that each target competes against 

multiple decoys and losses are counted fractionally. A target is eliminated only when the 

rounded fractional count of losses reaches the next integer value. As in TDC+, FDR for 

aTDC+ is estimated via Equation 1. Note that decoys for lower-ranking targets that receive 

high scores (e.g., decoy 2 in line 277) can contribute to the cumulative decoy count for lines 

above them in the list.
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Figure 4: Average target-decoy competition leads to reduced variability.
The figure plots, for the human dataset, the number of PSMs accepted as a function of FDR 

threshold for 10 runs of TDC+ and 10 runs of aTDC+. Each aTDC+ run is computed with 

respect to 10 decoy databases.
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Figure 5: Improved version of average target-decoy competition reduces conservative bias for 
low FDR thresholds.
(A) The figure plots, for the Kim dataset applied to a database of 1000 proteins, the number 

of PSMs accepted as a function of FDR threshold for 10 runs of TDC+ and 10 runs of aTDC
+. (B) Same as panel A, but using the improved aTDC+ procedure (called “aTDC1

+” in the 

main text). In both panels, each run of aTDC+ or aTDC1
+ is computed with respect to 10 

decoy databases.
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Figure 6: Performing average target-decoy competition using Crux.
The procedure assumes that the Crux software is already installed on your computer and that 

files containing the spectra and the human proteome database reside in the current directory. 

These files are available in Supplementary File S2. Further documentation about the Crux 

commands used above is available at http://crux.ms.
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Figure 7: Empirical study of variability of FDR estimates.
Each panel plots the standard deviation in the number of accepted target PSMs, averaged 

over ten mass spectrometry runs from the Kim dataset, as a function of the number of 

decoys used for aTDC1
+. Each line corresponds to a different FDR threshold. All standard 

deviations are calculated over ten repetitions of either TDC+ (for 1 decoy) or aTDC1
+ (for >1 

decoy). Missing points correspond to cases that yielded a standard deviation of zero across 

all ten runs.
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Table 1:

Variables and their definitions.

Variable Definition

Ʃ set of all spectra (observed)

n number of spectra (observed)

𝒟t target database of peptides (user determined)

𝒟i
d decoy database of peptides (user determined)

nd number of competing decoy database (user determined)

ρ score threshold (user determined)

D (ρ) number of decoy discoveries (at level ρ) in a search of the concatenated database 𝒟t ∪ 𝒟d (observed)

T (ρ) number of target discoveries (at level ρ) in a search of the concatenated database 𝒟t ∪ 𝒟d (observed)

σ single spectrum (observed)

w (σ) score of the best match of σ in the target database (observed)
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