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Abstract

Studies of brain structure have shown that the cortex matures in both a linear and nonlinear manner depending on
the time window and specific region studied. In addition, it has been shown that socioeconomic status can impact
brain development throughout childhood. However, very few studies have evaluated these patterns using func-
tional measures. To this end, in this study we used cross-sectional resting-state functional magnetic resonance
imaging data of 368 subjects, age 3–21 years, to examine the linear and nonlinear development of brain connectivity.
We employed a clustering approach to characterize these developmental patterns into different linear and nonlinear
groups. Our results showed that functional brain development exhibits multiple types of linear and nonlinear pat-
terns, and assuming that brain connectivity values reach a stable state after a specific age might be misleading.
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Introduction

Drastic changes in brain structure and function
occur during the first two decades of human brain devel-

opment, and studies have shown that many clinical disorders
begin during these early stages (Hazlett et al., 2017; Supekar
et al., 2013). To understand how both normal brain develop-
ment occurs and what changes may lead to vulnerabilities to
developing mental illness, a number of studies have exam-
ined human brain development from early childhood to adult-
hood (Allen et al., 2011; Dosenbach et al., 2010; Faghiri et al.,
2018). In addition, it has been shown that delayed stabiliza-
tion of different brain connectivities might be related to dif-
ferent psychiatric disorders (Kaufmann et al., 2017).

Most studies have focused on changes in the activation
of certain regions as children develop (Durston et al., 2006;
Luna et al., 2001), although in recent years the develop-
ment of functional connectivity and the resulting networks
has received increasing attention. The prior functional mag-
netic resonance imaging (fMRI) studies can be categorized
into two major groups: task based and resting state (rsfMRI).

Although task-based studies have and continue to add impor-
tant contributions to our understanding of brain connectivity
development [for a recent review on this matter see, Stevens
(2016)], we focus on rsfMRI in this work.

It is generally believed that the overall organization of the
human brain is established at birth (Anderson and Thomason,
2013), but maturational changes throughout childhood and
well into adulthood impact efficiency and specialization of
the human neural system. For example, many studies have
shown that there is a distinct change in the connectivity of
brain networks from local to distal as children mature.

In one influential study, Fair et al. (2009) used graph the-
ory to demonstrate this ‘‘local to distributed’’ developmental
trajectory. In a later study, it was shown that throughout de-
velopment, local connectivities decrease while more distant
regions show stronger connections (Lopez-Larson et al., 2011).
Beyond this change from local to distributed networks, other
studies have focused on alterations in the strength of func-
tional connections between different networks. For example,
studies have reported changes in cortical–subcortical func-
tional connectivity, including stronger connectivity between
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the cortex and dorsal/anterior parts of thalamus in adults
compared with children (Fair et al., 2010). Several recent re-
views highlight the current state of research in this area
(Ernst et al., 2015; Somerville, 2016; Stevens, 2016).

It is worth noting that not all the findings in this area have
been replicated. For example, an early study found that the
connection between dorsal striatum and some cortical re-
gions decreases with age (Supekar et al., 2009), while a
more recent paper reported the opposite trajectory (van Duij-
venvoorde et al., 2016). It is possible that some of the discrep-
ancies arise because studies assume a linear change, while the
effect is likely nonlinear (discussed in the following paragraph).
Small sample sizes and differences in the actual age range
studied can also contribute to the variability between studies.

Nonlinear developmental trajectories have been studied
extensively in structural studies. The first study to report
such nonlinear changes found that cortical gray matter vol-
ume increased in early childhood and then decreased in ado-
lescence (Giedd et al., 1999). This study also reported that
the peak occurs at different ages depending on the specific
brain region, and this general finding has been replicated
in several studies since (e.g., Wierenga et al., 2014).

The nonlinear functional maturation of the brain has been
studied to a lesser extent, but there have been some studies.
For example, McRae et al. (2012) reported a nonlinear rela-
tionship between age and activation in regions involved in
social cognitive processing. Liu et al. (2016) reported linear
decrease in pre-SMA activation, while observing nonlinear
effect of age in dorsal anterior cingulate cortex. In another
interesting study, Kaufmann et al. (2017) showed that ‘‘con-
nectome distinctiveness’’ has a nonlinear increase with age.
Pattwell et al. (2012) suggested that treatment response to
cognitive behavioral therapy varies nonlinearly across age.
Nonlinear change in amygdala functional connectivity was
reported in another study including subjects from 3 months
old to 5 years (Gabard-Durnam et al., 2018).

Although there are some limited studies that have exam-
ined nonlinear development of brain resting-state networks
across the life span (Porter et al., 2015; Wang et al., 2012),
to the best of our knowledge, our study is the first one to
focus on the period from early childhood through adoles-
cence and to use a relatively large sample. In contrast to
the majority of existing studies, here we investigate both lin-
ear and nonlinear development of the brain, therefore allow-
ing for both trends to appear in the results.

Environmental factors are also known to impact brain de-
velopment, cognitive outcomes, and many other social mea-
sures. Gottfried et al. (2003) reported an association between
higher performance in school and several of these environ-
mental factors.

As we know, the difference between individuals seems
to increase as subjects get older (Kaufmann et al., 2017).
This ever growing difference might be caused by environ-
mental factors (that are often quite different between sub-
jects), therefore it is quite necessary to study these factors
and their impact on the development of human brain (Farah,
2017). Therefore, in this article we have controlled for
these effects in all our statistical analysis.

One such environmental factor is socioeconomic status
(SES), which is widely known to impact cognitive measures
such as IQ and literacy (Brooks-Gunn and Duncan, 1997).
Recent studies have shown relationships between SES and

brain development (Noble et al., 2015; Piccolo et al., 2016),
as well as cognitive function across several domains, includ-
ing executive function (Noble et al., 2007; Sheridan et al.,
2012), language (Noble et al., 2006), and memory (Sheridan
et al., 2013). For a review, see Farah (2017). It is worth not-
ing that some large studies have not found any relationship
between SES and brain development (Brain Development
Cooperative Group, 2012). One important challenge when
studying SES is its measurement, as there are many measures
used to assess it (Cloutier et al., 2016); among them, two im-
portant ones are family income and education (McLoyd,
1998), which are used for this work.

In short, previous studies have shown that brain develop-
ment across the lifespan follows a nonlinear trajectory in
some, but not all brain regions, and a few studies have sug-
gested that SES may have some impact on this trajectory. To
further enhance our knowledge about functional brain devel-
opment from childhood to early adulthood, this study exam-
ines a large cohort of youth using rsfMRI while controlling
for the possible impact of SES on brain maturation. To our
knowledge, this is the first study that has examined brain
development across a broad span of early life development
(3–21 years old) and used a clustering approach to find mul-
tiple nonlinear patterns of development.

Methods

Subjects and preprocessing

All of the data reported in this article are part of the Pedia-
tric Imaging, Neurocognition, and Genetics (PING) database
(http://ping.chd.ucsd.edu). For a detailed report of data ac-
quisition for this database, see Jernigan et al. (2016). To
summarize, 3T scanners from different manufacturers (GE,
Siemens, and Philips) were used to acquire data across seven
different sites. The pulse sequence parameters were opti-
mized for equivalence in contrast property. The majority of
data were acquired using repetition time (TR) = 3 sec, while
some data were acquired using TR = 2 sec. To control for
the effect of motion, real-time prospective motion correction
(PROMO) was used (White et al., 2010). This method has
been shown to significantly reduce motion artifacts in raw
brain images (Brown et al., 2010; Kuperman et al., 2011).

Household income and guardian education were recorded
in this study, but unfortunately, we were unable to calculate
income-to-need ratio because the number of family mem-
bers was not available. For this specific study, we included
all subjects with information about their household income
and guardian education. This resulted in 373 subjects. Another
five subjects were removed because of excessive motion.
That is, framewise displacement was calculated, and all the
volumes with >3 mm framewise displacement were flagged.
Subjects who had >10% of their volume flagged were then
removed. All the analysis was done on the remaining 368
subjects.

For preprocessing, we used the pipeline designed at the
Mind Research Network, which utilizes the SPM soft-
ware. Before running any preprocessing, to allow the signal
to reach a stable state, the first four scans for every subject
were removed. Next, the volumes were realigned and slice
timing correction was performed using the middle slice as
reference. All the EPI data were spatially registered to
Montreal Neurological institute template using a nonlinear
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registration as suggested by Calhoun et al. (2017). Data were
then smoothed using a Gaussian kernel (full width at half
maximum [FWHM] = 10 mm). To increase the test–retest re-
liability of group independent component analysis (GICA)
(Allen et al., 2010), data were intensity normalized to have
a voxelwise mean of 100.

Group independent component analysis

GICA as implemented in the GIFT toolbox (http://mialab
.mrn.org/software/gift) was used to extract time series from
maximally independent (spatially) brain networks. The pipe-
line used here is based on previous published work (Allen
et al., 2014). We decomposed data into 100 components and
after checking component spatial maps visually, we chose 48
components based on previous works (Allen et al., 2014).
These 48 components were then grouped into 8 functional
domains. In this work, we refer to components as GICA
output (which can be viewed as small networks), while
functional domains are the larger networks formed between
these components.

Table 1 includes the label (based on their peak locations)
of each component and their respective domains. Static con-
nectivity was then calculated for each subject by computing
the Pearson correlation between each component time series.
This resulted in 1128 (48 · 47/2) correlation values for each
subject. To calculate the linear and/or nonlinear effect of age
and household income on the connectivity of different com-
ponent pairs, we built a regressor matrix by including age,
age2, household income, and mean parental education as re-
gressors of interest. It should be noted that household income
and mean parental education were two separate regressors.
We also included interactions between household income
and mean parental education regressors and age. In addition,
we included framewise displacement, gender, and acquisi-
tion site as nuisance regressors.

Gender was included as a nuisance regressor as our initial
focus was on studying linear and nonlinear patterns occur-
ring at different ages (we revisit this point in the Discussion
section). So, our primary model had six regressors of inter-
est and three regressors for the nuisance variable. Regressor

Table 1. Component Labels

Functional domain
Peak

coordinate (mm)

Auditory
(IC 21) Middle temporal

gyrus R
45.5, �48.5, 15.5

(IC 24) Superior temporal gyrus
R + L

45.5, �8.5, �9.5

(IC 39) Superior temporal gyrus
R + L

60.5, �18.5, �0.5

(IC 42) Superior temporal
gyrus L

�41.5, �24.5, 6.5

(IC 44) Heschl’s gyrus R 39.5, �21.5, 17.5

Cognitive control
(IC 60) Inferior frontal gyrus/

precentral gyrus
�38.5, 6.5, 32.5

(IC 71) Inferior parietal lobule L �26.5, �60.5, 44.5
(IC 73) Cingulate gyrus, anterior

division
�8.5, 8.5, 42.5

(IC 74) Cingulate gyrus, anterior
division

�0.5, 23.5, 21.5

(IC 81) Inferior frontal gyrus R 47.5, 24.5, 15.5
(IC 87) Cingulate gyrus, posterior

division
�6.5, �20.5, 44.5

Default mode
(IC 12) Cingulate gyrus, anterior

division
�0.5, 36.5, 2.5

(IC 17) Cingulate gyrus, posterior
division

�3.5, �27.5, 27.5

(IC 34) Precuneus �8.5, �50.5, 12.5
(IC 50) Precuneus �8.5, �66.5, 33.5
(IC 51) Precuneus 2.5, �60.5, 57.5
(IC 55) Supramarginal gyrus

R + L
53.5, �41.5, 39.5

(IC 57) Precuneus �14.5, �47.5, 41.5
(IC 65) Angular gyrus R + L �41.5, �66.5, 33.5
(IC 69) Medial superior frontal

gyrus
�0.5, 48.5, 63.5

Limbic
(IC 9) Amygdala/hippocampus 21.5, �14.5, �17.5
(IC 75) Hippocampus R + L �23.5, �30.5, �0.5

Saliency
(IC 66) Insula R + L �45.5, 0.5, 5.5
(IC 82) Anterior Insula 32.5, 24.5, �2.5

Subcortical
(IC 2) Putamen R + L 23.5, 8.5, �5.5
(IC 41) Thalamus �21.5, �38.5, 12.5
(IC 63) Thalamus 24.5, �14.5, 3.5

Somatomotor
(IC 3) Precentral gyrus �3.5, �27.5, 65.5
(IC 4) Precentral gyrus R + L 56.5, �6.5, 29.5
(IC 5) Precentral gyrus R 35.5, �21.5, 56.5
(IC 8) Precentral gyrus L �35.5, �23.5, 57.5
(IC 19) Supplementary motor

area
�15.5, �9.5, 63.5

(IC 31) Superior parietal lobule
R + L

�21.5, �44.5, 62.5

(IC 35) Precentral gyrus R + L �38.5, �11.5, 44.5
(IC 37) Supramarginal gyrus L �45.5, �27.5, 36.5
(IC 40) Postcentral gyrus R + L 50.5, �24.5, 42.5
(IC 54) Postcentral gyrus R + L 57.5, �27.5, 26.5

(continued)

Table 1. (Continued)

Functional domain
Peak

coordinate (mm)

Visual
(IC 62) Lingual gyrus L �17.5, �66.5, 3.5
(IC 68) Fusiform gyrus R 27.5, �80.5, �5.5
(IC 70) Lateral occipital cortex 45.5, �63.5, 0.5
(IC 85) Calcarine gyrus R + L 18.5, �69.5, 11.5
(IC 86) Lingual gyrus R + L �5.5, �83.5, �3.5
(IC 89) Middle occipital gyrus

R + L
�21.5, �96.5, �0.5

(IC 92) Middle occipital gyrus
R + L

�30.5, �77.5, 24.5

(IC 93) Lingual gyrus R + L 17.5, �53.5, �5.5
(IC 95) Inferior occipital gyrus L �32.5, �75.5, �9.5
(IC 96) Cuneus 2.5, �89.5, 18.5
(IC 98) Fusiform gyrus R + L 32.5, �41.5, �17.5

Component labels are selected based on the peak activation loca-
tion (with coordinates in the right column).
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coefficients were then calculated for each one of the 1128
correlation values. If the coefficient for income/education
and their interaction terms were not significant, they were
removed from the model, and the coefficients were estimated
a second time.

To correct for multiple comparisons, the Bonferroni cor-
rection for multiple comparisons was applied ( p = 0.01/
1128). To check the significance of age regressors, they
were combined, and then their p-value was calculated. For
the last step, all the fitted polynomials, which had significant
partial correlation with static connectivity, were clustered
based on their shape (i.e., their order and the location of
their minimum/maximum relative to an age chosen to distin-
guish between childhood and adolescence). This step was
performed to help summarize the results. Each cluster repre-
sents a specific relationship between age and connectivity be-
tween different component pairs.

Acquisition site impact on the results

As mentioned earlier, the data used for this article were ac-
quired across seven different sites and three scanners. In ad-
dition to adding site index as a nuisance regressor in all of the
statistical analysis, we performed additional analyses to
show that the scanning site and scanner do not impact the re-
sults greatly. To show this, we calculated the linear correla-
tion between age and static functional network connectivity
(FNC) for subjects from different scanners. In addition, for
each specific site, we removed the subjects acquired at that
site, and calculated the linear correlation between age and
static FNC for these subsamples. These correlation values
were then correlated with the same values calculated from
the whole dataset. This was done to show that set of subjects
from a specific site does not change the age–FNC relation-
ship greatly.

Finally, to show that FNC resulted from individual scan-
ners does not differ from FNC resulted from data excluding
that scanner, we employed a method inspired by bootstrap-
ping ( Johnson, 2001). For each specific site, we randomly se-
lected 15 subjects. Next, from all other sites, we randomly
selected another 15 subjects where the age of these newly
selected subjects is not significantly different than that of
the 15 subjects from the scanner in question. To find these
second set of subjects, we simply used two sample t-test be-
tween the age of the two sets and if the resulting p-value
was <0.01 we sample another 15 subjects from the dataset
excluding the subjects from the specific site being tested.
This step was repeated 100 times for each scanner and
each time the correlation between the mean FNC resulting
from the two sets was recorded. The reason we made sure
that the age between the two sets is not significantly different
is that in this article, we are suggesting that the brain connec-
tivity maturation is nonlinear; therefore, different age ranges
would result in different mean FNC matrices.

Table 2. Subject Demographic Information

Characteristics

Gender

p
Male

(n = 193)
Female

(n = 175)

Age – SD (years) 13.51 – 5.04 14 – 5.19 0.36
Mean framewise

displacement – SD (mm)
0.25 – 0.20 0.22 – 0.15 0.05

Income – SD (group) 6.74 – 2.44 6.82 – 2.57 0.76
Guardian

education – SD (years)
5.48 – 1.13 5.56 – 1.26 0.50

FIG. 1. Histogram of age, education, and income for subjects included in the study. Income and education were recorded
for subjects’ guardians, and the actual values were grouped into different groups.
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Results

Figure 1 shows the histogram for age, guardian income,
and education. There was no significant difference between
male and female participants in age, motion, household in-
come, or mean guardian education (Table 2). In addition,
we did not find any significant correlation between age and
income (r =�0.08, p = 0.12). There was a significant rela-
tionship between age and guardian education (r =�0.11,
p = 0.03). As expected, mean absolute framewise displace-
ment had a very significant negative correlation with age
(r =�0.35, p < 0.01). In contrast, mean absolute framewise
displacement was not correlated significantly with parental
education (r = 0.05, p = 0.3) and parental income (r = 0.08,
p = 0.1). In addition, we could not find any significant corre-
lation between site index and age (r =�0.05), parental edu-
cation (r =�0.01), and parental income (r =�0.04).

As mentioned previously, GICA estimated 100 compo-
nents, which were examined visually and 48 were selected.
These 48 components were grouped into 8 connectivity do-
mains (Fig. 2). These eight connectivity domains were la-
beled as follows: auditory (AUD), cognitive control (CC),
default mode (DM), limbic (LIM), salience (SAL), subcorti-
cal (SC), somatomotor (SM), and visual (VIS). These network
groupings were identified manually based on previous work
(Allen et al., 2014), and static connectivity was then calcu-
lated for each subject and is shown in Figure 3. The partial
correlation between static connectivity values and age was
calculated controlling for household income and guardian
education (with nuisance regressors included). The relation-
ship between static connectivity and the interaction between
regressors of interest were also examined. All p-values were
corrected using the Bonferroni method (Dunn, 1961).

Since a significant interaction was not found between house-
hold income and guardian education with age, we dropped
those two regressors from the final model. The final model
included age, age2, household income, and mean guardian
education in addition to nuisance regressors (representing
gender, head motion, and scanner). Neither household in-
come nor mean guardian education was significant for any

connectivity pair after correcting for multiple comparisons,
but we found 117 significant relationships between age and
connectivity. Next, we combined the age regressors into a
single function reflecting the age effect. To further summa-
rize and characterize the results, we performed cluster anal-
ysis on these 117 polynomials, resulting in 6 different
clusters (Fig. 4). Two of the clusters showed linear effects
(clusters 1 and 2), while the remaining clusters showed qua-
dratic patterns with age.

We observed several different patterns across networks.
For example, the majority of age-related changes in DMN
showed a general trend of increase in connectivity with

FIG. 2. Functional domain spatial maps.
All the components were visually inspected
and 48 were selected, and then grouped into
8 functional domains. Some of the compo-
nents spanned several domains. In these
cases, the most prominent domain was se-
lected. Each color represents one component
(for a list of all components and their labels,
see Table 1). Color images are available
online.

FIG. 3. Mean functional connectivity across all subjects.
AUD, auditory; CC, cognitive control; DM, default mode;
LIM, limbic; SAL, salience; SC, sub-cortical; SM, somato-
motor; VIS, visual. Color images are available online.
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FIG. 4. Developmental trajectory for different functional domains. Correlation matrix of the 48 components was used in a
regression matrix with age and age2 as the main regressors. The significant correlations were then clustered based on their
shape, which resulted in eight clusters. Clusters 1 and 2 demonstrated a linear trajectory, while the remaining four clusters
were quadratic. The connectogram links indicate the correlation value between connectivity strength and the fitted age poly-
nomial (therefore, all the correlations are positive as seen in the color bar at the bottom). Color images are available online.
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FIG. 5. The effect of site/scanner on the results. (a) Correlation between age and sFNC for all subjects. (b) Subjects’ age for each
site. (c) Correlation between age and sFNC for all subjects belonging to one of the three existing scanner manufacturers. (d) Correlation
between age and sFNC for all subjects except the ones belonging to one specific site. (e) Comparing the results from one scanner with a
sample of matched aged subjects from the other scanners. As we can see in this figure, scanner/site does not seem to impact the results
(i.e., relationship between age and sFNC) greatly. sFNC, static functional network connectivity. Color images are available online.
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age, especially for young ages (clusters 2, 5, and 6; clusters
5 and 6 show decrease in connectivity for older subjects).
The only exception to this general trend for DMN was
with the connectivity between this network and some com-
ponents of SM domain (cluster 1).

Unlike DMN, SAL connectivity relationship with age is
present in all six possible patterns. SAL–SC connection rela-
tionship with age includes both decreasing and increasing
trends (clusters 1 and 2), while SAL–Limbic relationship
has an upward trend at early ages, but for older subjects
the trend is decreasing. One last observation we can make
here is that the connectivity between CC and SAL had a
mostly decreasing trajectory with age (clusters 1 and 5; clus-
ter 5 shows an initial increasing trend but it then shows de-
creasing pattern for more than half of the age range).

Similar to SAL connections, the correlation between SM
and AUD domains was present in all clusters. In other
words, these regions showed either an increasing or decreas-
ing change (or a quadratic change with minimum/maximum
in early or late adolescence) based on the actual component
pairs.

In addition, connectivity in the AUD domain was repre-
sented by both linear and nonlinear patterns, in contrast to
the largely linear pattern within the VIS domain (i.e., most
significant links for VIS are present in cluster 2).

Finally, as explained in the Methods section, to demon-
strate that the reported results are robust to scanner and
site effect, we examined the relationship between age and
static functional network connectivity (sFNC) values on dif-
ferent subsets of data grouped based on their scanner manu-
facturer or acquisition site (Fig. 5). Figure 5c shows that the
age–sFNC correlation is quite similar in direction to the
age–sFNC correlation of the entire dataset (Fig. 5a). In addi-
tion, despite the fact that the age of subjects acquired at dif-
ferent sites are not identical (Fig. 5b), if we exclude one
scanner from the data and estimate the age–sFNC correla-
tion (Fig. 5d), we get results similar to those obtained from
the entire dataset (compare Fig. 5d with Fig. 5a). Finally,
using bootstrapping we have compared the sFNC from one
scanner with the sFNC resulting from all other scanners
(Fig. 5e). As can be seen from this figure, all the correlation
values are >0.9, which would mean that the results from
one scanner are quite similar to results from other scanners
(matching age between the two subsets).

Discussion

As mentioned above, we discovered a significant relation-
ship between connectivity and age in 117 connectivity pairs
revealing both linear and nonlinear patterns, which were
grouped into 6 clusters based on their shapes.

We found a complex pattern of connectivity changes with
age that differed both within and across domains. For exam-
ple, links between DMN and other regions such as SAL, VIS,
and AUD are stronger in older subjects compared with youn-
ger ones (cluster 2). In addition, we found that interconnec-
tivity in DMN is mostly stronger in older subjects (cluster 2).
This is in line with results obtained from other studies that
have reported DMN to be more interconnected in older sub-
jects (Fair et al., 2008; Sato et al., 2014). Because of the
nature of our analysis, it is clear that this increase is not com-
pletely linear and starts to decay in subjects aged *15 years,

thus showing that interconnectivity in DMN decreases af-
ter the initial increase in children (cluster 5). To explore
this more, we need to analyze a dataset with a broader age
range as this change might continue well into adulthood as
suggested by some studies (Tamnes et al., 2010; Walhovd
et al., 2005).

Our findings for the DMN suggest that DMN is moving
from a more local network organization (interconnectivity)
to more distal networks (connectivity between DMN and
other domains). This is in line with what others have reported
for different parts of the brain (Lopez-Larson et al., 2011).

As mentioned in the Results section, the connection be-
tween AUD and SM domains is present in most clusters,
but a high proportion of links between these two domains are
visible in the U-shaped clusters 3 and 4. In other words, some
of the links between these two networks are strong in both
children and older adolescents but weaker in individuals
aged 10–14. The interaction between auditory and motor-
related regions has been found by numerous studies previ-
ously [for a review on the matter, see Boulenger and Nazir,
2010)]. Many papers have reported connection between au-
ditory networks and motor networks in children ( James
and Maouene, 2009) and adults (Antognini and Daum,
2017; Dekker et al., 2014).

To the best of our knowledge, this is the first work high-
lighting a U-shaped pattern for these relationships as found
by our study. The U-shaped pattern suggests that different
connectivities develop at different rates (Colver and Long-
well, 2013). One speculation is that in midadolescence, the
connectivities between different parts of the brain become
weaker. This may explain some of the aspects of adolescent
behavior and emotion, but we were not able to directly test
this point (Konrad et al., 2013).

SAL and DMN connectivity has been reported to be stron-
ger in adults compared with children (Uddin et al., 2011). We
did find an increase in connectivity strength with increas-
ing age between these two domains (cluster 2). In the same
study, it was reported that connectivity between CC and
SAL is also stronger in adults compared with children. In
our study, we found that this connectivity is stronger for sub-
jects in the middle of their teens compared with young or
older subjects.

Apart from the effect of different analyses on the results,
we can think of two reasons for these differences. One reason
may be a difference between the spatial maps that each study
associated with these domains. Although studies generally
try to choose similar maps for domains to facilitate compar-
ison across studies, major differences in the dataset and
methods limit the ability to match regions perfectly across
studies. Another possible contributor is the different age
ranges. In their study, they have used subjects with age
ranges 7–9 to represent children and subjects with age ranges
19–22 to represent adults. This approach may cause some
brain development trajectories to go undetected.

In our study, by using a dataset with a broad age range (3–
21) and fitting a quadratic polynomial (instead of linear poly-
nomial), we discovered nonlinear maturation of different
functional connections. This might suggest that the specific
differences between children and adults will differ depend-
ing on the age ranges used.

While the above results suggest a general trend in connec-
tivity patterns within and between domains, the primary
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finding of this study is that different components within do-
mains demonstrated different connectivity patterns with age.
For example, while VIS is reported as largely representing
increasing connectivity with increasing age, the VIS domain
was represented in all six clusters. Apart from cluster 5,
which only represented within VIS domain connectivity (rep-
resentative of decreases in connectivity with increasing age),
the remaining clusters demonstrated age-related changes
both within and between domain connectivity. The strongest
change in between domain connectivity was represented by
increasing connectivity between VIS and DMN (cluster 2).

Another way our results can be viewed is that brain matu-
ration is a complex notation that has both linear and nonlin-
ear trends, which occur distinctly across different parts of the
brain. This complexity makes the definition of maturity state
for the brain quite challenging. This view is in line with a re-
cent article that makes the point that defining an age number
as threshold to group individuals’ brains into mature and not-
mature state is not particularly straightforward (Somerville,
2016). We hope this work will provide guidance for future
studies of this complex and important topic.

Limitations

There were several limitations to this study. First, our
study was cross-sectional; to thoroughly explore brain devel-
opment, a longitudinal study should be performed. Gender
has been shown to modulate different aspects of develop-
ment (Rubia et al., 2013; Spielberg et al., 2015). In this initial
analysis, our focus was on the linear and nonlinear effects
across multiple networks/components, which were already
fairly complex without incorporating interactions with gen-
der. However, gender is an important factor to consider,
and we plan to focus on differences in male versus female
linear and nonlinear changes in a future project.

Another limitation unique to age-related studies is the use
of a single MNI atlas to normalize all subjects to a common
template. In a recent study, Kundu et al. (2018) showed that
the component number reduces for older subjects. We are
aware of this limitation, but to be able to investigate brain
connectivity development, we decided to use the same num-
ber of components and a common map for all subjects to
avoid inducing an age-related bias into the analysis.

Another limitation of this study was that to acquire the
data, different scanners were used in different sites. Different
scanner parameters were optimized to make the data from
different sites similar to each other ( Jernigan et al., 2016).
We also included site as confounding regressors in all our
statistical analysis. In addition, we have done several other
analyses to check that the scanner site does not impact the re-
sults greatly as explained in the Methods section (Fig. 5).
Based on the results, we can see that if we exclude one scan-
ner from the data and calculate age–sFNC relationship the re-
sults do not change greatly (the correlation values are all
>0.96, which is very high). In addition, using bootstrapping
we showed that single scanner results are quite similar to re-
sults from other subset (with matched age range to the spe-
cific scanner).

Finally, the impact of motion on the results in any neu-
roimaging study cannot be denied (Power et al., 2012).
Considering this limitation is of great importance in any
neuroimaging study including children and adolescents as
younger subjects tends to move more in the scanner com-
pared with the older ones. We have tried to reduce the impact
of motion on the results at several different steps.

First, subjects with excessive motion were removed. In ad-
dition, using ICA has enabled us to remove the motion-
related components from the analysis. As a last step, the mo-
tion was included in all the statistical models as a nuisance
regressor. In addition, PING dataset used PROMO approach

FIG. 6. Significant correlation values between age predictor and static FNC using two threshold values to omit subjects
with high motion. Color images are available online.
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that has been shown to reduce the impact of motion artifact
on the raw brain images.

As an additional step, to evaluate the impact of motion, we
ran an analysis using a more stringent motion threshold (for
omitting subjects). We calculated the static FNC of the new
subsample of data and correlated the results with age for each
component pair. Figure 6 summarizes the results between the
main subjects (mean framewise displacement threshold was
3 mm) and the new subsample of subjects (mean framewise
displacement threshold was 0.5 mm). As we can see in Fig-
ure 6, the correlation of sFNC with age is quite similar be-
tween the two sets of subjects, giving us confidence that
motion does not impact the general conclusions of this study.

Conclusion

In this study, we used a large dataset with a broad age
range and examined the nonlinear development of connectiv-
ity in resting-state networks. The primary result of the study
is that connectivity between different functional domains of
brain shows a broad array of developmental patterns both
within and across cognitive domains. Although our findings
largely agree with previous results reported in the literature,
some of our findings were inconsistent with the previous lit-
erature. We believe that the reason for these differences
might be our broad age range of youth participants and the
use of quadratic curve fitting. Such an approach enabled us
to demonstrate that connectivity patterns change dynami-
cally throughout childhood, and that connectivity patterns
are highly dependent on the regions assessed.

We found that the developmental trajectory of functional
brain connectivity from childhood to early adulthood has
both linear and nonlinear patterns; therefore, by using either
approach in isolation, specific patterns will be missed.
Finally, while we cannot rule out any influence of SES on
brain development, the current results support the conclusion
that age is a contributor to connectivity variation when con-
trolling for SES effect.
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