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Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To
date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant
advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as
regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies
have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex
and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will
likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic
agents or cells have been explored, few studies have combined these modalities in a systematic way. For most
strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this
review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and
neuroprotection after SCI, while highlighting present challenges and future directions.
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Impact Statement

To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been
significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated
into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing
extensive background as well as updates on recent technological developments and current clinical trials. This review is a
comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide
future innovation.

Introduction According to the World Health Organization (WHO),” be-
tween 250,000 and 500,000 people around the world sustain

SPINAL CORD INJURY (SCI) results from direct trauma to an SCI each year. In the United States alone there are
the tissue and is associated with loss of motor, sen- around 11,000-20,000 new cases each year." 3 However, the
sory, and autonomic functions caudal to the site of injury.! annual incidence of SCI varies in different countries; for
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example, it is 9.2 patients per million in Denmark and 40.1
per million in the United States.* Around the world, the in-
cidence ranges from 3.6 to 195.4 patients per million.”

In the United States, there are around 250,000 patients
who are at present living with SCI.> Over a lifetime, direct
costs of SCI can reach 1.1-4.6 million USD per patient.®
Most often SCI occurs in young and middle-aged adults’
and those with SCI are two to five times more likely to die
prematurely.” SCI affects not only a patient’s physical and
psychological health but also one’s family and the broader
community and economy.

Due to the lack of plasticity and limited regenerative
capacity of the central nervous system (CNS), recovery of
neural function after SCI is rare. After injury, the spinal cord
undergoes several changes on the cellular and molecular
level that interfere with axonal regeneration. These complex
events are poorly understood, hindering the development of
treatments that can lead to complete recovery.® Present SCI
treatment is mostly conservative relying on stabilization of
the patient, prevention of complications, and physical re-
habilitation.

Extensive research into regenerative strategies for SCI
has been performed over the last couple of decades. Im-
provements in our understanding of the pathophysiology of
SCI coupled with advances in cell-based therapies, bioma-
terials, and biomolecules have enabled us to develop new
therapeutic approaches for neuroregeneration. Promising
results from in vivo experiments evaluating therapies based
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on biomaterials, cells, or biomolecules are being continu-
ously reported.”'® Because of the complexity of SCI
pathophysiology, the use of combinatorial therapies may be
more effective and lead to better regeneration.'*!> Although
various procedures can be used to administer therapy after
SCI (Fig. 1), the use of minimally invasive strategies, such
as injection, is needed to reduce risk of complications, in-
cluding introducing additional injury, and thus spare neu-
ronal circuitry.'®

This review focuses on minimally invasive SCI therapeu-
tics in clinical trials,"*%!” as well as those in preclinical® "
and in vitro phases of development.'"®' In addition, major
challenges are highlighted. Future successful approaches for
the treatment of SCI will likely include the integration of
several recent advances in various fields as combinatorial
therapies in minimally invasive formats. This review sum-
marizes accumulating knowledge, examines evidence and
development, and highlights potential paths forward.

Pathophysiology

SClI is characterized by sequential primary, secondary, and
chronic phases. The primary injury to the spinal cord is the
result of initial trauma. The primary mechanical insult may
occur from compression, shearing, laceration, stretch, dis-
traction, hemorrhage, or vasospasm. Bone or tissue fragments
from the primary injury can exacerbate swelling of the spinal
cord and add to tissue damage.
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Minimally Invasive Therapeutics for SCI

A schematic illustration showing different methods that can be used for the treatment of SCI. SCI, spinal cord

injury. Adapted from Fiihrmann et al.'® Color images are available online.



REGENERATIVE THERAPIES FOR SPINAL CORD INJURY

Secondary injury follows in a progressive way, as a result
of ischemia, inflammation, and development of a cytotoxic
microenvironment, leading to death of functional cells and
damage to the tissue microenvironment. The chronic stage
of SCI is characterized by formation of astroglial and fibrous
scar tissue around cystic cavitations. As a result, regenera-
tion is thought to be inhibited, at least partially, by the ex-
tracellular matrix (ECM) and soluble factors secreted by
inflammatory cells within the scar tissues (Fig. 2).°

Any therapeutic intervention should consider and address
the dynamic pathophysiological events occurring in SCIL
For example, combating measures against increased extra-
cellular amino acids should be applied early on, in minutes,
while measures against inflammatory mediators in hours and
measures against myelin-associated inhibitors within weeks
after injury.”? Because inflammation continues and may
persist for years, the administration of therapeutic measures
should be considered to continue accordingly.*?

Given practical limitations of treating acute SCI in a
clinical setting, many therapeutic interventions in develop-
ment aim to target either the secondary or chronic stages of
injury. For example, accumulation of myelin debris during
secondary injury is associated with inhibition of regenera-
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tion. Myelin-associated proteins lead to inhibition of neurite
outgrowth, thus named NOGO inhibitors, which act through
NOGO receptors leading to activation of GTPase Rho A. Its
effector, Rho-associated protein kinase (ROCK), leads ul-
timately to apoptosis, axonal collapse, and neurite retrac-
tion.® While a detailed discussion of the mechanisms of
myelin-associated inhibition of axonal outgrowth is outside
the scope of this review, we refer the reader to a review by
Zhang et al. for more information.*?

There is also an accumulation of extracellular amino ac-
ids at the site of injury, whose abundance relates to severity
of SCI and neurotoxicity.”* These molecules are attractive
targets for pharmacological intervention aimed at enhancing
neuroprotection and neuroregeneration post-SCI and are
discussed more in the following sections. During secondary
injury, damage occurs on the cellular level through several
mechanisms, including mitochondrial dysfunction leading to
high calcium levels, increased production of oxygen free
radicals, and oxidative injury.?*

In chronic injury, scar formation is a problem and its
disruption is a common strategy for promoting regeneration.
For example, a recent study found that the protein tyrosine
phosphatase & (PTPc) contributes to a transition of
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FIG. 2. An illustration showing the development of pathophysiological changes following SCI. The acute phase takes 0—
48 h and it involves hemorrhage, edema, and proapoptotic factors (A). This leads to further loss of function, more than that
resulting from the initial insult occurs due to injury to neurons and oligodendrocytes. Astrocyte infiltration and release of
additional proinflammatory factors are seen while demyelinated and injured axons begin to die back. In the late subacute (B)
and intermediate (C) stages, microcystic cavities follow cell death. These cavities then coalesce forming barriers to
regeneration in the chronic stage (>6 months). The final chronic stage scar, which is composed of a network of astrocytic
processes and a dense fibrous deposit, acts as a physical and biochemical barrier to neurite outgrowth and cell migration. (D)
A schematic illustration showing demyelination and axonal loss that follow SCI and various regenerative therapeutics that
can be used including the use of biomaterials, cells, molecules, such as an anti-NOGO-A antibody treatment and Rho-
ROCK inhibition, or agents to mobilize endogenous cells such as metformin. ROCK, Rho-associated protein kinase.
Adapted from Ahuja e al.® Color images are available online.
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regenerating growth cones into dystrophic bulbs through
interactions with chondroitin  sulfate proteoglycans
(CSPGs), which are abundant in the glial scar and many
forms of which have been widely reported to inhibit axonal
outgrowth.>> Experimental inhibition of PTPG was found to
promote regeneration in a rodent model of SCI by enabling
axons to overcome CSPG-mediated growth inhibition and,
consequently, serotonergic fiber navigation across the SCI le-
sion leading to some functional recovery.”

While the CSPG-rich glial scar was previously thought to
be completely inhibitory to axonal growth, more recent
studies have found that some aspects of scar ECM, which is
secreted by astrocytes, are permissive and may even pro-
mote regeneration.26 Furthermore, prevention, attenuation,
or ablation of chronic astrocytic scars increased lesion size
and reduced axonal ingrowth.?” Recent studies found also
that the ECM secreted by protoplasmic, but not fibrous,
astrocytes can promote axonal elongation when injected into
the rats’ spinal cord after SCI.%® Taken together, these find-
ings suggest that while some aspects of the astrocytic scar
may be detrimental, other components may be required for
regeneration.

Therapeutic Approaches
Standard treatments

The management of SCI represents a formidable challenge,
and there is no treatment at present available that can effec-
tively restore lost tissue function. Several factors are re-
sponsible for the failure of healing after SCI, including
chronic local inflammation and the release of antiregenerative
factors. Present treatment methods include the use of neuro-
protective and neuroregenerative strategies. The first line of
management for SCI patients includes resuscitation, stabili-
zation, and critical care in specialized centers with early de-
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termination and localization of specific injuries. Stabilization
may include removal of bone fragments or foreign objects,
physical stabilization of the vertebral column, and spinal
decompression.

Nonpharmacological methods to reduce inflammation,
including hypothermia®® and cerebrospinal fluid drainage,*
have also been in phase I/II clinical trials with promising
early results. Early surgical decompression (within 24 h),
administration of anti-inflammatory drugs, and augmenta-
tion of blood pressure lead to reduced acute complications
and hospital stay.® Timely and early intervention is impor-
tant and can be achieved by using neuroprotective measures
(ideally in the acute stage).

The management of SCI also includes prevention and
treatment of complications, and physical rehabilitation.
Without these, there is very limited recovery of neurological
function.! Besides failure of regeneration, SCI is often
complicated by other problems such as infection and pres-
sure sores, which can be serious and ultimately lead to
death, such as in the case of the actor Christopher Reeve
following his SCL** Development of regenerative therapies
to treat neurological deficit represents an active area of re-
search and is a rapidly growing field.® Improved clinical
outcomes will emerge by harnessing the potential of recent
advances in different fields and integrating them to create
innovative therapeutic strategies.

Neuroregenerative and neuroprotective therapies

Despite active research and clinical studies, there is no
effective and globally accepted standard treatment for SCI.®
Various minimally invasive, neuroprotective, and neuror-
egenerative strategies using cells, biomaterials, or pharma-
cological agents are in various stages of preclinical research
and clinical trials around the world (Table 1 and Fig. 3).

TABLE 1. BIOMATERIALS STUDIED FOR TREATMENT OF SPINAL CORD INJURY

Cells or factors

Injury model and

Materials used included delivery method Notable findings References
Phase-separated poly N/A Spinal lesion, Reduced accumulation of GFAP and 134
(2-hydroxyethyl injection Neurocan; however, scaffold
methacrylate) did not integrate into tissue
(pHEMA)
Alginate EGF, bFGF Clip-compression, Improved functional recovery; 133
intrathecal injection  enhanced outgrowth of corticospinal
tracts, and angiogenesis
HPMA copolymers Bivalirudin peptides  Clip-compression, Decreased cellular proliferation, 144
intrathecal injection  inflammation, and astrogliosis
Hyaluronic acid IKVAV, BDNF Clip-compression, BDNF-hydrogels showed greatest 152.155
intrathecal injection  improvement in locomotor
functional recovery
Agarose/carbomer ~ RGD, ECM deposition Clip-compression, Increased MP M2 population +
hydrogels Human mesenchymal intrathecal injection
cells
56

BD PuraMatrix
synthetic peptide

Laminin
Schwann cells

Collagen

Human Schwann cells Clip-compression,
intrathecal injection

Clip-compression,
intrathecal injection

Reduced astrogliosis and promoted
infiltration of endogenous
S100-positive cells

Enhanced long-term cell survival,
vascularization, axonal regrowth,
and infiltration

11

ECM, extracellular matrix.
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FIG. 3. An illustration
showing the global trends of
clinical and preclinical stud-
ies in which cell transplan-
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‘ 40.00% in situ (graft) studies, type of cells (ESCs,
— BM-MSCs, A-MSCs, AF-
’ H 40.00% in situ (scaffold) MSCs, UCB-MSCs, or
20.00% IV NA OECs), and routes of ad-
ministration (IV, intrathecal,
A-MSCs A-MSCs fourth ventricle, or in-
L 7 studies o tracisterna) are shown. When
H 85.71% in situ (graft) B 2 studies no data available, it was in-
14.29% in situ (scaffold) 50.00% intrathecal dicated as NA. AF-MSCs,
50.00% IV amniotic fetal MSCs;
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: ESCs derived mesenchymal stem
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19.35% in situ (scaffold) 7 studies mal stem cells; ESCs, em-
G.45%. IV 100.00% IV/intramuscular bryonic stem cells; IV,
: intravenous; OECs, olfactory
14 studies ensheathing cells; UCB-

MSCs, umbilical cord blood
MSCs. Reproduced with
permission from Vismara

et al.”® Color images are
available online.
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Clinical trials have evaluated agents that can neutralize
axonal growth inhibitors, such as the Rho-ROCK inhibitor,
Cethrin/VX-210, and anti-NOGO monoclonal antibody.®>
However, no pharmacological agent for neuroregeneration
(restoration of neurological function) has been approved by
the U.S. Food and Drug Administration (FDA) for treatment
of SCL>

Cell-based therapies may provide multiple benefits, in-
cluding neuroprotection, angiogenesis, immune modulation,
and tissue regeneration. Cell types evaluated have included

stem cells (embryonic [ESCs], neural [NSPCs], or mesen-
chymal [MSCs]) and glial cells (Schwann cells, olfactory
ensheathing cells [OECs], or oligodendrocyte precursor
cells [OPCS]).I’6 In addition, electrical field stimulation of
the injured spinal cord has been used to enhance neuronal
plasticity and direct rewiring of circuitry into functional
relays.®® As in wound healing of other tissues, angiogenesis
within the injured spinal cord tissue has been correlated with
positive outcomes, particularly in studies delivering bio-
material, cell, or angiogenic soluble factors, 3343
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Micropatterning

Biomaterials have also been investigated for their inher-
ent regenerative potential as well as for the delivery of
therapeutic agents, including cells,”'®¥**  drugs,>*
growth factors,'®¥7%4¢ or genes (Fig. 4).*” Combinations
of these are also being investigated.'®®3%485! Never-
theless, only one biomaterial has reached clinical trials,52
while most remain in [S)reclinical animal*~*° or in vitro
stages of investigation.”’® Even developed therapies with
potential for clinical translation still require extensive test-
ing to prove their safety and efficacy in patients. Further
complicating results is the fact that there are no compre-
hensive studies to compare different strategies under iden-
tical conditions. Research groups can vary greatly in the
choice of animal or injury model and are understandably
restricted in scope. To date, none of these neuroregenerative
therapies is used routinely in clinical practice.

Cell-based therapies. Cell-based therapy may be suitable
for the treatment of discrete lesions in SCI (Figs. 3 and 5)
to provide the following: (1) trophic support,”® (2) immuno-
modulation,%%! 3 angiogenesis,35 (4) and generation of new
CNS cells,"® which may form functional relays (Fig. 6).'>164%
In addition, paracrine factors released by administered cells
may aid in the activation of resident progenitors.®> While stem
cell therapies have shown promising results in clinical tri-
als,%*%* translation faces substantial challenges, including tim-
ing and method of administration,' and risks that have to be
carefully evaluated, including (1) poor survival of transplanted
cells,**®® (2) migration away from the delivery site,®>% (3)
formation of ectopic stem cell colonies or tumors,®’ (4) ex-
cessive proliferation,37 (4) differentiation into unwanted,
nonregenerative cell types,”® and (5) aberrant axonal growth
leading to allodynia.®” Controlling stem cell differentiation or
production of specific regenerative factors remains as addi-
tional key objectives.”®”!

Controlled Drug Delivery Gene Delivery

While various cell therapies are being evaluated in
clinical trials, none of these trials has progressed past phase
I/lla.® The absence of controls in these trials has limited
their value, and the efficacy and long-term outcomes after
treatment of SCI are yet to be demonstrated.'” Financial
costs of cell-based therapies are another major hurdle. Of
the more successful clinical trials, one was terminated due to
limited long-term effects,”” while another was terminated
for financial reasons.”® Questions relating to the type of cells
used, number, and safety remain to be addressed.”* Stem
cell therapy remains experimental and it cannot ethically be
offered to patients as a proven form of treatment.

Despite these limitations, clinical and preclinical studies
evaluating effects of transplanting several different cell
types, including NSPCs, MSCs, Schwann cells, OPCs, and
OECs, have shown promising results to date."®'” NSPCs
have been derived from human fetal spinal cord,®*”> human
fetal brain,**’*’® or pluripotent or ESCs®* and can differ-
entiate into the glial and neuronal cells, which normally
make up the spinal cord. MSCs, including those derived
from adipose tissue (A—MSCs),77 umbilical cord blood,”®
and Wharton’s jellﬁy,79 human OPCs derived from human
ESC (hESC) lines,®* and human NSPCs derived from fetal
spinal cord tissues® have been investigated in clinical trials.

While not in clinical trials, there has also been recent
interest in using human dental pulp cells (hDPCs) because
they contain neural crest-derived ecto-MSCs. These cells
were found to be more effective than bone marrow-derived
MSCs in inducing functional recovery in rodents following
SCL®® Another promising cell source yet to be used in
clinical trials is the human inducible pluripotent stem cell
(iPSC), which may help overcome issues with immune re-
jection of allogenic transplants.

These types of cells vary greatly in their tissue source and
processing methods, often making it difficult to directly
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FIG. 6. Schematic illustration showing bridge (A) or relay
(B) formation during the repair process after the transplan-
tation of cells for the treatment of SCI leading to neuronal
connectivity. Reproduced with permission from Assinck
et al.”’ Color images are available online.

compare results obtained from different studies. For exam-
ple, there is strong evidence that NSPCs or OPCs derived
from hESCs using different protocols or obtained from
varying sources may have different regenerative capa-
cities.*® For example, some preclinical studies reported ro-
bust results with the use of NSPCs, and it was found that
axonal regeneration can be obtained even with the use of
NSPCs obtained from a different species, for exam 6ple, with
the use of human NSCs in immunodeficient rats. ~ In con-
trast, other reports indicated that CNS-derived stem cells
were not efficient in the treatment of cervical spine contu-
sion injury in mice and may even have negative effects.*®
Recently, questions regarding the translation of preclini-
cal data describing cell therapies to the clinic have been
raised.***!#2 Tt was found that there are differences in ther-
apeutic effects between cell lots, such as that observed with
the cell lots used for research and those of clinical grade of
an NSPC product (human central nervous system stem cell

[HuCNS-SCY)) cell in preclinical studies by Anderson et al.*®

ASHAMMAKHI ET AL.

Although the use of a research-grade cell lot was successful
in rat and mouse thoracic SCI models, transplantation of the
corresponding clinical-grade cell lot into a cervical SCI
mouse model provided no benefits. Moreover, some data
suggested negative effects.*®

One possible reason for the difference is the heterogenicity
of the fetal tissue from which these cells were derived. Donor
genetic makeup, the location from which cells were taken,
and the developmental stage at which the cells were isolated
may all vary. In addition, protocols and reagents used to
maintain and differentiate therapeutic cells may all lead to
differences among study outcomes.®' These difficulties may
have contributed to the termination of clinical trials using
HuCNS-SC transplantation for the treatment of SCI, which
were terminated based on business decisions unrelated to any
safety concerns.”>®® Differences between research-grade and
clinical-grade cells will undoubtedly be a critical factor in the
translational capacity of stem cell therapies.

Timing of the administration of cell-based therapy after
SCI is very important. Early delivery after an acute injury
may not be appropriate because the hyperinflammatory en-
vironment may lead to death of transplanted cells. On the
contrary, delayed administration may result in no neuror-
egenerative effects because of the loss of cell plasticity at
the site of injury and extensive scar and cyst formation.”
Studies have suggested that cell transplantation during the
subacute stage is more effective than that during acute or
chronic stages.1 Hence, in most previous studies, cells were
administered during the subacute stage.®* It was also found
from a clinical study that cell application within the thera-
peutic window of 3—-4 weeks post-SCI will have an impor-
tant role in clinical settings to balance the feasibility of
transplantation with optimal therapeutic efficacy.®

Soluble bioactive molecule-based therapies. Soluble
bioactive molecules, such as growth factors and drugs, have
been explored as SCI therapies for their neuroprotective,
neuroregenerative, angiogenic, and immunomodulatory ef-
fects. As discussed in detail later in this review, biomolecules
are often delivered in combination with biomaterials." %8¢
The use of carriers® such as hydrogels, and nanoparticles
(NPs) can improve therapeutic drug delivery and efficacy.®
Promising neuroprotective therapies for use in the acute
stage of SCI that are being investigated for translation to the
clinic include the use of various pharmacolo;mal agents
such as riluzole,”® %nesmm ! minocycline,” hepatocyte
growth factor (HGF),” and granulocyte-colony stimulating
factor (G-CSF).%*

In preclinical studies, improved axonal sprouting has
been demonstrated in experimental SCI in rats to which
antibodies against NOGO were delivered by cells placed
into the parietal cortex.”® Inhibition of phosphatase and
tensin homologue (PTEN), a downstream target of NOGO-
RhoA-ROCK in the sensorimotor cortex, has also been
shown to promote corticospinal tract regeneration in ro-
dents.”®®” Another recent study reported that the adminis-
tration of connective tissue growth factor (CTGF)
zebrafish, after SCI leads to healing of SCI in these fish
within weeks.”® Recently, pregabalin, an established drug
treatment for several neurological disorders, was also found
to block the axonal regeneration inhibitor in mice,99 and it is
worth exploring its use further in SCI studies.
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Biomolecules modulating the immune response are also
candidates for SCI treatment. For example, blocking of the
interleukin-7 (IL-7) receptor favors the generation of M2
phenotype macrophages and thus improves functional re-
covery after experimental SCI in mice.'” Delivery of IL-4
and IL-10 chemokines to promote macrophages to adopt an
M2-like phenotype has also been shown to improve recov-
ery after SCI in a mouse model.'®""1%% The use of fractalk-
ine, a chemokine that preferentially recruits reparative
monocytes, was found to dramatically increase the regen-
eration of experimental nerve defects in rats'®* and thus may
have benefits if used as a treatment for SCI.

Factors released by stem cells may also be useful in the
treatment of SCL’° Intrathecal injection of conditioned me-
dium of MSCs into experimental SCI in rats was found to
increase axonal regeneration and improve locomotor recov-
ery 1-4 weeks after the treatment.’® Stem cell-conditioned
media contain several potentially regenerative factors, in-
cluding insulin-like growth factor 1 (IGF-1), vascular en-
dothelial growth factor (VEGF), transforming growth factor
B1 (TGF-B1), and HGF. It has been reported that the use of
such media are more effective than using individual factors
or their combinations in enhancing the survival of neurons
and growth of neurites.'®*

Factors secreted by stem cells can also have an important
role in regulating immune cell phenotypes, that is, immu-
nomodulatory action. Such secreted factors may influence
neutrophils, macrophages, dendritic cells, NK cells, T cells,
and B cells.”! Furthermore, stem cell-derived exosomes can
be used to modulate the recruitment and function of mac-
rophages.'® It is important to have a deep understanding of
stem cell-derived exosomes, and their effect, to enable the
development of novel therapeutic methods.”' The use of
these media or exosomes provides many future possibilities
for their application in minimally invasive therapy of SCL

Therapeutic biomolecules can also be used to stimulate
resident NSPCs, various tgbpes of which are present
throughout the spinal cord.'*® It has been suggested that
ependymal progenitor cells, present in the central canal of
the spinal cord, may enable regeneration in some animals
even after severe injury.'”” Furthermore, ependymal pro-
genitor cells in the glial scar can be beneficial. They can
limit secondary injury by maintaining tissue integrity and
releasin§ bioactive factors that promote neuronal surviv-
al.'®1%% Thys, manipulation of the local ependymal stem
cell niche'®” or mobilization of other resident progenitors' %
to stimulate self-repair through these cells may be a useful
approach.''® For example, delivery of factors known to pro-
mote oligodendrocyte-lineage differentiation during develop-
ment in a mouse model of acute SCIL, including sonic hedgehog,
platelet-derived growth factor-AA (PDGF-AA), and noggin,
has been reported to increase the numbers of myelinated, re-
generating axons and functional outcomes.''"!!?

It is worth highlighting some recent outcomes of clinical
trials investigating the use of antiregeneration inhibitors
(Rho-ROCK inhibitors'"® and G-CSF”4) for the treatment
of SCI. Rho-ROCK inhibitors are thought to have neuro-
protective and neuroregenerative effects.''” In a phase 1/ITa
clinical trial that involved 48 patients who had acute and
complete cervical (C4-T1) or thoracic (T2-T12) SCI, the
application of Rho inhibitor to the epidural space in a fibrin
glue resulted in no increased adverse effects. Improvement
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in long-term motor function was best seen in cervical SCI
patients who had the drug administered during 7.8-146h
after injury.'"

Despite these promising results, a phase IIb trial for treat-
ment of acute SCI with Cethrin/VX-120 was halted in late
2018 due to lack of efficacy.''® G-CSF is also being inves-
tigated for the treatment of SCL.''* Two phase I/Ila trials”*'!”
and a small-scale double-blind, randomized clinical trial''®
have reported improved outcomes. However, future clinical
trials that are larger in scale and randomized will be required
to demonstrate the efficacy of the treatment with G-CSF.

While the majority of previous clinical studies have de-
livered potentially therapeutic agents either intravenously or
orally, intrathecal delivery may provide better access to the
injury and better approximates the design of many preclin-
ical experimental studies with positive results. Thus, despite
its more invasive nature, it has been argued that this route of
administration will have better clinical success.'' A recent
phase I clinical trial reported the safety and tolerability of
intrathecal infusion of the human anti-NOGO antibody
ATI355 in patients after acute SCL*' In addition, a phase
I/TI clinical trial in which the HGF was intrathecally injected
at the lumbar level in patients with cervical SCI was com-
pleted in 2018 in Japan, and results are expected in the near
future.""’

Biomaterial-based therapies. So far, no biomaterial-
based regenerative therapy of SCI is in routine clinical
practice. However, a biomaterial technology, the Neuro-
Spinal Scaffold, has recently reached clinical trials.’>!2%-!2!
Biomaterials used for the treatment of SCI can be in the
form of conduits,'°"!12122 gheets,'?® scaffolds,'?"'?* fi-
bers,'® particles, or hydrogels (Table 1).'*¢"'3° Biomater-
ials are used to mechanically stabilize the injury site and
provide an environment for interactions with host cells,
physically fill SCI-associated cavities, reconstituting ECM,
and bridgin the injury to guide axonal growth across the
gap./O1OLHZI2LI31=35 1 oyide axonal regeneration, sev-
eral biomaterial architectures have been investigated, in-
cluding channels,%"3 6-138 ﬁbers,139 scaffolds, and magnetic
microgels.>®

Biomaterials for the treatment of SCI can also be used for
the delivery of therapeutic agents and cells (Fig. 4).>'? In
addition, they can support cell survival of delivered cells in
situ,44’50 as discussed later in this review, and recruit mi-
grating endogenous cells, such as Schwann cells'*' and stem
cells,""""1%1% that can support regeneration. To avoid ad-
ditional complexities associated with the use of cells, the use
of acellular biomaterials for supporting spinal cord regen-
eration and remodelin% after injury has been important to
investigate, 121:136:141.14

It is preferable that biomaterials be biodegradable and
injectable for delivery through minimally invasive means.”®
In the acute phase of SCI, the use of a hydrogel is preferred
as it may be used to seal the dura and release anti-
inflammatory drugs. At later stages the use of fibers and
conduits may be better for achieving guided neural regen-
eration.'** However, it would be ideal to design a system
that could be implanted acutely and remain for months to
both guide regeneration and prevent chronic inflammation.

To achieve appropriate tissue repair, the implanted bio-
material should degrade as the host tissue regenerates.
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While biomaterials such as Poly(lactide-co-glycolide)
(PLGA) degrade hydrolytically,"**'*? naturally derived
materials such as fibrin are degraded by cell-produced en-
zymes'>*® and thus may have better potential for coupling
degradation to native matrix formation, which is a chal-
lenging objective. Hybrids of synthetic and natural bioma-
terials can combine desirable properties of both types of
materials. For example, synthetic biomaterials with con-
trolled properties and tailored degradation profiles can be
functionalized with peptides, which are susceptible to deg-
radation by cell-produced enzymes,'**'** or provide sites
for cell adhesion.'?!!'?

Several different types of scaffolds have been investi-
gated for the treatment of SCI. A scaffold made of a block
copolymer of PLGA and poly-L-lysine (PLL) with a highly
interconnected porous structure (approximately 250-500-pm-
diameter pores) was shown to lead to improved functional
recovery after SCI in rats.'*> Later, the safety and efficacy of
these scaffolds were evaluated in partial and complete
hemisection models of thoracic SCI in Old-World primates
(Chlorocebus sabaeus) and significant recovery of locomo-
tion was observed.'*! A significant increase in remodeled tis-
sue with neural sprouting was seen 12 weeks after injury.

Results from preclinical studies, where these PLGA-PLL
devices known as ‘‘Neuro-Spinal Scaffold”” were im-
planted into a thoracic-level contusion in rats and minipigs
after internal decompression was performed, reported re-
duced inflammation and lesion cavitation volumes and
increased tissue sparing and deposition of new, endoge-
nous laminin-rich tissue.'?! However, no functional bene-
fits were observed. The Neuro-Spinal Scaffold has recently
been evaluated in small-scale clinical trials for treatment of
thoracic-level SCI and has shown promising results.>*!2°

While porous polymeric scaffolds, such as those based on
PLGA, have shown promise, hydrogel materials can be fab-
ricated to better match hydration and mechanical properties
of native spinal cord tissue, both of which are thought to
reduce inflammation and scarring. In addition, hydrogels can
be readily formulated to be injected and formed in situ in the
spinal cord. In addition, microgels can be used for the de-
livery of cells,l%’147 drugs, and/or biomolecules,m’gg’148 and
they can be interesting formulations to use in regenerative
therapy of the spinal cord. For detailed reviews of hydrogels
as minimally invasive therapies for spinal cord repair, the
authors refer the readers to Perale et al.,127 Macaya and
Spector,'?® Pakulska ef al.'*® and Khaing er al.'"*®

The use of polyethylene glycol (PEG), an FDA-approved
biomaterial used for many applications, is considered
promising for the treatment of SCI because it can support
stem cell growth, migration, proliferation, and differentia-
tion. PEG hydrogels can also help to reduce local glial scar
invasion, and promote and guide axonal regeneration.'*%1%°
While PEG is essentially biologically inert, hydrogels con-
taining bioactive polymers provide the opportunity to more
directly affect cells in the spinal cord, and thus, the repair
process. In particular, polymers derived from the native ECM,
including hyaluronic acid (HA),%’M"SO‘]‘SH55 ﬁbrin,37’42’48
and laminin,'>>!% 6157 have shown success in preclinical
studies.

In contrast to including individual ECM components,
cell-secreted ECM comgositions have also been shown to
aide in regeneration.*>'*>!%% Alternatively, spinal cord tis-
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sue, decellularized to preserve not only the ECM composi-
tion but also the structure, has been found to enhance axonal
regeneration in the spinal cord of rats.'””

A number of studies have found that provision of a
physical structure to guide regenerating axons along the
longitudinal axis to their targets in the form of conduits or
channels enhances functional recovery after SCI. For ex-
ample, collagen-based neural conduits were functionalized
with the neurotrophin-3 (NT-3) gene and used for the
treatment of completely transected spinal cord in rats.*’
Increased NT-3 levels seen in surrounding tissues and ax-
onal regeneration, observed 1 month postoperatively, were
significantly higher than in controls.

PLGA scaffolds with multiple guidance channels im-
planted in mice were found to be sufficient for promoting
corticospinal tract axonal regeneration into the channels,
through the injury site, and out of the conduits, where they
have the opportunity to connect with synaptic targets caudal
to the lesion.'® In this study, the extent of axonal regen-
eration was found to correlate with functional recovery.
Hydrogels made from multiple base materials and contain-
ing guidance channels have been reported to promote re-
generation in animal models of SCI.%'38161.162 A recent
report by Koffler et al. described the use of a microscale
continuous projection printing method to create hydrogel
scaffolds with guidance architectures that conform to con-
tusion lesions in unique animals.'®'

While conduits and channels provide macroscale guid-
ance structures, nanofibers that mimic the nanostructure of
the native ECM have been developed for regenerative bio-
materials and studied in vitro and in vivo.'®>'®* Nanofibers
have been shown to guide the orientation of regenerating
neurites parallel to their orientation.'®> In addition, the use
of electrospun nanofibers has been associated with ESC
differentiation toward neural lineages.'®® Recently, it was
found that peptide nanofibers containing long laminin motif
can influence neurogenesis both in vitro and in vivo.'>’
Synthetic poly(e-caprolactone) (PCL) nanofibers were also
investigated and found to successfully create electrically
active human three-dimensional (3D) neuronal networks
with synapses using brain neural progenitors.'¢’

Engineered NPs have been explored for their use for the
regeneration of the spinal cord. For example, PLGA NPs
were used for local delivery of flavopiridol (a cyclin-
dependent kinase inhibitor that inhibits astrocyte growth and
inflammatory agent synthesis), and they resulted in recovery
following SCI in rats.'®® Using a biological ligand, gold NPs
were bonded to neurons for optical excitation and they ex-
hibited potential benefits over optogenetics.'® Pulsed in-
frared light and plasmonic gold nanorods were also used to
enhance infrared neural stimulation by increasing neural
responsivity.'””

Intravenously injected NPs made of ferulic acid-modified
glycol chitosan were shown to be effective in achieving
functional restoration after SCI in rats.'”' Moreover, mag-
netic NPs coupled to HA-based hydrogels can be used to
modulate the activation of mechanosensitive ion channels in
dorsal root ganglia neurons as it was demonstrated
in vitro.®® Nanofibers can be combined with therapeutic
agents and NPs'® to enhance their function. For example,
gold NPs were incorporated into electrospun PCL/gelatin
nanofiber-based scaffolds. Neuronal cells were subsequently
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FIG. 7. The use of magnetic rods
in fibrin hydrogel to help guide
regeneration that can be aligned
upon exposure to magnetic field.
(A). An illustration showing the
method of preparation of injectable
hybrid hydrogel. A unidirectional
structure made of aligned rod-
shaped, magnetoceptive microgels

seeded onto these scaffolds and resulted in axonal elonga-
tion forming 3D networks in vitro.'"® In another example,
zero valent zinc NPs included in a PCL matrix using elec-
trospinning were found to promote neuroglial cell prolifer-
ation in vitro.

In addition, electroconductive (e.g., graphene) or magnetic
(e.g., iron oxide NPs) elements can be incorporated into scaf-
folds. The use of electroconductive materials and applied
electromagnetic fields may help to influence cell migration,
adhesion, proliferation, and differentiation.'”? For example,
magnetic NPs can be used to guide neurite growth'”* and enable
the control of cell organization and differentiation (Fig. 7).'7* It
was found that when polypyrrole-coated poly (L-lactide-co-¢-
caprolactone) nanofiber nerve conduits were combined with
electric stimulation and used in the treatment of experimental
sciatic nerve defects in rats, results were similar to those ob-
tained with the use of autografts.'”> Cell elongation was found
to occur in a direction parallel to that of the nanofibers.'”®

Combined with electrical stimulation, conductive carbon
nanofiber-based scaffolds were found to enhance the re-
generative function of NSPCs.'”” Moreover, core-shell-
structured, piezoelectric polyvinylidene fluoride (PVDF)
nanofibers that were chemically wrapped by graphene oxide
lamellae showed a desirable out-of-plane piezoelectric
constant hi%her than that of the conventional pure PVDF
nanofibers.'’® To produce graphene-containing silk, a recent
method reported feeding of graphene to silk-producing
worms to create silk with new properties,'” adding to the
available fabrication methods.

* Injection
* Magnetic orientaion
« in situ matrix gelation

within the fibrin hydrogel is gen-
erated in situ by exposure to mag-
netic field. Following this, the
surrounding liquid prehydrogel is
crosslinked, so that microgel ori-
entation is fixed to guide aligned
cell ingrowth. Adapted from Rose
et al.>% (B) Premixed fibroblasts
can be seen to extend along the
microgel axis (green), as visualized
by stretched F-actin filaments
(stained in red). Reproduced with
permission Rose et al.”® Color
images are available online.

The concept of biomaterials that can be injected and form a
defined guidance architecture in situ is attractive; nevertheless,
development of such biomaterials has posed a formidable
challenge. Promising strategies to overcome this challenge in-
clude the use of scaffolds that are based on self-assembling
fibers”®>124180 or that are embedded with magnetically re-
sponsive microgels.” In an interesting study, poly(ethylene
oxide-stat-propylene oxide) gels containing supermagnetic iron
oxide nanorods were used to help the orientation of nerve ex-
tension parallel to the rods that were aligned by using an external
magnetic field.”®'®! This offers a great opportunity to develop
minimally invasive and regenerative therapies for SCI.

Combinatorial therapeutic approaches. Because of the
complex nature of pathophysiological changes that occur fol-
lowing SCI, combinatorial approaches that address different
aspects of the problem are expected to be more effective. In
such an approach, biomaterials may be combined with cells
and soluble molecules and administered locally to an injury. It
is evident that biomaterials can provide sustained drug deliv-
ery, enhance survival, growth, host tissue integration, and even
differentiation of delivered cells (Fig. 4).182 Attention should
be paid to proper biomaterial selection, tailored drug release,
source and processing of therapeutic cells, and timing of in-
tervention. Despite recent advances in these therapeutics, there
is still a likely long way to go to achieve a therapy that can lead
to significant recovery after SCL'?

Biomaterials and soluble biomolecules. In one approach
for the treatment of SCI, biomaterials and bioactive
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molecules can be combined (Table 1). There are many ex-
amples of procedures using soluble molecule delivery, for
example, growth f21(:tors,86’87’184’185 drugs,115 or other ther-
apeutic agents, '8! for the treatment of SCI. Combining
biomaterials with diffusible factors, and even gene thera-
pies, can maximize therapeutic effects by targeting more
than one aspect involved in SCI.

Biomaterials can also maintain appropriate local thera-
peutic concentrations at or near the injury site over longer
periods of time than bolus injection and hence better support
regeneration.’” For example, hydrogels fabricated from a
hydrolytically degradable macromer [poly(L-lactide)(PLA)-
b-PEG-b-PLA] were used for sustained release of NT-3 into
the injured spinal cords of rats over the course of 2 weeks,
where this combinatorial therapy induced more axonal re-
growth than either individual therapy.'®® Such controlled
release systems help to overcome the need for multiple in-
jections or implantation events. Anderson et al. recently
demonstrated that injectable biomaterials could be used as
reservoirs for localized delivery of a combination of three
growth factors (FGF2, EGF, and GDNF) whose synergistic
actions were regluired to enhance recovery after SCI in a
rodent model.'®

Biomaterials and cells. The use of biomaterials to deliver
cells after SCI has been reported by several studies to im-
prove treatment efficacy (Table 1)."°° Biomaterials may
physically protect loaded cells from the hostile environment
of SCI, retain administered cells near the injury site, and
provide an adhesive matrix for cells and other cues to im-
prove their survival.**'*' By minimizing the loss of deliv-
ered cells, the number of cells required for achieving a
therapeutic effect can also be reduced.** Promising results
with the use of different biomaterial/cell combinations have
been observed in experimental SCI models. These include
neurotrophic factor expression,'? improved postimplantation
cell survival,1 1.16:44.50,138 1 euronal differentiation,10 and
directed axonal regeneration.’

Although various forms of biomaterials can be used,
hydrogels represent an attractive form as they can be easily
used as minimally invasive therapies. A study by Kadoya
et al. demonstrated some potential advantages of delivering
therapeutic cells via methods that are minimally invasive,
specifically those that maintain an intact dura.'® The study
observed formation of ectopic stem cell colonies in rats that
were administered a cell-laden fibrin matrix, which also
contained a cocktail of growth factors, after opening the
dura. However, no ectopic colonies were observed in closed
dura delivery, where no growth factor cocktail was used.'®
In addition, injection delivery of cells within hydrogel can
help to reduce cell death induced by mechanical stresses.'**

Several combinations of biomaterials with cells have pre-
viously reported varying outcomes of axonal regenera-
tion and functional recovery in experimental models of SCI
(Table 1). These have included HA hydrogels with NSPCs,**
self-assembling peptides with NSPCs,'? PEG hydrogels with
human iPSC-derived NSPCs,'® polyurethane-based gel with
MSCs,193 and Matrigel with Schwann cells.'®* A fibronectin-
mimetic, peptide-grafted gellan gum hydrogel was combined
with A-MSCs and OECs and evaluated for the treatment of
experimental SCI in rats. It was found that hydrogel encap-
sulation of both A-MSCs and OECs led to increased axonal
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regeneration and significant improvement in motor func-
tion."”> Delivery of OECs via PQLA/PLGA scaffolds im-
proved cell survival and proregenerative efficacy in the rat
SCI model."* Delivery of mouse El4 spinal progenitors,
loaded onto multichannel PLGA bridges providing a guid-
ance architecture, showed marked improvement of axonal
and functional regeneration in a mouse model of thoracic
SCL'?® However, another study found that collagen micro-
fibers combined with neural progenitor cells from an alter-
native source failed to form a bridge across the injury site, or
recovery of the motor function in a mouse SCI model.*

It has been proposed that the combination of human
MSCs and biomimetic hydrogels could modulate the im-
mune cell microenvironment in SCI, leadin§ to increased
proregenerative M2 macrophage population.*’ The use of an
MSC-seeded alginate hydrogel was found to promote linear
axonal regeneration in an experimental rat C5 hemisection
SCI model.”

In a separate study, MSCs combined with a collagen sponge
were found to facilitate neurite elongation in a rat model of
SCL'" In another study, injectable scaffolds made of self-
assembling peptide nanofibers containing bone marrow hom-
ing, bioactive peptide motifs were described. When combined
with human endometrium-derived stromal cells (hEnSCs),
these materials were explored for the treatment of experi-
mental chronic SCI in rats. The nanofibers were found to
support neural differentiation of hEnSCs. In addition, higher
axonal regeneration and myelination were also demonstrat-
ed."® MSCs are thought to promote neuronal regeneration
through neurotrophic protection and immunomodulation.®®

Cells and soluble biomolecules. Although there are some
studies that have combined cells or growth factors with
biomaterials for SCI treatment,m’%’38 relatively few have
used combinations of cells and growth factors alone. In
some studies, cells themselves were applied as delivery
vehicles for specific factors. For example, FGF2 was used to
prime hDPCs that were subsequently injected into a com-
plete transection model of SCI in rats. Some axonal regen-
eration and locomotor recovery were observed.'*® In vitro,
astrocytes were transfected to overexpress nerve growth
factor (NGF) and encapsulated into a collagen scaffold.
They were then added to rat dorsal root ganglion culture and
found to significantly enhance axonal growth.?! Cells were
conjugated with adjuvant drug-loaded NPs and were found
to enable pseudoautocrine stimulation of transplanted
cells.!”® Finally, ESC-derived OPCs were combined with
the ciliary neurotrophic factor (CNTF) and used to treat
experimental SCI in rats leading to significant improvement
in hind limb locomotor function.*

Biomaterials, soluble biomolecules, and cells. Combining
biomaterials, stem cells, and biomolecules represents a
critical®®! and promising'* approach that may improve re-
covery after SCI.>® Exciting recent work has demonstrated
that delivery of human NSPCs within a simple fibrin matrix
containing a growth factor cocktail after SCI supports ex-
tensive engraftment with host neuronal circuits leading to
functional recovery in both rodent'® and nonhuman primate
models.*® Another recent study used a combinatorial ther-
apy comprising a scaffold containing Schwann cells modi-
fied to overexpress NT-3 and adult stem cells modified to
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overexpress the NT-3 receptor TrkC.?** In each of these
studies, results suggest that NSPCs can integrate with the
host tissue and act as neuronal relays across SCI leading to
functional gains.

A separate study incorporated NT-3 within silk fibroin
coatings on poly(g-caprolactone)-block-poly(L-lactide-co-¢-
caprolactone) (PCLA) conduits, with enabled sustained re-
lease of the growth factor,”*® which may provide advantages
over delivery from a bolus or cell source. When combined
with rat E14 NSPCs and transplanted into the rat thoracic
spinal cavity after complete transection, incorporation of
NT-3 increased NSPC survival, axonal regeneration, and
functional improvement. Others have developed biomateri-
als as affinity-based delivery platforms (e.g., based on
heparin-binding domains) for growth factors, including
NT-3 and PDGF-AA, in combination with NSPCs and have
found similar benefits in rodent models of SCI.*>">

Beyond growth factors, a hydrogel delivery platform
based on SH3 affinity has been used to deliver chon-
droitinase ABC in combination with human iPSCs, resulting
in better survival of both host and transplanted cells.”’ Liu
et al. have described an approach where alginate biomate-
rials with longitudinally aligned channels to provide guid-
ance were seeded with Schwann cells and implanted into
cervical lesions in rats.*® Adenovirus encoding BDNF was
delivered caudally to the lesion to encourage axons to re-
generate along the rostral/caudal axis and allow axons to
exit biomaterial implants and re-enter the caudal spinal cord.

Other therapeutic approaches. Because of the com-
plexity of the healing process of the spinal cord after SCI,
taking advantage of non tissue engineering approaches may
further support restoration of function. For example, small-
scale clinical studies have demonstrated that the use of
epidural electrical stimulation, in particular in conjunction
with dynamic, task-specific training, can restore voluntary,
coordinated motor activit}; in previously paralyzed individ-
uals following SCL?**2°" It is envisioned that combining
proregenerative drugs, biomolecules, and/or cells with
electrical stimulation and/or rehabilitative training will lead
to better results. This type of approach would be expected to
create a proregenerative environment supportive of axonal
growth and plasticity, which would then be guided to form
and maintain relays for different bodily functions via direct
neuromuscular stimulation.>®> For example, Chen et al
found that treatment of rats with anti-NOGO-A antibodies
after incomplete thoracic SCI followed bg treadmill loco-
motive training improved motor recovery.”%®

Challenges and Future Perspectives

Many obstacles to the development of successful treat-
ments for SCI remain, including reproducibility of the
therapeutic paradigm (in particular with combinatorial or
multimodal therapies), variations in the location and sever-
ity of SCI across patients, and clinical variability and rec-
ognizing the appropriate timing for treatment intervention,
remain to be addressed. Cell-based therapies will face
challenges concerning both preclinical processing and
clinical administration, such as identifying the optimal
number of cells for transplantation that balances efficacy
and safety, improving survival of transplanted cells, and
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directing cell differentiation and functional integration with
the host circuitry.

Important challenges also include issues related to inter-
species variation and preclinical experimental models. For
example, while rat SCI is more pathologically similar to the
human case than mouse SCI,ZO9 mice have been used more
frequently in preclinical studies. Even the use of rat models
is not ideal as these have fundamental differences from
humans, and thus, results cannot always be translated to
humans. For example, the efficacy of successful cell therapy
observed in animal studies has not been reproduced in hu-
man clinical trials.!” In addition, while cervical SCI is the
most common injury in human patients, it has been less
often investigated in preclinical studies.”’ Instead, many
preclinical studies have used lumbar and thoracic models
that are technically easier to perform.>'® Therefore, more
clinically representative models should be considered and
developed in the future.

Given these considerations, preclinical results should be
interpreted cautiously. For example, axonal regeneration
does not always mean functional recovery. Efforts should be
made to identify specific populations of axons responsible
for functional recovery. The reversible neuronal silencing
technique is a possible method for this purpose.?'' However,
regeneration of large numbers of axons, which can exit
spinal cord lesions caudally, remains a significant chal-
lenge.'” There are also differences between animals and
humans in biological cues, and hence, the extrapolation of
results can be difficult.

Although there have been several reports of cell-based
therapies for the treatment of SCI, including clinical trials,
treatment efficacy is yet to be demonstrated in phase I-1I
trials.> Recently, questions regarding the translation of
preclinical data to the clinic have been raised.*®*""%* It is
difficult to define potency in cell products and current good
manufacturing practice (¢cGMP) requires testing for the
markers that are essential to identify desired cells and
contaminants and as indicators of potency. In addition, the
FDA does not require a definitive potency assay for early
clinical studies. While this policy may serve to speed up
translation of some therapies, it leaves room for variations in
final products leading to a risk of failure in clinical trials.®!
Thus, researchers must balance the need for extensive
product characterization with that for helping patients
sooner. It should be noted that no preclinical model is ideal,
and thus, the ultimate testing for efficacy lies in the human
clinical setting.*'?

In the future, the use of iPSC-derived cells may help to
avoid hurdles associated with possible immune rejection of
allogenic cells. They may also mitigate the need to address
issues with variability across lots, as each batch of thera-
peutic cells would be tailored for each patient. However,
iPSCs will require thorough investigation into the safety of
their clinical use, as possible genetic and epigenetic ab-
normalities may occur during their induction and tumori-
genicity after their transplantation.** Tools, including the
use of clustered regularly interspaced short palindromic
repeats (CRISPR)-mediated gene editing, have helped to
identify key players involved in the cell response to in-
jury, and may aid in developing methods to enhance the
abilig}lf3of stem cell-based therapies to restore function after
SCIL
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Real-time, in vivo imaging, data communication and con-
trol can be integrated in future therapeutic strategies.”'*?'?
For example, the next wave of innovations would likely in-
clude smart, multifunctional materials that can sense, respond,
actuate, and report with remote control.>'>*'” The use of dy-
namically bioresponsive materials*'®!” for developing a new
generation of therapeutic constructs may also be useful.?'®
Such materials can be designed to provide graded, temporally
and spatially controlled release of various agents,”'” and even
stimuli-responsive behavior than can be triggered by external
or internal means. Biomaterials may also have electro-
conductive elements and electroresponsive properties. In
addition, including in situ organizable structures (e.g., with
the use of magnetic rods®®) may promote organized guidance
of regenerating axons/neurites. For example, the incorpora-
tion of superparamagnetic iron oxide NPs would help tar-
getability under the influence of external magnetic field. This
type of approach has the gotential to yield new nonsurgical
treatment options for SCL.**°

Organ-on-a-chip technologies have been developed and
used to build various models for studying normal physi-
ology and pathological conditions.”*'*** Such models may
be used in the future to study the various stages of patho-
physiology of SCI, and to develop and test new therapeutics.
Organ-on-a-chip models can be more representative to na-
tive tissues than conventional two-dimensional cell culture
and can possibly recapitulate human cell behavior better
than animal studies.””>** It would be a great advantage to
have SCI-on-a-chip models that may help to overcome some
of the present challenges, especially those related to the
development of effective therapy for a difficult condition.

Commercialization of newly developed therapeutics will
depend on the feasibility of scaling up for mass cGMP
production, demonstration of clinical safety and efficacy,
and obtaining regulatory approvals. When developing ther-
apies integrating diverse technologies (e.g., devices, drugs,
and cells), regulatory approval presents additional chal-
lenges, such as how these combination therapies affect the
body differently than might be expected for each component
alone. Thus, new combination products will require exten-
sive preclinical characterization. Targeting more specific
SCI pathologies when designing trials, and the use of new
imaging technologies and biomarkers® also promise to im-
prove evaluation of outcomes.

There is a need to build upon already obtained clinical
results to refine therapies and, in particular, cell-based
therapies that are relatively new and for which the optimal
potency, cell types, and dosing for therapeutic benefits are
crucial to characterize. In addition, successful clinical
translation will require development of safe methods for cell
transplantation. Complications and risks related to the use of
stem cells, such as the formation of ectopic colonies, need to
be carefully assessed and resolved. More studies are needed
to optimize minimally invasive delivery methods that may
lead to reduced risk of cell migration.'®

Moreover, a multidisciplinary approach involving clini-
cians, researchers, pharmacologists, materials scientists, and
bioengineers will be indispensable to achieve successful
treatment of patients with SCI, a very challenging, yet im-
portant, clinical goal. Development of a global consensus
and standardization for cell-based therapies should be en-
couraged to curb the misuse of these interventions as cura-
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tive means and maximize the ability of scientific studies to
advance innovative treatments for SCIL.’*

Conclusions

SCI is a devastating condition with a complex patho-
physiology for which no present therapies can restore lost
neurological functions. The last decade has produced in-
creasingly intensive research that has led to the development
of a few cell-based therapies that have proceeded to clinical
trials. Unfortunately, despite successes in preclinical animal
studies, efficacy has not been reproduced in humans. To
date, the most successful results have been obtained using a
combinatorial therapy that used biomaterials, cells, and
soluble molecules. It is anticipated that addition of electrical
stimulation of the spinal cord to these therapies will achieve
a better outcome. At present, functional recovery after SCI
is a long process that may take years and it is unlikely that a
full recovery will ever be achieved. The development of
minimally invasive approaches is desired to reduce com-
plications and avoid additional injury to the spinal cord.
Nevertheless, several barriers remain to be overcome
through a multidisciplinary approach and consensus based
on integrated evidence and recruitment of advances made in
different fields of science and technology.
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